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1. Introduction 

Biomedical science helps us to understand disease, its cause of occurrence and how we can 

control, cure and prevent the disease. In human body, kidney is vital organ of urinary system 

and kidney failure is a one of the most worldwide health problem. There are different types of 

kidney diseases that may lead to failure of the kidneys and most common disease is chronic 

kidney disease (CKD). In the progressive CKD, acute kidney injury (AKI) is a fundamental 

risk factor. Acute kidney injury (AKI) simply means a sudden deterioration in renal function 
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of kidney that makes difficulty in maintaining fluid, electrolyte and acid-base balance. Acute 

kidney failure occurs when kidneys suddenly become unable to filter waste products from 

blood. The diagnosis of AKI and its staging is based on acute changes in serum creatinine 

(SCr) and/or a reduction in urine output (UO). Gameiro et al. (2020) classified the staging of 

acute kidney injury according to KDIGO (Kidney Disease Improving Global Outcomes) as 

under: 

Table 1 Stages of Acute Kidney Injury (AKI)  

Stage SCr UO 

1 Increase in SCr ≥ 0.3 mg/dl  (≥26.5 

μmol/L) or Increase in SCr ≥ 150% to 

200% (1.5 to 1.9X)   

<0.5ml/kg/h(>6 h) 

2 

 

Increase in SCr > 200 to 300% (>2 to 

2.9X) 

<0.5ml/kg/h(>12 h) 

3 

 

Increase in SCr > 300% (≥3X) or 

Increase in SCr to ≥ 4.0 mg/dl (≥353.6 

μmol/L) or initiation of renal replacement 

therapy 

<0.3ml/kg/h(24 h) or anuria 12 h 

 

In recent years, several researchers have focused studies on problems and diseases related to 

renal function of the human kidneys using different approaches/techniques, e.g. Teo et al. 

(2019) described a prospective study of clinical characteristics and outcomes of acute kidney 

injury in a tertiary care Centre. Bao et al. (2021) studied a prediction score model and carried 

out survival analysis of AKI following orthotopic liver transplantation in adults. Mo et al. 

(2021) analyzed the risk factors those affects mortality in AKI and developed a prediction 

model for survival in diabetic patients having AKI. Wang et al. (2022) explained the 

predictive value of the Oxford acute severity of illness core for clinical outcomes in patients 

with AKI. Brothers et al. (2022) conducted survival and recovery modeling of AKI in 

critically ill adults. Haredasht et al. (2023) presented systematic review on validated risk 

prediction models for outcomes of AKI. Islam et al. (2023) predicted chronic kidney disease 

on the bases of machine learning algorithms. Nakamura et al. (2024) focused on the 

prognostic impact and predictors of persistent renal dysfunction in AKI after emergency 

percutaneous coronary intervention for acute myocardial infarction. Lai et al. (2024) 

developed a predictive model for AKI in sepsis patients based on recursive partition analysis.  
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Stochastic modeling is a simple and concise approach to understand the disease 

progression and for their in depth investigation in comparison to other techniques. Moreover, 

through the analysis, one can easily predict the disease progression in its different stages. 

This investigation helps us to take appropriate measures that may slow down the progression 

of the disease and hence can improve survivability of the patients. Application of stochastic 

modeling in biomedical science and their uses in controlling disease-related morbidity and 

mortality have been attempted by some researchers including Lintu et al. (2022). While going 

through the literature, it has been noticed that for enhancing the survivability of the patients, 

investigation of AKI progression through sensitivity analysis of a stochastic model has not 

been reported. To fill up this gap, an attempt has been made.  

In the present paper, modeling and analysis of acute kidney injury patients is carried out 

using the concepts of Markov process and regenerative point technique. The motive of the 

study is to investigate important parameters of the model that have impact on the human 

kidneys with acute kidney injury progression at its different stages to enhance survivability of 

the patients, therefore, the expressions for mean sojourn times, mean survival time and 

survivability of the patients are obtained. The conclusions are drawn on the basis of 

numerical computations and graphical study. Sensitivity and relative sensitivity analyses are 

carried out to judge the impact of different parameters on mean survival time and 

survivability of the patients. The novelty of the study is sensitivity analysis of acute kidney 

injury patients through stochastic modeling and analysis approach to judge the important 

parameters that can help to enhance survivability of the patients. 

The model description, notations and state transition diagram are given in the section 2. 

Various transition probabilities, mean sojourn times and mean survival time are also derived 

in this section. Section 3 is devoted to numerical computations, graphical and sensitivity 

analyses.  Various conclusions drawn are presented in section 4. 

2. Methodology 

In this paper, a stochastic model has been developed for a patient having possibility of acute 

kidney injury (AKI) progression using Markov and regenerative point techniques. Stochastic 

modeling approach is a simple and concise way in comparison to other techniques to 

understand the disease progression and for their investigation. Moreover, through this 

analysis, one can easily predict the disease progression in its different stages. Sensitivity 

analysis determines how different values of an independent variable affect a particular 

dependent variable under a given set of assumptions. As there is significant difference among 



Shikha Bhardwaj /Afr.J.Bio.Sc. 6(13) (2024)  Page 5194 of 18  

 

the parameters considered in the model, the concept of sensitivity analysis has been applied 

for investigating comparative impacts of the parameters on mean survival time and 

survivability of the patients having AKI progression. 

2.1. Model Description and Assumptions 

The model takes in to consideration that the kidneys in urinary system of the human body are 

initially normal. With due course of time/complications arises in the body, deterioration in 

any one of the kidneys may starts and patient approaches to AKI Stage1. During that time, 

the patient goes to an appropriate hospital from where the patient may recover from the 

problem by any sort of treatments. In case, patient in AKI Stage 1 is not recovered, then the 

patient at AKI Stage 1 moves to a kidney damaged stage, i.e. AKI Stage 2. If not recovered 

too at that stage, the complete failure of a kidney of the patient takes place that corresponds to 

stage 3 of AKI. In the meantime, another kidney may get degraded that lead to major 

degradation of urinary system. Further, on complete failure of both the kidneys, 

transplantation of a kidney to the patient is done for which suitable donor is available at the 

hospital. It is considered that in the hospital, the treatment/surgery for kidney recovery/ 

transplantation is done with all medical perfections and accuracy by the doctors. A kidney 

after treatment/recovery at any AKI stage is assumed to work as good as in the just previous 

AKI stage. Further, other organs of the body are assumed to have no effect on the patient’s 

AKI progression. Other assumptions of the model are as under:  

• The patient reaches the hospital in negligible time wherein single doctor/facility for 

treatments/surgery is available. 

• A transplanted kidney works as good as normal one. 

• The times to damage, failure, recovery and transplantation of a kidney have 

exponential distributions whereas other time distributions are general. 

• All random variables are mutually independent. 

2.2. Notations and State Transition Diagram  

Various notations and states of the model are considered as under: 

λ01 Damage rate of kidney from normal to AKI Stage 1. 

λ12 Damage rate of kidney from AKI Stage 1 to Stage 2. 

λ13 Failure rate of kidney from AKI Stage 1 to stage 3. 

λ23 Failure rate of kidney from AKI Stage 2 to Stage3. 
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g1(t)/G1(t) p.d.f./ c.d.f. of time of kidney recovery at AKI Stage 1.  

g2(t)/G2(t) p.d.f./ c.d.f. of time of kidney recovery at AKI Stage 2. 

h(t)/H(t) p.d.f./ c.d.f. of time of kidney transplantation. 

S0 Normal/healthy state. 

S1, S2 Minor degraded state. 

S3 Degraded state. 

S4, S5 Major degraded state. 

S6 Failed state. 

For the model, various states of transition are shown in the state transition diagram given 

below: 

Figure 1 State Transition Diagram 
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                   Failed State 

 

2.3. Transition Probabilities   

The transition probabilities are obtained as follow: 
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From these transition probabilities we observed that

 
01 1 ;p =

         10 12 13 1 ;p p p+ + =  21 23 1 ;p p+ =

 

34 1 ;p =
        43 45 46 1 ;p p p+ + =

     54 56 1 ;p p+ =
                 63 1.p =

 

2.4. Mean Sojourn Time 

Expected time taken by the patient in state i before transiting to any other state is called mean 
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sojourn time. It is given as under by .i  

0

Pr( ) ,i iT t dt

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where
iT is the sojourn time in state i . These are obtained as under:
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The unconditional mean time is mathematically stated as; 

*
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It is clear that   
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2.5. Mean Survival Time  

Let ( )i t denotes the cumulative distribution function of first passage time iS to failure 

state. The following recursive relations are obtained for ( )i t :  

0 01 1( ) ( ) ;( )t Q t t = &  
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When the system starts from the state (0) the expression for mean survival time is given by
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2.6. Survivability   

Using the definition of survivability and applying the concept of regenerative process, 

we derived the recursive relations for ( )iS t as given below: 
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By using LT of these equations and then computing for
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In steady state, expected survivability is derived as
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3. Results and Discussion  

3.1. Numerical Computation and Graphical Interpretations 

The expressions derived for mean sojourn times, mean survival time and survivability are 

analytic and computationally tedious involving several parameters. Therefore, following 

particular case is considered for computations and analysis purpose: 

 1

1 1( ) ;
t

g t e
 −

= 2

2 2( ) ;
t

g t e
 −

= ( ) .th t e  −=  

Here 1 2,  and are taken constants.  

Numerical computations have been done for the above particular case and various 

graphs have been plotted for mean survival time and survivability giving different values to 

the parameters 01 12 13 23 1 2, , , , , ,        keeping in view the values as given in Brothers et 

al. (2022). The following interpretations and conclusions have been drawn from the plotted 

graphs: 

Fig.2 and fig. 3 describe the essence of mean survival time 0( )T  and survivability 0( )S

respectively with respect to failure rate 23( )
 
and kidney damage rate 12( )  and for varying 

values of recovery rate 2( )  and transplantation rate ( ) . From the graphs, it can be noticed 

that patterns of mean survival time 0( )T and survivability 0( )S  respectively show downward 

trends as failure rate 23( )
 
and kidney damage rate 12( )  rises. Further these patterns have 
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upward trends for higher values of kidney recovery rate 2( )  and transplantation rate ( ) . 

 

 

Figure 2 Mean survival time 0( )T versus kidney failure rate 23( ) for varying values of 

recovery rate 2( )
 

 

 

 

Figure 3 Survivability 0( )S versus kidney damage rate 12( ) for varying values of 
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transplantation rate ( )  

 

           The fig. 4 and fig. 5 presented the essence of mean survival time 0( )T  and survivability

0( )S  respectively in terms of recovery rate 1( ) and recovery rate 2( ) for different values of 

kidney failure rate 13( ) and failure rate 23( ) . From these graphs, it can be noticed that the 

values of mean survival time 0( )T  and survivability 0( )S of the patient, respectively rise with 

the recovery rates 1( ) and 2( ).
 
Further, their values go down with increase in the values of 

kidney failure rates 13( ) and 23( ) . 

 

 

Figure 4 Mean survival time 0( )T versus recovery rate 1( ) for varying values of failure rate

13( )
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Figure 5 Survivability 0( )S versus recovery rate 2( )  for varying values of failure rate 23( )  

 

It can also be observed from the above graphs that for the lower values of kidney 

failure rate from AKI Stage 2 to Stage 3, the survivability of the patient is more. For instance, 

in case of failure rate 23 0.2 =  and the kidney recovery rate at AKI Stage 2, 2 0.1 = , the 

survivability of the patient is more than 88% whereas for failure rate 23 0.4 =
 
with same 

recovery rate survivability is less than 88%. Further it is observed that the mean survival time 

and survivability of the patient increase with the rise in the kidney recovery/transplantation 

rates through medicine/surgery. For instance, for kidney transplantation rate 0.5 =  and 

damage rate at AKI Stage 1, 12 0.1 = , survivability of the patient is less than 90% whereas 

for the transplantation rate 0.7 =  and at the same damage rate, survivability is more than 

90%. This shows that with increase in the kidney transplantation rate, survivability of the 

patient increases.     

3.2. Sensitivity and Relative Sensitivity Analysis 

As there is significant difference among the values of parameters considered in the model, we 

can use the concept of sensitivity analysis for investigating their comparative impacts on 

mean survival time 0( )T and survivability 0( )S  of the patients. The sensitivity and relative 

sensitivity function for mean survival time 0( )T and survivability 0( )S are given below: 
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and 

                                        

0( )
,k

S

k



=

              0

( ) ,k k

k

S
 =

 

where 

01 12 13 23 1 2, , , , , , .k       =  

 

Table 2: Sensitivity and relative sensitivity analysis of mean survival time
0( )T with respect to 

damage rate 01  for 
12 0.2, = 13 0.3, = 23 0.5, = 1 0.7 , =

2 0.6 =  

01  
01

0

01

( )T





=


 
01 01

01

0

( )
T

 


 =  

0.1 

0.3 

0.5 

0.7 

0.9 

1.1 

-418.6047                                         

-46.5116                                           

-16.7442                                          

-8.5430                                            

-5.1680              

-3.4595       

-0.8738 

-0.6977 

-0.5806 

-0.4972 

-0.4348 

-0.3863 

  

Table 3: Sensitivity and relative sensitivity analysis of mean survival time 0( )T  with respect 

to damage rate 12  for 01 0.1, =
13 0.3, = 23 0.5, = 1 0.7 , =

2 0.6 =  

12  
12

0

12

( )T





=


 
12 12

12

0

( )
T

 


 =  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

-43.0402 

-33.6128                        

-26.9748                       

-22.1253                       

-18.4750                       

-15.6589       

-0.0832 

-0.1403 

-0.1802 

-0.2085 

-0.2285 

-0.2426 

 
 

Table 4: Sensitivity and relative sensitivity analysis of Survivability (S0) with respect to 

damage rate 01  for 
12 0.2, = 13 0.3, = 23 0.5, = 1 0.7, =

2 0.6, = 0.5 . =  
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01  
01

0

01

( )S





=

  
    

01 01

01

0

( )
S

 


 =  

0.1 

0.3 

0.5 

0.7 

0.9 

-0.2737          

 -0.1746            

 -0.1210            

-0.0888            

 -0.0679             

 -0.0283 

 -0.0566 

 -0.0675 

 -0.0710 

 -0.0711 

  

   Table 5: Sensitivity and relative sensitivity analysis of Survivability (S0) with failure rate

13  for 01 0.1, = 12 0.2, =
23 0.5, = 1 0.7, =

2 0.6, = 0.5 . =  

13  
13

0

13

S





=
  13 13

13

0

( )
S

 


 =  

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

-0.0774                             

-0.0632                                    

-0.0525                                      

-0.0444                             

-0.0380                                                      

-0.0329           

-0.0079 

-0.0130 

-0.0163 

-0.0184 

-0.0198 

-0.0206 

 

     Table 6: Sensitivity and relative sensitivity analysis of survivability 0( )S with recovery rate 

1  for 01 0.1, =
12 0.2, = 13 0.3, = 23 0.5, = 2 0.6 , = 0.5 . =  

1  
1

0

1

S





=
  1 1

1

0

( )
S

 


 =  

0.1 

0.2 

0.3 

0.4 

0.5 

0.0930                                              

0.0698                                              

0.0543                                              

0.0435                         

0.0356       

0.0099 

0.0147 

0.0171 

0.0181 

0.0185 

The sensitivity and relative sensitivity analyses of mean survival time 0( )T and survivability

0( )S of the patient w.r.t. the kidney damage/kidney failure/recovery rates 01 12 13 1, , ,     

have been presented in table 2 to table 6. From these tables, it can be observed that the values 
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of sensitivity of mean survival time 0( )T  w.r.t. the kidney damage/failure rates are negative in 

sign. For example, in case of sensitivity of mean survival time 0( )T w.r.t. the damage rates

01 12( , ) 
 
shows that increase in the kidney damage rates decrease the value of mean survival 

time. On the other hand, the sensitivity values of survivability w.r.t. the kidney 

recovery/transplantation rates are observed positive. For example, in case of sensitivity of 

survivability w.r.t. the recovery rate at AKI Stage 1, increase in kidney recovery rate leads to 

increase in survivability of the patient. Further, it can be observed from the analyses that 

mean survival time and survivability of the patient are more sensitive towards the values of 

kidney damage rates from normal to AKI Stage 1 as well as from AKI Stage 1 to Stage 2. 

4. Conclusion 

The stochastic model and analysis presented in the paper is a simple and concise approach for 

understanding and investigating the patients with acute kidney injury at its different stage of 

progression or their related issues. This study is quite helpful to make prediction about 

patient’s mean survival time and survivability and accordingly to take appropriate measure to 

treat/cure the patients. Further graphical and sensitivity analyses of the proposed model 

highlights the impacts of different rates of kidney damage, failure and recovery at different 

stages of acute kidney injury progression and kidney transplantation rate on mean survival 

time and survivability of the patients. The important factors/rates that can help to enhance 

survivability of acute kidney injury patients can be easily selected. 

From the investigations through the graphical study and sensitivity analyses, it is 

concluded that the mean survival time and survivability of the patient decrease with the rise 

in the rates of kidney damage/ failure at various stages of the acute kidney injury progression. 

Further it can be concluded that mean survival time and survivability of the patient are more 

sensitive towards the kidney damage rates at initial two stages of acute kidney injury 

progression. More attentions need to be given to the patient at these stages of acute kidney 

injury. 

It is also concluded from the analyses that for lower values of kidney failure rate at 

second stage of acute kidney injury progression, the survivability of the patient is more. 

Further, the mean survival time and survivability of the patient increase with the rise in the 

rates of kidney recovery/transplantation through medicine/surgery. Investigations also 

conclude that failure rate of kidney from second stage to third stage of acute kidney injury 
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progression and kidney transplantation rate play crucial roles as far as mean survival time and 

survivability of the patient is concerned. Thus, survivability of the patient may be enhanced 

controlling these rates taking appropriate measures. 
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