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Introduction 

A comprehensive overview of tuberculosis comprises everything from the disease's beginnings to the invention of 

medications and therapeutic strategies aimed at decreasing and limiting its consequences. The names "White Plague," 

"phthisis" and "consumption" have all been applied to tuberculosis over history. Most experts agree that earlier, more 

primitive species within the same genus, Mycobacterium are the source of the infectious agent, Mycobacterium 

tuberculosis diseases. 2014 witnessed the reconstruction of a tuberculosis genome from remains found in southern 

Peru, and the outcomes of an exciting new DNA study demonstrated that the disease may have originated less than 

6,000 years ago in humans. The first recorded case of tuberculosis occurred approximately 9,000 years ago, although 

researchers hypothesized that humans first contracted the disease across Africa approximately 5,000 years ago [1]. 

Abstract 

In this paper, we examined the mechanism of Mycobacterium tuberculosis disease. Airborne tuberculosis is 

a disease that is putting the world's human beings at risk. This model carried out six-dimensional 

compartments represent the susceptible individual, latently exposed individual, individual infected at home, 

individual infected in at public place, individual infected at the hospital and the rate of recovered class. In 

this model, we described all compartments of the transmissible illness of Mycobacterium tuberculosis (MT) 

and how its spread in general population communities. The genus Mycobacterium is believed to have evolved 

more than 150 million years ago; to lower the prevalence of infectious cases in the community, our theoretical 

framework proposed a strategy for preventing and controlling tuberculosis infections. In our model 

tuberculosis is created that involves three types of medication:, individual treatment at home,  individual 

treatment at a general ayurvedic health care provider and individual treatment at a hospital. We find out the 

basic reproduction number 𝑅0. The disease-free population is globally asymptotically stable if 𝑅0 < 1 and 

the equilibrium between endemics is globally asymptotically stable if 𝑅0 > 1. Our model demonstrates the 

significant detrimental effect of home treatment and individual treatment at the hospital and Individual people 

who have been infected in public get cured by taking medication. The Lyapunov function is used to derive 

the TB disease in the community is globally asymptotically stable. We used a Jacobian matrix to examine 

local stability and diagonal stability. By using the Routh-Hurwitz criteria, we analysed the local stability of 

cubic polynomials. We derived sustainable and non-negatively feasible solutions. We used random values in 

MATLAB to simulate the result of the model. 

Key words: Mathematical model, Disease free equilibrium point, feasible region, boundedness, Lyapunov 

function, Global stability, Routh-Hurwitz Stability Criterion. 
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Human beings were infected with tuberculosis (TB). across commercial paths. Additionally, it propagates to African 

domesticated creatures like goats and dairy cattle. It is thought that the disease was contracted by sea lions that were 

genetically modified on the beaches of Africa and travelled throughout the Atlantic to the continent of South America. 

The very first individuals who contracted the virus would have been hunters. Investigation exploring the origins and 

evolution of the complex of Mycobacterium tuberculosis has revealed that an infectious agent specific to humans 

experienced a population bottleneck and was probably the most recent common ancestral species of the complex. 

According to the examination of mycobacterial interspersed repetitive units, the period of bottleneck can be estimated 

to be approximately 40,000 years ago. This time frame coincides with the era after Homo sapiens left Africa [2-3]. 

The Mycobacterium bovis lineage was also dated by this study of mycobacterial interspersed repetitive components 

that indicated it had begun spreading approximately 6,000 years ago, suggesting it could have something to do with 

early husbandry and domestication of animals. The bacteria can be found in Neolithic human remains. Additionally, 

a controversial discovery has raised the possibility that a 500,000-year-old Homo erectus fossil contains a record of 

tuberculosis lesions [4-8]. The World Health Organization (WHO) proclaimed a global tuberculosis epidemic in 1993 

and pointed out that "poorly managed tuberculosis programs have the potential to make TB deadly. Almost three-

quarters of new instances of the disease occur in twenty-two countries and the WHO has focused special attention and 

assistance on these countries. Guidelines for preventing the spread of tuberculosis in healthcare facilities in settings 

with limited resources have just been published by the World Health Organization. The regulations focus on low-cost 

ventilation methods (such as removing curtains or establishing appropriate exterior areas to accommodate people 

receiving healthcare or accompanying sick individuals) [9-11]. The emphasis is on primary district health care 

resources that do not have sufficient resources for implementing more expensive interventions like particular breathing 

apparatuses and negative-pressure separateness rooms, which should be considered only for referral infrastructure. 

Only in laboratory environments and at facilities that provide preventative measures for latent infection is tuberculin 

testing of the skin advised. While these recommendations are intended for nations with limited resources, they may 

also be relevant in certain situations within this nation. For instance, when the weather cooperates, individuals with 

alleged tuberculosis can wait outside in open spaces until public transport and medical attention can be organized in 

overcrowded inadequately funded homeless shelters. The overwhelming majority of adult individuals who contract 

tuberculosis are in their most productive years of employment. All different ages, though are vulnerable [12-16]. 

Regions with middle and low incomes are responsible for over 80 percent of cases and mortality. Worldwide, 

tuberculosis (TB) is a worldwide health concern. WHO's Southeast Asian Region was responsible for 46% of the total 

number of new cases of TB in 2022, with the African Region following in second with 23% and the Western Pacific 

Islands region with 18%. The 30 nations with the highest TB burden accounted for about 87% of all new cases of TB, 

with Bangladesh, China, the Democratic Republic of the Congo, India, Indonesia, Nigeria, Pakistan and the 

Philippines encompassing over two-thirds of the global total. The WHO End TB Strategy target of zero is far from 

reality, with approximately 50 percent of TB patients and their households facing catastrophic expenses 20% of total 

income from the household) for all costs (direct medical expenditures, non-medical subjects’ expenditures, and 

indirect costs like employment losses). The team in question an increased risk of illness exists in those with immune 

systems that are weakened such as those with HIV, diabetes, malnutrition, or using tobacco products. 2.2 million new 

cases of tuberculosis (TB) worldwide in 2022 were linked to nutritional deficiency 0.89 million to infection with HIV 

0.73 million to using alcohol disorders, 0.70 million to smoking, and 0.37 million to hypertension [17-22]. 

During the early 1900, tuberculosis was one of the most serious medical issues the UK was dealing with. There was 

a royal authority established in 1901. The task assigned to the commission of inquiry was to investigate possible 

human-animal tuberculosis connections. This study sought to ascertain whether tuberculosis in humans and animals 

was the same disease and whether infections in humans and animals were possible. Later, in 1919, the Commission 

adopted the UK Medical Research Council as its new name. Albert Schatz, Elizabeth Bugie and Selman Waksman 

identified the type of bacteria Streptomyces griseus in 1944, which is the source of streptomycin. Streptomycin was 

the first antibiotic to demonstrate efficacy against M. tuberculosis. The majority of people concur that this discovery 

marked the start of the tuberculosis epidemic in the modern era.  Streptomycin was used in combination with para-

amino salicylic acid, which was found in 1946, to stop the development of drug resistance to various formulations, 

thereby improving patient outcomes. A few years later, in 1952, a medication known as the first oral mycobactericidal 

medication was created, marking the beginning of the real revolution. When rifampin was introduced in the 1970 It 

accelerated the healing process and significantly decreased tuberculosis cases until the 1980 [23-33]. 
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In the United States, there were about 8,916 cases of tuberculosis in 2019. To eradicate tuberculosis (TB) in the United 

States of America, it is imperative to uphold and enhance current prevention and treatment goals while stepping up 

efforts to detect and treat latent tuberculosis (LTBI) in those most at risk. The current U.S. population translates that 

into about 330 cases annually, falling short of the 1 case per million individual TB eradication criteria. Tuberculosis 

(TB) affects people worldwide and is a significant issue in our nation. Due to the disease's lack of borders, TB affects 

people in the US. TB can strike anyone at any time [28-30]. The We Are TB Patients Group and the National TB 

Controllers Society collaborated in concert with the CDC to showcase the stories of those who have been afflicted 

with the illness, as well as the work of experts in TB prevention and control [34-35].  

 

Methodology 

In this paper, we explored the investigation of the TB disease model. The analysis of tuberculosis can be classified 

into six stages Susceptible, exposed, infected at home, infected at public place, infected at hospital and the recovered 

cases. In this model we determined by the basic reproduction number 𝑅0,  If 𝑅0 < 1 then the disease-free equilibrium 

is globally asymptotically stable, if 𝑅𝑜 > 1 the endemic equilibrium is globally asymptotically stable. People are more 

infected in public when they travelled from hospital to home; they get re-infected again in public places. In our 

research, we established the presumption that there's a uniform combining of the general population and we found out 

disease free equilibrium point, the structure of ordinary differential equations applied to build a model of this frame. 

Sustainable domain Ω is delineated as the feasible region and the positively invariant system is examined. The 

Lyapunov function is used to define the equivalent method that is typically used to define the stability of intricate 

epidemiologic compartmental model. The boundedness condition is used to demonstrate the region of the disease 

model and we apply the exponential expansion condition to explore the negative state. We used the global stability 

condition to examine the infected region. The non-negative initial condition is used to find out the positive result of 

the TB reduced case. The Jacobian matrix is used to examine the local stability of the disease rate.   

Model of the parameter 

 𝑆     : The number of suspectable individuals 
  
 𝐸    : Latent exposed individuals 
 
 𝐼1    :  Symptomatic infectious patients receiving home treatment at beginning stage  
 
 𝐼2    :  individual treatment at general ayurvedic health care provider  
  
 𝐼3    :  Symptomatic infectious patients requiring treatment at hospital    

 𝑅   :  The number of recovered individuals 

 𝛼     :  Recruitment rate of TB Population 

 𝛽     :  Rate of susceptible people to transferable to exposed stage 

 𝜇     :  Natural death rate of TB Population 

 𝛾     :  Exposed people get Individual infected at home by nature 

 𝜋     :  Exposed class of individual get infection at public place  

 𝜏     :  Exposed class of individual get re-infection at hospital 

 𝜔    :  Rate of progression to 𝐼1  class from 𝐼2 class 

 𝜉    :   Rate of progression to 𝐼2  class from 𝐼3 class. 
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 𝜃    :  Rate of progression to 𝐼3  class from 𝐼2 class 

 𝜎     :  Rate of progression to 𝐼2  class from 𝐼1 class 

 𝛿     :  Rate of progression to 𝐼2  class from R class 

 Λ     : Rate of progression to 𝐼3  class from R class 

 

 

 

Model of the diagram 

                       

                                                                                       Fig.1.Flowchart of the TB 

 

Model of the equation  

There are six groups within the total size of the population of 𝑁(𝑡),which is composed of those who are susceptible 

𝑆, latent exposed individuals 𝐸, symptomatic infectious patients receiving home treatment 𝐼1, individual treatment at 

general ayurvedic health care provider 𝐼2,  symptomatic infectious patients requiring hospital treatment  𝐼3 and patients 

who recovered (those who developed calcified points in their lungs) 𝑅. whereas  

𝑁(𝑡) = 𝑆(𝑡) +𝐸(𝑡)+𝐼1(𝑡) + 𝐼2(𝑡) + 𝐼3 (t)+ 𝑅 (t) 

The following transmission diagram (see Fig. 1) demonstrates the structure of the model.  

 

 
𝑑𝑠

𝑑𝑡
= 𝛼 − 𝛽𝑆 − 𝜇𝑆 
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𝑑𝐸

𝑑𝑡
= 𝛽𝑆 − 𝜇𝐸 − 𝛾𝐸 − 𝜋𝐸 − 𝜏𝐸 

 
𝑑𝐼1

𝑑𝑡
=  𝛾𝐸 + 𝜔𝐼2 − 𝜎 𝐼1 − 𝜇𝐼1 − 𝜗𝐼1                                                             (1)                          

 
𝑑𝐼2

𝑑𝑡
=  𝜋𝐸 + 𝜎 𝐼1 + 𝜃𝐼3 − 𝛿𝐼2 − 𝜉𝐼2 − 𝜔𝐼2 − 𝜇𝐼2 

 
𝑑𝐼3

𝑑𝑡
=  𝜏𝐸 + 𝜉𝐼2 − 𝜇𝐼3 − 𝜃𝐼3 − Λ𝐼3 

 
𝑑𝑅

𝑑𝑡
=  𝜗𝐼1 +  𝛿𝐼2 +  Λ𝐼3 −  μ𝑅 

Since 𝑅 only appears in the fifth equation, it should be noted that every equation involving 𝑅 has been separated from 

the others. As a result, we only need to think about (1)'s component.  

 

 
𝑑𝑠

𝑑𝑡
= 𝛼 − 𝛽𝑆 − 𝜇𝑆 

 
𝑑𝐸

𝑑𝑡
= 𝛽𝑆 − 𝜇𝐸 − 𝛾𝐸 − 𝜋𝐸 − 𝛾𝐸 

 
𝑑𝐼1

𝑑𝑡
=  𝛾𝐸 + 𝜔𝐼2 − 𝜎 𝐼1 − 𝜇𝐼1 − 𝜗𝐼1                                                              (2) 

 
𝑑𝐼2

𝑑𝑡
=  𝜋𝐸 + 𝜎 𝐼1 + 𝜃𝐼3 − 𝛿𝐼2 − 𝜉𝐼2 − 𝜔𝐼2 − 𝜇𝐼2 

 
𝑑𝐼3

𝑑𝑡
=  𝜆𝐸 + 𝜉𝐼2 − 𝜇𝐼3 − 𝜃𝐼3 − Λ𝐼3 

It is assumed that every parameter that exists is a constant. The percentage of retained information is denoted by 𝛼. 

For interaction with the 𝐼1 and 𝐼2 classes, the transmitted rates are 𝜔, correspondingly. The natural death rate 𝜇 and 

the rate of progression from detected latent infection with tuberculosis (TB) to 𝐼1 class 𝛾 𝑎𝑛𝑑 𝜎 are given. The rate at 

which latent TB becomes identified and progresses to 𝐼2 class is symbolized by 𝜎. The progression rate from 𝐼2  class 

is represented as  𝜉 , 𝜔, 𝜋 and the progression rate from 𝐼3  class represented as  𝜃, 𝜏. by 𝜔. The rate at which active 

tuberculosis is successfully treated in the 𝐼1 class.  𝜗, 𝛿 and Λ indicates the disease controlled and recovered case.  

 

Subject to the initial condition 

 𝑆 > 0, 𝐸 > 0, 𝐼1 > 0, 𝐼2 > 0, 𝐼3 > 0 , 𝑅 > 0                                   (3) 

Disease Free Equilibrium Point (DFE) 

 
𝑑𝑠

𝑑𝑡
= 𝛼 − 𝛽𝑆 − 𝜇𝑆 

 𝐸 = 𝐼1 = 𝐼2 = 𝐼3 = 𝑅 = 0 

 𝛼 − (𝛽 + 𝜇)𝑆                               

   𝑆 =
𝛼

𝛽+𝜇
 

 DFE = ( 
𝛼

𝛽+𝜇
 , 0 ,0,0,0,0)                                                                (3) 

Endemic equilibrium point 

The epidemiological point of equilibrium of the 𝑆, 𝐸, 𝐼1, 𝐼2, 𝐼3𝑎𝑛𝑑 𝑅  of TB model disease can be calculated through 

the use of the substitution strategy to get solutions from the equations (1). 
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The endemic equilibria are given by 

 𝑆∗ = 0 

 𝐸∗ = 𝛽( 

𝛼

𝛽+𝜇

𝜋+𝜇+𝛾+𝜏
 ) 

 𝐼1
∗
= 

 𝛾[
𝛽𝑆

𝜋+𝜇+𝛾+𝜏
]+𝜔𝐼2

𝜎+𝜇+𝜗
                                                                                                (4) 

 𝐼2
∗
= 

 𝜋[
𝛽𝑆

𝜋+𝜇+𝛾+𝜏
]+𝜎[

𝛾𝐸+𝜔𝐼2
𝜎+𝜇+𝜗

]+𝜃𝐼3

𝛿+𝜉+𝜔+𝜇
 

 𝐼3
∗
=

𝜆[
𝛽𝑆

𝜋+𝜇+𝛾+𝜏
]

𝜉+𝜇+𝜃+Λ
 

 𝑅∗ = 
 𝜗[

𝛾𝐸+𝜔𝐼2
𝜎+𝜇+𝜗

]+𝛿[
𝜋𝐸+𝜎𝐼1+𝜃𝐼3
𝛿+𝜉+𝜔+𝜇

]+
𝜔[𝜆𝐸]

𝜉+𝜇+𝜃+Λ

𝜇
 

 

Reproduction number 

The next-generation matrix method will be used to determine 𝑅0 after we have distinguished the classes in our model. 

One of the infectious virus classes is tuberculosis. The TB reproduction number 𝑅0 will therefore be established. 

 𝐼  are the infected cases, we find out Reproduction number 𝑅0. 

Let 𝑋 = (S, E, 𝐼1, 𝐼2, 𝐼3, R ) 

𝐹  be the sign of TB increasing case 

𝑉  be the sign of TB outgoing case 

 

𝐹 =

(

 
 
 

𝜋𝐸 + 𝜎 𝐼1 + 𝜃𝐼3
0
0
0
0
0 )

 
 
 

        𝑉 =

(

 
 
 

(𝛿 + 𝜉 + 𝜔 + 𝜇)𝐼2
(𝛽 + 𝜇)𝑆

(𝜇 + 𝛾 + 𝜋 + 𝜏)𝐸
(𝜎 + 𝜇 + 𝜗)𝐼1
(𝜇 + 𝜃 + Λ)𝐼3

( Λ + μ)𝑅 )

 
 
 

                                                                       (5) 

 𝐹 = 𝜋𝐸 + 𝜎 𝐼1 + 𝜃𝐼3 

 𝑉 =  𝛿 + 𝜉 + 𝜔 + 𝜇 

 𝐹𝑉−1 = 
𝜋𝐸+𝜎 𝐼1+𝜃𝐼3

 𝛿+𝜉+𝜔+𝜇
 

 𝑅0 =
𝜋𝐸+𝜎 𝐼1+𝜃𝐼3

 𝛿+𝜉+𝜔+𝜇
                                                                                                                                     (6) 

The fundamental reproduction number 𝑅0 is obtained from equation (5). Therefore, in the disease-free case, the 

equilibrium points of the SE𝐼1𝐼2𝐼3𝑅 model is asymptotically stable.  

 

Lemma.1. The sustainable domain Ω is delineated as follows: 

 Ω = {(S, E, 𝐼1, 𝐼2, 𝐼3, 𝑅 ) ∈  𝑅+
6 : 𝑆 + 𝐸 + 𝐼1 + 𝐼2 + 𝐼3 + 𝑅 ≤

𝛼

𝜇
 } 
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The system (1) is positively stable with initial condition 𝑆(0) ≥ 0, 𝐸(0) ≥ 0, 𝐼1(0) ≥ 0, 𝐼2(0) ≥ 0, 𝐼3(0) ≥, 𝑅(0) ≥
0. 
Proof. By summing the system (1) equations, we obtain: 

 
𝑑𝑁

𝑑𝑡
= 𝛼 − 𝜇𝑁                                                                                                                                                      (6) 

The equation is as follows: 0 ≤ 𝑁(𝑡) ≤
𝛼

𝜇
+ 𝑁(0)𝑒−𝜇𝑡 , where 𝑁(0)  represents the starting number of individuals. 

The region is thus 𝑁(𝑡) ≤
𝛼

𝜇
 as 𝑡 →  ∞. 

 Ω = {(S, E, 𝐼1, 𝐼2, 𝐼3, 𝑅 ) ∈  𝑅+
6 : 𝑆 + 𝐸 + 𝐼1 + 𝐼2 + 𝐼3 + 𝑅 ≤

𝛼

𝜇
 }                                                                          (7) 

is a set that is positively invariant for system (1). The changing effects of system (2) on the region Ω will be 

examined throughout this paper. 

 

Existence and uniqueness of the solution 

An independent system of first-order equations nonlinear ordinary differential equations describes the system (1). 

The matrix structure shown below can be used to rewrite it: 

 

 𝑋 ̇ (𝑡) = 𝐹(𝑋)𝑡,         were, 𝑋(𝑡) =

(

 
 
 

𝑆
𝐸
𝐼1
𝐼2
𝐼3
𝑅)

 
 
 

    =

(

 
 
 

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6)

 
 
 

                                                                           (8) 

 

F is the function 𝐶∞ on 𝑅+
6  described by 

 

 𝐹(𝑋(𝑡) = 

(

 
 
 
 
 
 

𝑓1(𝑥1
, …… , 𝑥6)

𝑓2(𝑥1
, …… , 𝑥6)

𝑓3(𝑥1
, …… , 𝑥6)

𝑓4(𝑥1
, …… , 𝑥6)

𝑓5(𝑥1
, …… , 𝑥6)

𝑓6(𝑥1
, …… , 𝑥6))

 
 
 
 
 
 

                                                                                                                          (9) 

 

 𝐹(𝑋(𝑡) =

(

 
 
 

𝛼 − 𝑎𝑥1

𝛽𝑥1 − 𝑏𝑥2

𝛾𝑥2 + 𝜔𝑥4 − 𝑐𝑥3

𝜋𝑥2 + 𝜎𝑥3 − 𝑑𝑥4
𝜏𝑥2 − 𝑒𝑥5

𝜗𝑥2 + 𝛿𝑥4 + Λ𝑥5 + 𝜇𝑥6)

 
 
 

                                                                                                          (10) 

Here  𝑎 = 𝛼 − 𝑎𝑥1 , 𝑏 = 𝜇 + 𝛾 + 𝜋 + 𝜏 ,  𝑐 = 𝜎 + 𝜇 + 𝜗, 𝑑 = 𝜗 + 𝛿 + 𝜉 + 𝜔 + 𝜇                               (11) 

and  𝑒 = 𝜇 + 𝜃 + Λ − 𝜉                              

Furthermore, given the initial condition (𝑡0𝑥0)𝑅 × 𝑅+
6  and the fact that 𝑋(𝑡) =

(𝑥1(𝑡), 𝑥2(𝑡), 𝑥3(𝑡), 𝑥4(𝑡), 𝑥5(𝑡), 𝑥6(𝑡)) and that 𝐹 is a class of 𝑐1, we are able to deduce the existence and 

uniqueness of the maximum solution to the Cauchy problem related to the differential equation (1) locally 

Lipschitzian on 𝑅+
6 . 

 

It follows that this solution is also of class 𝐶∞ since F belongs to the same class. 
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Positivity of the solution 

Adding up each of system (1)'s equations gives us 

 

𝑁 = 𝑀𝛼 − 𝛽𝑆 − 𝜇𝑆+𝛽𝑆 − 𝜇𝐸 − 𝛾𝐸 − 𝜋𝐸 − 𝜏𝐸+ 𝛾𝐸 + 𝜔𝐼2 − 𝜎 𝐼1 − 𝜇𝐼1 − 𝜗𝐼1                                                            

+ 𝜋𝐸 + 𝜎 𝐼1 + 𝜃𝐼3 − 𝛿𝐼2 − 𝜉𝐼2 − 𝜔𝐼2 − 𝜇𝐼2+ 𝜏𝐸 + 𝜉𝐼2 − 𝜇𝐼3 − Λ𝐼3 

𝑁 = 𝛼 − 𝜇𝑁 simplifying the derived representation of 𝑁 ̇ = 𝛼 − 𝜇𝑁 with 𝑁 = ( 𝑆 + 𝐸 + 𝐼1 + 𝐼2 + 𝐼3 + 𝑅)  

Assuming that there is no infectious disease throughout the population as a whole, 𝑁 = 𝑆 holds true. 𝐸 = 𝐼1 = 𝐼2 =
𝐼3 = 𝑅 = 0 is inferred by this 

 

By putting 𝑁 ̇ = 0, 𝛼 − 𝜇𝑁 = 0, as we have. We obtain  

  

  𝑁 =
𝛼

𝜇
 

According to the result (2), it is expected that the spread of tuberculosis will naturally lower 𝑁 (that is, 𝑁 >
𝛼

𝜇
) in the 

population when there is no disease. Given the hypothetical system (1), its feasible region. 

 

 Ω = {(S, E, 𝐼1, 𝐼2, 𝐼3,𝑅 ) ∈  𝑅+
6 , 0 ≤ 𝑁 ≤

𝛼

𝜇
+∈}                                                                                       (12) 

We obtain the following results where ∈ is a constant with a positive value with respect to the simulation system (1) 

that represents the TB dynamics in the population. 

 

Theorem.1 

Globally asymptotically stable in Ω∗. is the endemic equilibrium state 𝐸∗( 𝑆∗, 𝐸∗, 𝐼1
∗, 𝐼2

∗, 𝐼3
∗,𝑅∗

)  if 𝑅0>1. 

The equivalent method that is typically used to define the stability of intricate epidemiologic compartmental models 

that is, by establishing the Lyapunov function "L" as follows has been applied here [19, 20, 21, and 23]. 

 

𝐿 ∶ {(S, E, 𝐼1, 𝐼2, 𝐼3,𝑅 ) ∈   Ω∗} → 𝑅  

 where  Ω∗ = { (S, E, 𝐼1, 𝐼2, 𝐼3,𝑅 ) ∈ 𝑅+
6 :S(t), E(t), 𝐼1(𝑡), 𝐼2(𝑡), 𝐼3(𝑡), 𝑅(𝑡) > 0} 

𝐿 = 𝑊1 {𝑆 − 𝑆∗𝐼𝑛 (
𝑠

𝑆∗)} + 𝑊2 {𝐸 − 𝐸∗𝐼𝑛 (
𝐸

𝐸∗)} + 𝑊3 {𝐼1 − 𝐼1
∗𝐼𝑛 (

𝐼1

𝐼1
∗)} + 𝑊4 {𝐼2 − 𝐼2

∗𝐼𝑛 (
𝐼2

𝐼2
∗)} + 𝑊5 {𝐼3 −

 𝐼3
∗𝐼𝑛 (

𝐼3

𝐼3
∗)} + 𝑊6{𝑅 − 𝑅∗

𝐼𝑛 (
𝑅

𝑅∗)}                                                                                                      (13) 

In this case, the non-negative constants in Ω are 𝑊1,𝑊2,𝑊3,𝑊4,𝑊5, and 𝑊6. Now, if we take the Lyapunov function 

𝐿 's time derivative of the function, we obtain that 

 

 
𝑑𝐿

𝑑𝑡
= 𝑊1 (

𝑆−𝑆∗

𝑆
)

𝑑𝑆

𝑑𝑡
+ 𝑊2 (

𝐸−𝐸∗

𝑆
)

𝑑𝐸

𝑑𝑡
+ 𝑊3 (

𝐼1−𝐼1
∗

𝐼1
)

𝑑𝐼1

𝑑𝑡
+ 𝑊4 (

𝐼2−𝐼2
∗

𝐼2
)

𝑑𝐼2

𝑑𝑡
+ 𝑊5 (

𝐼3−𝐼3
∗

𝐼3
)

𝑑𝐼3

𝑑𝑡
+ 𝑊6 (

𝑅−𝑅∗

𝑅
)

𝑑𝑅

𝑑𝑡
          

 

𝑑𝐿

𝑑𝑡
= 𝑊1 (

𝑆−𝑆∗

𝑆
) {𝛼 − 𝛽𝑆 − 𝜇𝑆} + 𝑊2 (

𝐸−𝐸∗

𝑆
) {𝛽𝑆 − 𝜇𝐸 − 𝛾𝐸 − 𝜋𝐸 − 𝜏𝐸} + 𝑊3 (

𝐼1−𝐼1
∗

𝐼1
) { 𝛾𝐸 + 𝜔𝐼2 − 𝜎 𝐼1 − 𝜇𝐼1 −

𝜗𝐼1 } + 𝑊4 (
𝐼2−𝐼2

∗

𝐼2
) {𝜋𝐸 + 𝜎 𝐼1 + 𝜃𝐼3 − 𝛿𝐼2 − 𝜉𝐼2 − 𝜔𝐼2 − 𝜇𝐼2} + 𝑊5 (

𝐼3−𝐼3
∗

𝐼3
) { 𝜏𝐸 + 𝜉𝐼2 − 𝜇𝐼3 − Λ𝐼3} +

𝑊6 (
𝑅−𝑅∗

𝑅
) {𝜗𝐼1 +  𝛿𝐼2 +  Λ𝐼3 −  μ𝐼3}                                                                  

 (14) 

At an endemic equilibrium point we have that 

 
𝑑𝐿

𝑑𝑡
= 𝑊1 (

𝑆−𝑆∗

𝑆
) [ 

𝛽+𝜇

𝑆
− 

𝛽+𝜇

𝑆
 ] + 𝑊2 (

𝐸−𝐸∗

𝑆
) [

𝜇+𝛾+𝜋+𝜏

𝐸
−

𝜇+𝛾+𝜋+𝜏

𝐸
] + 𝑊3 (

𝐼1−𝐼1
∗

𝐼1
) [(

𝜎+ 𝜇+𝜗

𝐼1
−

𝜎+ 𝜇+𝜗

𝐼1
)] 
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+ 𝑊4 (
𝐼2−𝐼2

∗

𝐼2
) [

(𝜎+𝜇+ 𝜗)

𝐼2
−

(𝜎+𝜇+ 𝜗)

𝐼2
] + 𝑊5 (

𝐼3−𝐼3
∗

𝐼3
) [

(𝜇+Λ)

𝐼3
−

(𝜇+Λ)

𝐼3
] + 𝑊6 (

𝑅−𝑅∗

𝑅
) [(

𝜇

𝑅
−

𝜇

𝑅
)]                       (15) 

𝑑𝐿

𝑑𝑡
= 𝑊1 (

𝑆−𝑆∗

𝑆
)

2

+ 𝑀(S, E, 𝐼1, 𝐼2, 𝐼3, 𝑅 ) ~According to the method that was used [21, 22, 23], indicates that the 

function 𝑀(S, E, 𝐼1, 𝐼2, 𝐼3, 𝑅 ) is non-positive. Particularly, 𝑀 ≤ 0for each S, E, 𝐼1, 𝐼2, 𝐼3,𝑅 > 0, significance that 
𝑑𝐿

𝑑𝑡
≤

0 and 
𝑑𝐿

𝑑𝑡
= 0. 

 

When S = 𝑆∗, S = 𝑆∗, E = 𝐸∗, 𝐼1 = 𝐼1
∗, 𝐼2 = 𝐼2

∗, 𝐼3 = 𝐼3
∗, 𝑅 = 𝑅∗ 

Therefore, the predominant equilibrium point, or singleton 𝔼∗, is the largest compact persistent set in the domain for 

which
𝑑𝐿

𝑑𝑡
= 0. Thus, assuming 𝑅0 > 1, we can deduce that 𝔼∗ is asymptotically stable worldwide in  Ω∗ by applying 

the LaSalle invariance hypothesis [24, 25]. 

 

Theorem.2  

When combined with the initial condition (3) the resulting solution set of the proposed model (1), which is 

{S(t), E(t), 𝐼1(𝑡), 𝐼2(𝑡), 𝐼3(𝑡), 𝑅(𝑡)}, is non-negative for 𝑡 > 0. 

 

Proof 

The study's recommendation (32) states that we analyse the first equation while taking equation (1)'s non-linear system 

into consideration. 

 
𝑑𝑠

𝑑𝑡
= 𝛼 − 𝛽𝑆 − 𝜇𝑆                                                                                         (16)                                                                   

Which means that  

 
𝑑𝑠

𝑑𝑡
≥ −(𝛽 − 𝜇)𝑆                                                                                           (17)                                                                           

We obtain S(t) ≥ 𝑆(0)𝑒−(𝛽−𝜇)𝑡 through integrating the equation (17) and applying the exponential expansion 

condition. This indicates that S(t) ≥ 0.. 
 

Theorem.3 

Given any non-negative initial condition, the resultant solution(S(t), E(t), 𝐼1(𝑡), 𝐼2(𝑡), 𝐼3(𝑡), 𝑅(𝑡)) ∈ 𝑅+
6  of the system 

(1) is optimistic at any time 𝑡 ≥ 0. 

 

Proof 

𝑑𝑆

𝑑𝑡
 | 𝑆 = 0  ,  =  𝛼 ≥ 0    

𝑑𝐸

𝑑𝑡
 | 𝐸 = 0 ,   =  𝛽𝑆 ≥ 0 

 
𝑑𝐼1

𝑑𝑡
 | 𝐼1 = 0 , =  𝛾𝐸 + 𝜔𝐼2 ≥ 0                                                                                                                      (18) 

𝑑𝐼2

𝑑𝑡
 | 𝐼2 = 0 , =  𝜋𝐸 + 𝜎𝐼1 + 𝜃𝐼3 ≥ 0 

𝑑𝐼3

𝑑𝑡
 | 𝐼3 = 0 , =  𝜏𝐸 + 𝜉𝐼2 ≥ 0 

𝑑𝑅

𝑑𝑡
 | 𝑅 = 0  ,  = 𝜗𝐼1 + 𝛿𝐼2 + Λ𝐼3 ≥ 0 
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As desired 

 

Local stability 

Two well-known theorems regarding local stability are presented in this section. Once more, take into consideration 

the system (1) as an expression of 𝑈; 𝑉;𝑊; 𝑋; 𝑌; 𝑍 as follows. 

 

 𝑈 = 𝛼 − 𝛽𝑆 − 𝜇𝑆   

 𝑉 = 𝛽𝑆 − 𝜇𝐸 − 𝛾𝐸 − 𝜋𝐸 − 𝜏𝐸 

 𝑊 =  𝛾𝐸 + 𝜔𝐼2 − 𝜎 𝐼1 − 𝜇𝐼1 − 𝜗𝐼1                                                                                

 𝑋 =  𝜋𝐸 + 𝜎 𝐼1 + 𝜃𝐼3 − 𝛿𝐼2 − 𝜉𝐼2 − 𝜔𝐼2 − 𝜇𝐼2                                                                                   (19) 

 𝑌 =  𝜏𝐸 + 𝜉𝐼2 − 𝜇𝐼3 − 𝜃𝐼3 − Λ𝐼3 

 𝑍 =  𝜗𝐼1 +  𝛿𝐼2 +  Λ𝐼3 −  μ𝐼3 

The following are the partial derivates of the function with respect to state variables, such as 

 

𝜕𝑈

𝜕𝑆
=  −(𝛽 + 𝜇) ; 

𝜕𝑈

𝜕𝐸
= 0 ; 

𝜕𝑈

𝜕𝐼1
= 0 ; 

𝜕𝑈

𝜕𝐼2
= 0 ; 

𝜕𝑈

𝜕𝐼3
= 0 ; 

𝜕𝑈

𝜕𝑅
= 0 

 
𝜕𝑉

𝜕𝐸
= −( 𝜇 + 𝛾 + 𝜋 + 𝜏) ; 

𝜕𝑉

𝜕𝑆
= 𝛽  ; 

𝜕𝑉

𝜕𝐼1
= 0 ; 

𝜕𝑉

𝜕𝐼2
= 0 ; 

𝜕𝑉

𝜕𝐼3
= 0 ; 

𝜕𝑉

𝜕𝑅
= 0 

 
𝜕𝑊

𝜕𝐼1
= −( 𝜎 + 𝜇𝐼1 + 𝜗𝐼1) ; 

𝜕𝑊

𝜕𝑆
= 0 ;  

𝜕𝑊

𝜕𝐸
= 𝛾 ; 

𝜕𝑊

𝜕𝐼2
= 𝜔 ; 

𝜕𝑊

𝜕𝐼3
= 0 ; 

𝜕𝑊

𝜕𝑅
= 0                                 

 
𝜕𝑋

𝜕𝐼2
= −( 𝛿𝐼2 + 𝜉𝐼2 + 𝜔𝐼2 + 𝜇) ; 

𝜕𝑋

𝜕𝑆
= 0 ;  

𝜕𝑋

𝜕𝐸
= 𝜋 ; 

𝜕𝑋

𝜕𝐼1
= 0 ; 

𝜕𝑋

𝜕𝐼3
= 𝜃 ; 

𝜕𝑋

𝜕𝑅
= 0                                  (20) 

 
𝜕𝑌

𝜕𝐼3
= −(𝜃 + 𝜇 + Λ); 

𝜕𝑌

𝜕𝑆
= 0 ;  

𝜕𝑌

𝜕𝐸
= 𝜏 ; 

𝜕𝑌

𝜕𝐼1
= 0 ; 

𝜕𝑌

𝜕𝐼2
= 𝜉 ; 

𝜕𝑌

𝜕𝑅
= 0 

 
𝜕𝑍

𝜕𝑅
= −𝜇 ;  

𝜕𝑍

𝜕𝑆
=  0 ; 

𝜕𝑍

𝜕𝐸
= 0 ; 

𝜕𝑍

𝜕𝐼1
= 0 ; 

𝜕𝑍

𝜕𝐼2
= 0 ; 

𝜕𝑍

𝜕𝐼3
= 0 

 

Therefore, the model's Jacobian matrix has the following structure: 
 

          𝐽 =

 

[
 
 
 
 
 
 
 −(𝛽+𝜇) 0 0 0 0 0

𝛽 −( 𝜇+𝛾+𝜋+ 𝜏) 0 0 0 0

0 0 −( 𝜎+𝜇𝐼1 +𝜗𝐼1) 0 0 0

0 0 0 −( 𝛿𝐼2 +𝜉𝐼2 +𝜔𝐼2 +𝜇) 𝜃 0

0 𝜏 0 𝜉 −(𝜃+𝜇+Λ) 0
0 0 0 0 0 −𝜇]

 
 
 
 
 
 
 

      (21) 

 

          

Lemma.2  

The matrix J is Volterra-Lyapunov stable. 
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         𝐴 = 𝐽 =  

[
 
 
 
 
 
−(𝛽 + 𝜇) + 𝜆 0 0 0 0 0

𝛽 −( 𝜇 + 𝛾 + 𝜋 + 𝜏) + 𝜆 0 0 0 0
0 0 −( 𝜎 + 𝜇𝐼1 + 𝜗𝐼1) + 𝜆 0 0 0
0 0 0 −( 𝛿𝐼2 + 𝜉𝐼2 + 𝜔𝐼2 + 𝜇) + 𝜆 𝜃 0
0 𝜏 0 𝜉 −(𝜃 + 𝜇 + Λ) + 𝜆 0
0 0 0 0 0 −𝜇 + 𝜆]

 
 
 
 
 

    

                                    (22) 

 

 𝐷 = −𝐽 = 

[
 
 
 
 
 
 
(𝛽 + 𝜇) + 𝜆 0 0 0 0 0

𝛽 ( 𝜇 + 𝛾 + 𝜋 + 𝜏) + 𝜆 0 0 0 0
0 0 ( 𝜎 + 𝜇𝐼1 + 𝜗𝐼1) + 𝜆 0 0 0
0 0 0 ( 𝛿𝐼2 + 𝜉𝐼2 + 𝜔𝐼2 + 𝜇) + 𝜆 𝜃 0
0 𝜏 0 𝜉 (𝜃 + 𝜇 + Λ) + 𝜆 0
0 0 0 0 0 𝜇 + 𝜆]

 
 
 
 
 
 

   

(23) 

 𝐷1 = −𝐽 =  

[
 
 
 
 
(𝛽 + 𝜇) + 𝜆 0 0 0 0

𝛽 ( 𝜇 + 𝛾 + 𝜋 + 𝜏) + 𝜆 0 0 0

0 0 ( 𝜎 + 𝜇𝐼1 + 𝜗𝐼1) + 𝜆 0 0

0 0 0 ( 𝛿𝐼2 + 𝜉𝐼2 + 𝜔𝐼2 + 𝜇) + 𝜆 𝜃

0 0 0 𝜉 (𝜃 + 𝜇 + Λ) + 𝜆]
 
 
 
 

    

     (24) 

 

 Clearly −𝐴11 = (𝛽 + 𝜇) + 𝜆 > 0  Let us consider 𝐷1 = −𝐽  be a 5 × 5 matrices obtained by deleting last row and 

column in equation (23) 

                           𝐷̃ = 𝐷2 =  − 𝐽 =  

[
 
 
 
(𝛽 + 𝜇) + 𝜆 0 0 0

𝛽 ( 𝜇 + 𝛾 + 𝜋 + 𝜏) + 𝜆 0 0

0 0 ( 𝜎 + 𝜇𝐼1 + 𝜗𝐼1) + 𝜆 0

0 0 0 ( 𝛿𝐼2 + 𝜉𝐼2 + 𝜔𝐼2 + 𝜇) + 𝜆]
 
 
 
          

   

(25)                        

Clearly −𝐴11 = (𝛽 + 𝜇) + 𝜆 > 0  Let us consider 𝐷2 = −𝐽  be a 4 × 4 matrices obtained by deleting last row and 

column in equation (24). 

Lemma.3 

The matrix 𝐷̃ is diagonal stable. 

Proof 

Step.1: 𝐷44 > 0 

Step.2: We shall prove the matrix 𝐷 is diagonal stable. 

 𝐷̃ = 𝐽 =  [

(𝛽 + 𝜇) + 𝜆 0 0

𝛽 ( 𝜇 + 𝛾 + 𝜋 + 𝜏) + 𝜆 0

0 0 ( 𝜎 + 𝜇𝐼1 + 𝜗𝐼1) + 𝜆

]                                    (26) 

Clearly , 𝐷̃11 > 0, 𝐷̃12 > 0, 𝐷̃13 > 0 

It remains to show that det (𝐷3) > 0  
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det(𝐷̃) = (𝛽 + 𝜇) + 𝜆)( 𝜇 + 𝛾 + 𝜋 + 𝜏) + 𝜆) ( 𝜎 + 𝜇𝐼1 + 𝜗𝐼1) + 𝜆)( 𝛿𝐼2 + 𝜉𝐼2 + 𝜔𝐼2 + 𝜇) + 𝜆)                   (27) 

Therefore, 𝐷̃ is diagonal stable 

We now show that 𝐷̃−1 is diagonally stable. 

 𝐷̃−1 =  𝐽 =  

[
 
 
 
 

1

(𝛽+𝜇)+𝜆
0 0

( 𝜎+𝜇𝐼1+𝜗𝐼1)+𝜆

((𝛽+𝜇)+𝜆)(( 𝜇+𝛾+𝜋+𝜏)+𝜆)

1

( 𝜇+𝛾+𝜋+𝜏)+𝜆
0

0 0
1

( 𝜎+𝜇𝐼1+𝜗𝐼1)+𝜆]
 
 
 
 

                                             (28) 

 𝐷̃−1
11 > 0, 𝐷̃−1

12 > 0, 𝐷̃−1
13 > 0 

Therefor 𝐷̃−1 is diagonal stable. 

 

(Routh-Hurwitz Stability Criterion) 

Theorem 4  

The EE of the TB model (25) is locally asymptotically stable if 𝑅𝑜 > 1. 

Proof 

Proof. From the linearization, we obtain the following characteristic equation for EE 

                                             𝑎𝑜𝜆
3 + 𝑎1𝜆

2 + 𝑎2𝜆 + 𝑎3 = 0                                                        (29) 

 𝑎0 = 1 

 𝑎1 = (𝛽 + 𝜇) + ( 𝜇 + 𝛾 + 𝜋 + 𝜏) + 𝑅0 

𝑎2 = (𝛽 + 𝜇) + ( 𝜇 + 𝛾 + 𝜋 + 𝜏) + 𝑅0[(𝛽 + 𝜇) + ( 𝜇 + 𝛾 + 𝜋 + 𝜏)]                                                 (30) 

 𝑎3 = (𝛽 + 𝜇) + ( 𝜇 + 𝛾 + 𝜋 + 𝜏)(𝑅0) 

By using the Routh-Hurwitz criteria, we can analyse the local stability of EE. The cubic polynomial in equation (29) 

has the negative real parts if all the coefficients in equation (30) are positive and det (𝐻𝑖) > 0, ∀𝑖= = 1;2; 3. So, we 

define three matrices H as follows, 

                                                                   𝐻1 = [𝑎1] 

                                                                            𝐻2 = [
𝑎1 0
0 𝑎2

] 

                                                                             𝐻3 = [
𝑎1 1 0
𝑎3 𝑎2 𝑎1

0 0 𝑎3

] 

where 𝑎1 , 𝑎2 , 𝑎3 are coefficient that written in equation (29). Then, we know that det(𝐻1) = 𝑎1 > 0 and det (𝐻2) =
𝑎1𝑎1 > 0 because 𝑎1 , 𝑎1 > 0. Meanwhile, det (𝐻3) is positive if 𝑅𝑜 > 1. Hence, the EE of model (30) is locally 

asymptotically stable if 𝑅𝑜 > 1. 

 

Numerical simulation 
 

The numerical co-disease model simulations that we ran aided in demonstrating the results of the qualitative 

examination. The mathematical representation of the co-disease simulation was done using variables and parameters. 

To illustrate our assumptions, we took some of the values for parameters as given. The simulation's numerical results 
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have been implemented using MATLAB for programming the parameters and the compartment characteristics. Using 

MATLAB, numerical estimations of the major outcomes of the theoretical TB disease models have been carried out. 

One of the primary objectives of our investigation is to find out how prescription medications affect people who have 

tuberculosis 

 

. 

                       

 

                          
Fig.2 Population Dynamics Over Time 𝛼 = 1.172                       Fig.2 Population Dynamics Over Time 𝛼 = 74.203             

  

                              

                                                                  

                           𝛼 =Fig.3 Population Dynamics Over Time 𝛼 = 1000 
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                             Fig.4 TB Prevalence across Temporal horizons 

                                    

                                     

                                        

 

                    Fig.5 Temporal exploration: Time series representation of all stages 
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                                                       Fig.6 Prevalence across temporal vertical zone 

 

 

 

                              

 

                                                            Fig.7 TB incidence graph: Tracking the numbers 
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                                                Fig.8 Visualizing the dynamics: Differential equation solutions 

 

 

In Fig.1 We used random values in MATLAB to find out the  disease-free equilibrium is globally asymptotically 

stable when  𝛼 = 1.172;    𝜗 = 0.24;  𝜎 = 0.02;  𝜃 = 0.4;   𝛾 = 0.30;  𝜔 = 0.50;  𝜋 = 0.2;  𝛽 = 0.7;  

𝜇 = 0.46;  Λ = 0.49;   𝜏 = 0.10 ;   𝜉 = 0.9;    𝛿 = 0.4 

In  Fig.2 We used random values in MATLAB the disease-free equilibrium is globally asymptotically stable 

when 𝛼 = 74.203  ;    𝜗 = 0.24;  𝜎 = 0.02;  𝜃 = 0.4;   𝛾 = 0.30;  𝜔 = 0.50;  𝜋 = 0.2;  𝛽 = 0.7;  𝜇 =
0.46;  Λ = 0.49;   𝜏 = 0.10;   𝜉 = 0.9;    𝛿 = 0.4 
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In Fig.3-4 We used random data in MATLAB to find out the disease of TB  is globally asymptotically stable 

when  𝛼 = 1000 ;    𝜗 = 0.24;  𝜎 = 0.02;  𝜃 = 0.4;   𝛾 = 0.30;  𝜔 = 0.50;  𝜋 = 0.2;  𝛽 = 0.7;  𝜇 = 0.46;  

Λ = 0.49;   𝜏 = 0.40 ;   𝜉 = 0.9;    𝛿 = 0.4 

In Fig.5-6 We used random data in MATLAB to find out the infection of TB  is globally asymptotically stable 

when 𝛼 = 1.172 ;    𝜗 = 0.24;  𝜎 = 0.02;  𝜃 = 0.4;   𝛾 = 0.30;  𝜔 = 0.50;  𝜋 = 0.2;  𝛽 = 0.7;  𝜇 = 0.46;  

Λ = 0.49;   𝜏 = 0.10 ;   𝜉 = 0.9;    𝛿 = 0.4 

In Fig. Figures 7-8 show that the TB count plot and visualizing the dynamics of the TB people iv varies compartments 

by using Differential equation solutions based on the parameter values.  𝛼 = 50 ;    𝜗 = 0.24;  𝜎 = 0.02;  𝜃 =
0.4;   𝛾 = 0.30;  𝜔 = 0.50;  𝜋 = 0.2;  𝛽 = 0.7;  𝜇 = 0.46;  Λ = 0.49;   𝜏 = 0.10 ;   𝜉 = 0.9;    𝛿 = 0.4 

 

Conclusion  

In this paper, we analysed the TB disease model in six six-compartment stages, this model has found positivity of the 

presence of tuberculosis. A tuberculosis model was analysing to show the dynamics of the TB disease, we found out 

the basic reproduction number 𝑅0, If 𝑅0 < 1, then the disease-free equilibrium is globally asymptotically stable. At 

any time (𝑡) the tuberculosis disease exists in the region, we used the Lyapunov stability function to control the disease 

rate, the TB population is globally asymptotically stable. We used a Jacobian matrix to examine the local stability and 

diagonal stability. We derived sustainable and non-negatively feasible solutions. By using the Routh-Hurwitz criteria, 

we analysed the local stability of endemic equilibrium. We used MATLAB to simulate the result of the model. 

Numerical simulation was analysed and the symptomatic infectious patients requiring hospital treatment, symptomatic 

infectious patients receiving home treatment and Individuals infected at receiving treatment public places, these three 

compartments were cured and recovered by proper medication. 

 The process of analysing and assessing each stage of the patient's case study is included in the interpretation of 

suggested controls. This helps to rectify the earlier stages of the disease's evaluation and supports the corrective actions 

of the disease-controlled system. To preserve control because maintaining control of the disease is must be the main 

goal, it is a dynamic function. Depending on the patient's condition we can virtually control the tuberculosis disease 

after some medical case studies. In the future, we want to focus on developing drug-resistant and chemotherapy 

procedures in order to manage tuberculosis in the general population. 
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