ISSN: 2663-2187

https://doi.org/ 10.48047/AFJBS.6.5.2024. 8505-8541

African Journal of Biological Sciences

A Review on comparative analysis of polymers in Transdermal patch fabrication and Microparticle formulation techniques Tilu Devi¹, Dipsikha Bora¹, Janmoni Sonowal¹, Tikendrajit Das¹, Joba Pegu¹, Ankur

Deka¹, Taslima Akhter Rohman^{2*}, Parthajeet Kalita², Rajesh E Jesudasan³

¹Scholar, School of Pharmacy, The Assam Kaziranga University, Jorhat, Assam 785006, India
²Assistant Professor, School of Pharmacy, The Assam Kaziranga University, Jorhat, Assam 785006, India
³Professor, School of Pharmacy, The Assam Kaziranga University, Jorhat, Assam 785006, India

*Address for Correspondence: Taslima Akhter Rohman Assistant Professor School of Pharmacy, The Assam Kaziranga University, Jorhat, Assam 785006, India **Email address: akhterrahman14@gmail.com**

ABSTRACT:

There are two main parts to the overall issue with plasticizer polymer systems. The degree of achievable miscibility is the primary factor influencing the selection of an appropriate plasticizer for usage with a certain polymer. Plasticizers will then be selected based on their effectiveness in imparting particular qualities, provided that there is adequate miscibility (i.e., a minimal compatibility). The amount of a plasticizer needed to achieve a specific level of plasticity or softness in the plasticizer polymer combination can be used to determine the plasticizer's efficiency. In order to demonstrate how compatibilities can be measured and to quickly discuss the physical reasons that determine good compatibility. The formation of microparticles is at the centre of much research over the last few decades. The physicochemical characteristics of the medication, such as its solubility and chemical stability, influence the choice of an appropriate microparticle formulation method. Modification of the physicochemical properties, including size, shape, morphology, and surface texture, is possible with different ways of manufacturing microparticles. These approaches also impact drug loading, drug entrapment efficiency, and release kinetics. This review covers a comparative study of polymer and solvent nature, the method's toxicity, purification, stability, scalability of transdermal patch and information regarding different polymers along with methods used for microparticles formulation techniques.

Keywords:Transdermal patch; polymer; plasticizer; Floating microparticles; hydroxy propyl methyl cellulose; ethyl cellulose; sodium alginate

Article History Volume 6, Issue 5, 2024 Received: 15 May 2024 Accepted: 02 Jun 2024 doi: 10.48047/AFJB5.6.5.2024. 8505-8541

1.INTRODUCTION:

Transdermal drug delivery systems, sometimes called "patches", transdermal medication delivery systems are discrete, self-contained dosage forms. When patches are applied to the skin that is not injured, the medication is delivered to the systemic circulation through the skin at a controlled transdermal distribution avoids hepatic first speed. A therapeutically effective dosage of medication is dispersed over a patient's skin using TDDS dose forms. Transdermal distribution avoids hepatic first pass metabolism, presumably reduces side effects, and increases patient compliance, among other advantages over traditional medication administration methods. Transdermal patch methods for medication delivery provide gradual, regulated drug release and absorption. The drug's concentration in plasma does not change much over time. The market for transdermal delivery systems is anticipated to rise in the near future as new drug treatment uses and technology are discovered. (K. N., Patel et al., 2012) The transdermal approach is non-invasive, avoids therapy discontinuation prematurely, and can avoid the first pass metabolism. Drug delivery systems that are transdermal have been around for a while. In the past, topical creams and ointments for dermatological conditions were the most often used systems. Some of these formulations have systemic side effects, which suggests that the skin is the route of absorption. Many medications have been used topically to treat the entire body. All topically applied medication formulations meant to release the active ingredient into the general circulation are referred to as transdermal delivery systems. (Tanwar & Sachdeva, 2016) Transdermal therapy systems are intended to deliver medications to the systemic circulation through systems that are transdermal have been around for a while. In the past, topical creams and ointments for dermatological conditions were the most often used systems. Some of these formulations have systemic side effects, which suggests that the skin is the route of absorption. Many medications have been used topically to treat the entire body. All topically applied medication formulations meant to release the active ingredient into the general circulation are referred to as transdermal delivery systems. Transdermal therapy systems are intended to deliver medications delivery to a wider spectrum of medications. The substantial barrier to penetration across the skin, associated penetration across the skin, associated principally with the topmost stratum corneum layer of the epidermis, limits the possibility of transdermal administration to a broad spectrum of medications. Depending on where the reaction is intended to happen, there are two types of formulation for the skin. One causes localised effects on the skin, whilst the other, when the drug is absorbed from the cutaneous microvascular network, causes systemic effects. One produces localised effects on the skin, whilst the other, when the drug is absorbed from the local vascular network, causes global effects. Now a days, a lot of topical,

cosmetic, and oral delivery methods use transdermal patches. These patches are a significant product of the advancements in skin science.(Alam et al., 2013)Nowadays, over 74% of oral drugs are not as effective as anticipated. Drug delivery technology for topical medicine were created to improve those traits. Transdermal delivery of drugs, as compared to oral medication administration, has many advantages. These include reduced within along with inter-patient variability, raised compliance among patients with long-term therapy, prevention of first-pass metabolism, maintenance of drug delivery, preservation of a constant and prolonged drug level in plasma, and the ability to interrupt and stop treatment as needed.(Prabhakar et al., 2013)

Microparticles are small particles with dimensions between 0.1 and 1000 micrometers (μ m) in size. They are used in various applications, including pharmaceuticals, where they can be designed to deliver drugs in a controlled manner. Microparticles can be classified into two main categories: microspheres and microcapsules. Microspheres are matrix systems where the drug is homogeneously dispersed, while microcapsules have a membrane enclosure delimiting and encompassing the nucleus where the active principle is deposited. (da Silva et al., 2023)

1.1 Advantages of Transdermal Patches:

The use of transdermal medication delivery devices has several benefits-

- The medications' availability is increased by passing through pre-systemic and liver metabolisms.
- Intravenous therapy's risks and difficulties are avoided.
- Expanded actions of duration.
- Easy end of drug therapy.
- The removal of various dose interval leads to increased adherence by patients.
- Increased therapeutic effectiveness by eschewing the physiological medication level peaks and troughs connected to traditional delivery.
- Self-management is possible. (Prabhakar et al., 2013)

1.2 Disadvantages of Transdermal Patches:

- Transdermal delivery systems for drugs are not suited to the delivery of balance medications.
- It is unable to produce higher blood in medication levels.

It is unable to develop for large their molecular weight medicines. (Tanwar & Sachdeva, 2016)

1.3 Basic Principle of Transdermal permeation:

Passive diffusion is the foundation of transdermal permeation. The most thick and readily broken skin. The human body's most easily accessible organ since the capillary system beneath its outer layer is only a few millimetres away. The dispersal of a medicinal substance from a solution administered topically and several procedures are followed in order to introduce it into the systemic circulation, such as-

1. Diffusion of the medication into the membrane regulating the rate.

- 2. Based on the formulation internal breakdown and release.
- 3. Absorption occurs at the stratum corneum and functional epidermis levels.
- 4. Through a capillary network, medication uptake in the epidermal follicular layer.
- 5. Influence on the targeted organs. (Tanwar & Sachdeva, 2016)

1.4Properties that influence transdermal delivery:

- 1.Release of the medicament from the vehicle
- 2. The layer of protection that allows skin penetration
- 3.Permeation via intact epidermal & absorption by the stratum corneum.
- 4. Medication absorption via the epidermal papillary layer's capillaries network.
- 5. Impact on the intended organ.
- Partitioning into the stratum corneum, or which is the skin's topmost layer.(Tanwar & Sachdeva, 2016)

2. Compatibility study of polymer and plasticizer:

2.1 Methodology:

1)The polymer ethyl cellulose was used to create transdermal patches.

2)Next, PEG-400 was added as a plasticizer, while methanol and chloroform were added as solvents.

3)After giving them a thorough 10 minutes of mixing, the solution was placed into the petri dish utilised the solvents evaporation methods.

4)The patches were appeared and the patches were carefully removed from the Petri dish, but the regions stayed intact.(P., Kriplani et al., 2018)

Polymer	Plasticizer	Solvent (ml)	Result
Ethyl cellulose (1:1)	PEG-400	Chloroform:Methanol	Compatible layers have appeared.

Table 1: Compatibility study of EC

2.2 Methodology:

1) HPMC and Eudragit was used as a polymer for the formation of Transdermal patches.

2)Methanol and Chloroform was used as a solvent (3:2), and then polymers and solvents were mixed together.

3)Then Add PEG-400 as a Plasticizer in the above solution and stirred for about 10 min to form a clear solution.

4)Using solvent evaporation techniques, a reversed funnels is placed in a petri dish with a uniform solution to generate patches.(C., Bhatia et al., 2012)

Polymer	Plasticizer	Solvent (ml)	Result
HPMC: Eudragit	PEG-400	Methanol: Chloroform	Uniformed layers were
(3:2)			formed

Table 2:Compatibility study of HPMC and Eudragit

2.3 Methodology:

1)Firstly, Methocel K 15 M was used as a polymer in the formation of Transdermal patches.

2)Chloroform, dichloromethane and ethanol is used as a solvent.

3)After thoroughly mixing the entire solution, add the plasticizer (glycerine).

4)After adding the plasticizer, the solution is transferred into a petri dish using solvent evaporation techniques.

5)After that, the display indicates the formation of homogenous layers. (Sethi et al., 2018)

Polymer	Plasticizer	Solvent(ml)	Results
Methocel K 15 M	Glycerine	Chloroform:	As showing the
		Dichloromethane:	result in uniformed
		Ethanol	layers is formed.

 Table 3:Compatibility study of Methocel K 15 M

2.4Methodology:

1)Chitosan and HPMC was used as a polymer for the preparation of transdermal patches

2) Dibutyl phthalate was added as a plasticizer, while Ethanol and Dichloromethane was added as a solvents

- 3) Solvent evaporation techniques are applied to the mixture in a petri dish after it has been mixed and stirred for 10 minutes.
- 4) After that homogenous layer was formed. (Allena et al., 2012)

Polymer (1:1)	Plasticizer	Solvents (ml)	Results
Chitosan: HPMC	Dibutyl- phthalate	Ethanol:	Formed homogenous
		Dichloromethane	layers

Table 4:Compatibility study of Chitosan and HPMC

2.5Methodology:

1) 4g of PVA was dissolved in distilled water and final volume was made up to 100 ml.

2)The prepared solution was then poured into a petri dish in such a manner that it completely and homogenously covered.

3)The petri dish was placed in oven for 24 hrs at 50° C.

4) Propylene glycol as plasticizer, aloe vera as adhesive and argan oil as permeation enhancer were added to prepare the backing membrane to prepare the patch. (R. P., Patel et al., 2009)

Polymer	Plasticizer	Solvent (ml)	Result
		100 ml	
Polyvinyl alcohol	Propylene Glycol	Distilled Water	Homogenous layer
(4g)			was formed.

Table 5: Compatibility study of Polyvinyl alcohol

2.6Methodology:

- 1) First, 2% (m/v) polyvinyl alcohol (PVA) solution was poured into the backing membrane, and it was dried to six hours at 600 C.
- To prepare the drug reservoir, HPC or EC were dissolved in methanol-chloroform. 3) Then uniform dispersion was cast. (Khan et al., 2020)

Polymer	Plasticizer	Solvent	Result
2% (m/v) Polyvinyl	15 % (w/v) Dibutyl	5 ml mixture of	Uniform dispersion
alcohol (PVA);	phthalate	Chloroform:	was cast.
Hydroxyl Propyl		Methanol	
Cellulose or Ethyl		(1:1)	
cellulose.			

 Table 6: Compatibility study of Polyvinyl alcohol, Hydroxy propyl cellulose and ethyl

 cellulose

2.7Methodology:

1)Firstly, Gelatine was used as a polymer in the formation of Transdermal patches.

2)Water is used as a solvent.

3)After that above solution are mixed together then add the Propylene glycol as a plasticizer.

4)Then above solution are poured into a petri dish using solvent evaporation methods.

5)Then layers are formed and water vapour barrier properties of the films were evaporated.(Aung et al., 2021)

Polymer	Plasticizer	Solvents (ml)	Results
Gelatine (1:1)	Propylene glycol	Water (150)	Water vapour
			barriers properties of
			the films were
			evaluated

Table 7: Compatibility study of Gelatine

3. Polymers and methods used for microparticles formulation techniques:

Types	Drug used	Polymer used	Method used	Result
Floating microspheres	Metronidazole	Cassava starch	Spray drying	Using cassava starch to
		(Manihot		make a floating dosage
		esculenta)		form for metronidazole
				could be advantageous in
				treating H. pylori
				infections. (Odeku et al.,
				2017)
Floating microspheres	Felodipine	Sodium	Solvent	After 45 days at 45°C,
		alginate,	evaporation	the stability study shows
		Chitosan,	method	that about 87.12% of the
		Albumin,		medication remains in
		Gelatin, Poly		the felodipine
		(vinyl alcohol),		microspheres, indicating
		poly(lactideco-		their good stability.
		glycolide),		(Sangale SB et al., 2011)
		Combination of		
		two polymers		
		suchas		
		Chitosan		
		sodium CMC,		
		alginate		
		chitosan		
Floating microspheres	Metformin HCL	Eudragit RL-	Solvent	The drug's oral
		100 & RS-100	evaporation	bioavailability was
			method	enhanced by over two
				times as a result of the
				extended gastric
				retention duration.
				Forming it into
				microspheres also

				increased the stability.
				(Sagar et al., 2017)
Floating microspheres	Cefixime	Chitosan.	Ionotropic	The study found that
	trihydrate	sodium alginate	gelation	effective floating
	uniyulute	source and anginate	method	Microspheresformulation
			memou	
				requires 3% alginate,
				1.5% chitosan, a 0.75:1
				ratio of CaCO3 to
				alginate, minimum
				CaCl2 concentration of
				0.5%, and stirring speed
				of 600 rpm. Further
				research with animal
				models is needed to
				understand the
				formulation's floating
				properties in vivo.
				(Sindhumol et al., 2018)

Floating	Ranitidine HCL	4,5 & 6 Ethyl	Solvent	Emulsion solvent evaporation,
Microspheres		cellulose, 1 2	evaporation	along with different polymer
		& 3 HPMC	method	amounts like HPMC K15 M
		K15M		and EC, successfully produced
		-		ranitidine HCL floating
				microspheres, enhancing its
				oral bioavailability by
				prolonging stomach retention.
				This formulation offers
				advantages for developing
				newer drug dosage forms,
				providing a faster and cost-
				effective alternative to
				creating new drug
				components. (V. Kumar
				et al., n.d.)
Floating	Amoxicillin	Ethyl	Ionotropic	The study proposes that the
Floating microspheres	Amoxicillin Trihydrate	Ethyl cellulose,	Ionotropic gelation	The study proposes that the formulated product stays in
Floating microspheres	Amoxicillin Trihydrate	Ethyl cellulose, HPMC K4M,	Ionotropic gelation method,	The study proposes that the formulated product stays in the stomach longer,
Floating microspheres	Amoxicillin Trihydrate	Ethyl cellulose, HPMC K4M, Sodium	Ionotropic gelation method, Solvent	The study proposes that the formulated product stays in the stomach longer, controlling its distribution and
Floating microspheres	Amoxicillin Trihydrate	Ethyl cellulose, HPMC K4M, Sodium alginate	Ionotropic gelation method, Solvent evaporation	The study proposes that the formulated product stays in the stomach longer, controlling its distribution and ensuring sustained drug
Floating microspheres	Amoxicillin Trihydrate	Ethyl cellulose, HPMC K4M, Sodium alginate	Ionotropic gelation method, Solvent evaporation method	The study proposes that the formulated product stays in the stomach longer, controlling its distribution and ensuring sustained drug release. This extended
Floating microspheres	Amoxicillin Trihydrate	Ethyl cellulose, HPMC K4M, Sodium alginate	Ionotropic gelation method, Solvent evaporation method	The study proposes that the formulated product stays in the stomach longer, controlling its distribution and ensuring sustained drug release. This extended retention of Amoxicillin
Floating microspheres	Amoxicillin Trihydrate	Ethyl cellulose, HPMC K4M, Sodium alginate	Ionotropic gelation method, Solvent evaporation method	The study proposes that the formulated product stays in the stomach longer, controlling its distribution and ensuring sustained drug release. This extended retention of Amoxicillin trihydrate floating
Floating microspheres	Amoxicillin Trihydrate	Ethyl cellulose, HPMC K4M, Sodium alginate	Ionotropic gelation method, Solvent evaporation method	The study proposes that the formulated product stays in the stomach longer, controlling its distribution and ensuring sustained drug release. This extended retention of Amoxicillin trihydrate floating microspheres could enhance
Floating microspheres	Amoxicillin Trihydrate	Ethyl cellulose, HPMC K4M, Sodium alginate	Ionotropic gelation method, Solvent evaporation method	The study proposes that the formulated product stays in the stomach longer, controlling its distribution and ensuring sustained drug release. This extended retention of Amoxicillin trihydrate floating microspheres could enhance the drug's therapeutic effects
Floating microspheres	Amoxicillin Trihydrate	Ethyl cellulose, HPMC K4M, Sodium alginate	Ionotropic gelation method, Solvent evaporation method	The study proposes that the formulated product stays in the stomach longer, controlling its distribution and ensuring sustained drug release. This extended retention of Amoxicillin trihydrate floating microspheres could enhance the drug's therapeutic effects by increasing its
Floating microspheres	Amoxicillin Trihydrate	Ethyl cellulose, HPMC K4M, Sodium alginate	Ionotropic gelation method, Solvent evaporation method	The study proposes that the formulated product stays in the stomach longer, controlling its distribution and ensuring sustained drug release. This extended retention of Amoxicillin trihydrate floating microspheres could enhance the drug's therapeutic effects by increasing its bioavailability.(Chakrabortyrty
Floating microspheres	Amoxicillin Trihydrate	Ethyl cellulose, HPMC K4M, Sodium alginate	Ionotropic gelation method, Solvent evaporation method	The study proposes that the formulated product stays in the stomach longer, controlling its distribution and ensuring sustained drug release. This extended retention of Amoxicillin trihydrate floating microspheres could enhance the drug's therapeutic effects by increasing its bioavailability.(Chakrabortyrty et al., 2014)
Floating microspheres Gastroretentive	Amoxicillin Trihydrate Amiloride Hcl	Ethyl cellulose, HPMC K4M, Sodium alginate HPMCK-100,	Ionotropic gelation method, Solvent evaporation method Solvent	The study proposes that the formulated product stays in the stomach longer, controlling its distribution and ensuring sustained drug release. This extended retention of Amoxicillin trihydrate floating microspheres could enhance the drug's therapeutic effects by increasing its bioavailability.(Chakrabortyrty et al., 2014) Evidence supports
Floating microspheres Gastroretentive floating	Amoxicillin Trihydrate Amiloride Hcl	Ethyl cellulose, HPMC K4M, Sodium alginate HPMCK-100, PVPK-30,	Ionotropic gelation method, Solvent evaporation method Solvent evaporation	The study proposes that the formulated product stays in the stomach longer, controlling its distribution and ensuring sustained drug release. This extended retention of Amoxicillin trihydrate floating microspheres could enhance the drug's therapeutic effects by increasing its bioavailability.(Chakrabortyrty et al., 2014) Evidence supports HPMCK-100 microspheres for
Floating microspheres Gastroretentive floating microspheres	Amoxicillin Trihydrate Amiloride Hcl	Ethyl cellulose, HPMC K4M, Sodium alginate HPMCK-100, PVPK-30,	Ionotropic gelation method, Solvent evaporation method Solvent evaporation method	The study proposes that the formulated product stays in the stomach longer, controlling its distribution and ensuring sustained drug release. This extended retention of Amoxicillin trihydrate floating microspheres could enhance the drug's therapeutic effects by increasing its bioavailability.(Chakrabortyrty et al., 2014) Evidence supports HPMCK-100 microspheres for treating diuretic-and

		Bicarbonate,		hypertension-related
		Ethyl		issues, providing effective
		cellulose.		delivery with prolonged
				release. HPMC K-100 stands
				outdue to its ease of
				administration and beneficial
				biological features, especially
				when combined with sodium
				bicarbonate as an effervescent
				agent. (Sah
				SK et al., 2023)
Calcium silicata has	Amovicillin	НРМС	Solvent	Amovicillin floating
on floati	Amoxiciiiii	III WIC,	evaporation	microspheres were produced
microspheres		ethyl cellulose	method	through emulsion solvent
merospheres			method	evanoration employing
				calcium silicate as a carrier
				Based on these findings
				floating and sustained
				release preparation can be
				achieved by costing ELP
				norticles' pores with the drug
				particles pores with the drug
				absorbed by a polymer
				solution containing
				appropriate doses of both
				HPMC and EC. (M. K.
				Goyal & Mehta, 2011)
Microparticles for	Curcumin	Eudragit S 100	Solvent	Curcumin-loaded microspheres
containing			evaporation	were made with Eudragit S 100
colorectal cancer			method	through solvent evaporation.
				Controlling stirring speed and
				polymer-to-drug ratio was vital
				for smooth, spherical particles
				with high yields.

				Microspheres were distinct and
				free-flowing, with no drug-
				polymer interaction found in
				FTIR and DSC analyses. Drug
				release followed Fickian
				diffusion, lasting up to 10 hours.
				(Jenita, 2012)
Floating micro	Indomethacin	Eudragit	Emulsion	Emulsion solvent diffusion was
balloons		RS100,	solvent	employed to produce floating
		E. J	diffusion	micro balloons for controlled
		Eudragit S100	technique/meth	indomethacin delivery,
			od	exhibiting prolonged floating
				(over 10 hours) due to low
				densities. In vitro studies
				revealed that adjusting solvent-
				to-
				polymer ratios (DCM and EtOH
				to RS100 and
				S100) regulated indomethacin
				release. These micro balloons
				could be filled into empty
				capsule shells for dispensing.
				(Bhardwaj P et al., 2010)
Gastroretentive	Ranitidine	HPMC (K 100),	Solvent	The novel method of using
floating	hydrochloride	Eudragit S 100,	evaporation	floating microspheres for
microspheres		Xanthan gum	method	ranitidine HCl improves
		C		gastrointestinal retention,
				reducing administration
				frequency with hydrophilic and
				acrylic polymers. Expanding
				this method to other drug
				combinations could enhance
				bioavailability for poorly
				absorbed drugs in the GI tract.
				(Darapu et al., 2011)

Microspheres	Telmisartan	Ethyl cellulose	Solvent	The Emulsion Solvent
			evaporation	Evaporation method created
			method	microspheres by adjusting ethyl
				cellulose polymer and drug
				amounts. Evaluated for drug
				entrapment, micromeritic
				properties, floating, and drug
				release, results revealed
				polymer-to-drug ratio impact on
				release. (Bansode et al., 2012)
Floating	Pantoprazole	Eudragit S100,	Solvent	Pantoprazole sodium
microspheres	Sodium	нрмс к 100	evaporation	microspheres, made with
	boulum	M	method	HPMC and Eudragit S100
		1111		through emulsion solvent
				evaporation, offer potential for
				safe, sustained drug delivery,
				reducing dosing frequency. (Raj
				BS et al.,
				2015)
Floating	Rabeprazole	HPMC K15M,	Solvent	Successfully prepared floating
microspheres	Sodium	Ethvl	evaporation	microspheres of
	boundin		method	RPS using varying
		Cellulose		concentrations of HPMC K15M
				and EC through emulsion
				solvent evaporation. Enhances
				gastric retention and oral
				bioavailability, offering a cost-
				effective alternative to
				developing new drugs.(Shwetha
				S et al.,
				2012)
Oral microspheres	Valsartan	Ethyl cellulose,	Solvent	This study successfully
containing Anti-		НРМС,	evaporation	formulated microspheres of
hypertensive drug		Carbomers	method	antihypertensive drugs to
				enhance absorption rates.

				Valsartan microspheres prolong
				drug release, exhibiting high
				entrapment efficiency and
				particle sizes ranging from um
				to60 um. Carbopol, HPMC, and
				ethyl cellulose proved effective
				for microsphere preparation.
				(Akotkar AM et al., 2023)
Floating	Cefditoren	HPMC K4M,	Solvent	By analysing independent
microspheres	Pivoil	Ethyl cellulose	evaporation	variables, response surface
			method	plots, and contour plots, it was
				found that increasing the total
				polymer concentration and ethyl
				cellulose concentration led to
				higher % yield and particle size
				but lower drug encapsulation
				efficiency (EE) and drug release
				efficiency (DE). Additionally,
				drug release from the floating
				microspheres followed first-
				order non-Fickian diffusion
				kinetics.
				(Chilukala, 2016)
Hollow	Piroxicam	Eudragit S	Solvent	Micro balloons change with
microspheres			diffusion	polymer/drug ratio; higher
			method	ratios create buoyant but brittle
				ones. At 6:1 ratio, 85% float for
				8 hours, dispersing in the
				stomach without sticking. They
				promise pulsatile drug delivery
				with fast release after floating in
				simulated intestinal
				fluid.(Maghsoodi et al., 2011)

Gastroretentive	Silymarin	Ethyl cellulose,	Solvent	Silymarin microspheres, made
floating		НРМС,	evaporation	using a combination of ES and
microspheres		Eudragit S 100	method	ERL with HPMC and EC,
				display strong release and
		& Eudragit RL		floating abilities, along with
				positive physicochemical
				characteristics. The drug release
				follows Zero order kinetics and
				is primarily diffusion-
				controlled.(Garg & Gupta, 2010)
Gastroretentive	Metoprolol	Eudragit	Solvent	Floating microparticles made
floating multi-	Tartarate		evaporation	from microporous
			method	polypropylene release drugs in
particulate system				two phases with zero-order
				kinetics. Optimization is
				underway for tablet/capsule
				forms. Microparticles, white,
				free flowing, porous, and
				irregularly shaped, contain
				partly amorphous drug,
				reducing crystallinity. In vitro
				release is biphasic; in vivo, they
				float well with a 300-min half-
				life over 6hrs. (Baskar et al.,
				2010)
Floating	Losartan	HPMC, ethyl	Ionotropic	The result of the experiment
microspheres	Potassium	cellulose	gelation	shows that using ionotropic
			method	gelation, Losartan potassium
				microspheres with EC and
				HPMC polymers can be
				created. These microspheres
				stay in the stomach longer and
				enhancedrug bioavailability.
				(P., Pandey et al., 2019)

Floating	Itraconazole	HPMC,	Solvent	The dual coating solvent
Floating microparticles	Itraconazole	HPMC, Eudragit S 100, Ethyl cellulose	Solvent evaporation method	The dual coating solvent evaporation method effectively produced pH independent ITZ floating microparticles with HPMC15 cps, EC polymers, and safflower oil. Optimization of parameters achieved prolonged bouncy and optimal drug release over 12 hours. F16 formulation surpassed pH-dependent F7, showing potential in resolving ITZ's pH dependency and solubility concerns (T A
				Basher & Al-Akkam, 2020)

Beads	Prazosin	Eudragit RL	Ionotropic	Chitosan/TPP beads
		100 Chitosan	gelation	allow controlled drug
			method	release. Eudragit RL
				addition improves drug
				entrapment. Particle size
				increases with polymer
				amount. Beads are
				spherical with a rough
				surface. FTIR verifies
				functional groups
				without significant
				chemical interactions. In
				vitro, drug release slows
				with more polymer.
				These beads show
				promise for sustained
				drug release like
				Prazosin, requiring in
				vivo validation. (Raj et
				al., 2012)
Floating microsphere	Gabapentin	Ethyl	Solvent	Gabapentin floating
S		cellulose&	evaporation	microspheres are created
		cellulose	method	via solvent evaporation
		acetate		using ethyl cellulose. The
				choice and ratio of
				polymer are crucial,
				along with preparation
				conditions, for size and
				shape. The primary
				release mechanism in the
				optimal formula is
				Fickian diffusion. (A. N.,
				Al-Abadi &Rassol, 2011)

Gastroretentivemicroballoons	Baclofen	HPMC K4M&	Solvent	Novel baclofen-loaded
		Ethyl cellulose	evaporation	floating microspheres
		5	method	with a unique design
				were made using an
				affordable method. F4,
				with specific ratios of
				EC: HPMC K4M,
				showed the best
				buoyancy and drug
				release. Tests on animals
				indicated F4 extends
				baclofen's presence in
				the stomach, potentially
				improving its
				effectiveness against
				spasticity. (Dube TS et
				al., 2014)
Microparticles	Candesartan	Ethyl cellulose,	Fusion	These results confirm
	cilexetil	sodium bicarbonate	method	that floating
				Candesartan cilexetil
				tablets are an innovative
				approach to enhance the
				drug's
				bioavailability, suggesting
				a new potential for
				treating high blood
				pressure.
				(Kamalakkannan V et al.,
				2012)
Polymeric coated	Furosemide	Sodium	Solvent	The study made a
minitablets		bicarbonate Fudragit	method	floating drug system
		DI 20D		with Eudragit RL30D
		KL30D		and effervescent agents.
		RS30D,		It floated fully in 4
				minutes, stayed buoyant

		HPMC K100,		for 12 hours, and
		Ethyl cellulose		controlled drug release
				linearly. More coating
				slowed release. It
				combines fast floating
				and controlled release,
				lasting in the stomach for
				6 hours, needing more
				absorption tests.(Meka L
				et al., 2009)
Multiparticulate floating drug	Zolpidem	Sodium	Gas	The multiparticulate
delivery system	tartrate	bicarbonate,	formation	floating system, using
			technique	gas formation tech,
		Eudragit NE		comprises polymeric
		30D, HPMC		membrane and
				effervescent-coated
				zolpidem pellets.
				Release and float
				depend on membrane
				coating and effervescent
				agent levels. It achieves
				sustained 10hour
				floating and total float in
				5 minutes, providing
				modified release and
				rapid floating for
				zolpidem delivery.
				(Amrutkar P.P
				et al., 2012)

Tilu Devi / Afr.J.Bio.Sc. 6(5) (2024). 8505-8541

Floating	Metformin	Ethyl cellulose, Rs	Solvent	Floating microspheres
microspheres	Hydrochloride	НРМС,	evaporation	with special coatings
		Eudragit	method	and added polymers help
		100		drugs stay longer in the
		100		stomach, releasing them
				slowly for better
				absorption. They can
				come in different sizes
				and strengths and work
				mainly by slowly letting
				the drug out through
				diffusion. These
				microspheres could be
				useful for delivering
				drugs in different
				stomach conditions.
				(Dubey et al., 2012)
Floating	Ketoprofen	Sodium	Ionotropic	Cross-linking
microspheres		alginate,Chitosan	gelation	formedketoprofen-
			method	filledmicrospheres using
				alginate and chitosan,
				which float and release the
				drug steadily, especially in
				phosphate buffer. They
				reduce stomach issues and
				work for many drugs,
				proving ionotropic
				gelation's success in long-
				lasting
				drugdelivery.(S.,Agarwal
				et al., 2022)
1	1	1	1	

Floating	Melatonin	Chitosan	Capillary	We made new hollow
microcapsules			extrusion	spheres using a cheap
			method	gel. These spheres, made
				from sodium dioctyl
				sulfosuccinate and
				chitosan, slowly release
				drugs, good for
				medicines like MT. For
				best results, use 2%
				chitosan, a drug/polymer
				ratio of 2:1 or 3:1, and
				2% DOS. You can
				change how they release
				drugs easily, making
				them better for
				controlled-release
				medicines. (El-Gibaly,
				2002)
Floating microspheres	Ciprofloxacin	Hydroxy	Solvent	Ciprofloxacin floating
		propyl methyl	evaporation	microspheres, using
		cellulose K4M,	method	Carbopol 940, ethyl
		Carbopol		cellulose, and HPMC
		940P, ethyl		K4M via solvent
		cellulose		evaporation, offer
				extended therapeutic
				benefits with controlled
				stomach release,
				improving drug
				absorption and dosing
				convenience. F7, the best
				formulation, releases
				90.79±0.89% of the drug
				over 10 hours, boosting

				patient adherence.
				(Arumugam et al., 2021)
Floating microspheres	Metformin	Eudragit,	Solvent	Metformin-loaded
	hydrochloride	HPMC	evaporation	floating microspheres,
			method	varying in size from 397
				to 595 µm, displayed
				high entrapment
				efficiency
				(60.0283.49%) and drug
				loading capacity
				(13.3114.3%). They
				floatedeffectively
				(80.6785.67%) without
				any drug-excipient
				interaction, as confirmed
				by FT-IR and X-RD
				analysis.These
				microspheres released up
				to 96% of the drug in pH
				0.1N HCl, following the
				Korsmeyer Peppas
				model, indicating
				sustained release and
				prolonged gastric
				retention. (Kesharvani et
				al., 2020)
Floating microspheres	Nateglinide	Ethyl cellulose,	Solvent	The study found that
		Eudragit S-100	evaporation	making floating
			method	microspheres of Nate
				glinide keeps it in the
				stomach longer and
				releases the medication
				slowly for a longer time.
				This makes the drug
				more effective when

				taken by mouth. (N,
				Pandey et al.,2016)
Floating microspheres	Lercanidipine	Ethyl cellulose,	Solvent	Lercanidipine
	Hydro chloride	HPMC, Fudragit R100	evaporation	Hydrochloride
	emonue	Polyvinyl	method	microparticles with
		pyrrolidine		excellent floating
		pyrroname		properties and sustained
				release were successfully
				created using a solvent
				evaporation method.
				They exhibited ideal
				particle size, drug
				loading, and spherical
				shape, ensuring efficient
				oral drug delivery.
				(Arshi et al.,2023)
Micro balloons	Nizatidine	Ethyl cellulose	Non solvent	The study created micro
			evaporation	balloons with nizatidine
			method	and ethyl cellulose,
				which float for over 12
				hours and release the
				drug gradually,
				potentially reducing
				dosing frequency, side
				effects, and improving
				drug efficiency. (Sabry
				et al.,2015)
Microparticles	Ketoprofen	Eudragit S 100,	Emulsion	Floating microparticles
		Eudragit RL	Solvent	of ketoprofen, prepared
			diffusion	using an appropriate
			method	ratio of ES 100 to ERL,
				could offer an
				advantageous dosage
				form for optimizing

					flow, release, and buoyancy properties, thereby maximizing performance.(El-kamel A et al., 2001)
Floating	micro	Allopurinol	Ethyl cellulose,	Emulsion	Allopurinol micro
sponges			Eudragit EPO	solvent	sponges were created
				diffusion	using Ethyl cellulose and
				method	Eudragit EPO via quasi-
					emulsion solvent
					diffusion. Optimization
					through a factorial
					design yielded the best
					formulation with 90.61%
					entrapment, 86.52%
					buoyancy, and 94.23%
					drug release in 12 hours.
					FTIR confirmed drug
					polymer compatibility,
					while SEM revealed
					micro sponge
					morphology.(D., Patel et
					al., 2016)

				•
Floating microsphere	Tinidazole	Ethyl cellulose	Solvent	Tinidazole microspheres,
			evaporation	with diverse drug and
			method	ethyl cellulose ratios,
				display gastro-retentive
				features, sustaining drug
				release for 12 hours in
				pH 1.2 hydrochloride
				buffer. Formulation A2,
				with a drug: ethyl

				cellulose ratio of 1:2.5,
				achieves 61% drug
				entrapment. Overall,
				these microspheres hold
				promise for
				gastroretentive therapy
				with sustained
				release.(A.
				Kumar et al., 2023)
Floating	Repaglinide	Ethyl cellulose,	Emulsion	Repaglinide-loaded
microspheres		HPMC	solvent	microspheres achieve
			diffusion	prolonged drug release in
			method	vitro and in vivo, with
				excellent floating ability
				in rats' stomachs and
				proven safety through
				histopathological
				analysis. They provide a
				promising solution for
				NIDDM management in
				the pharmaceutical
				sector.(Sharma et al.,
				2015)
Gastroretentive	Bruceajavanica	Sodium	Ionotropic	Carrageenan and calcium
floating beads	oil	alginate	gelation	alginate beads float
			method	immediately and stay
				buoyant for 24 hours due
				to their porous structure.
				Carrageenan, a unique
				porogen, regulates
				release rates via acid
				hydrolysis below pH 3.5.
				When exposed to gastric
				juice, Alg–Cgn–BJO
				beads undergo

				carrageenan hydrolysis,
				creating drug release
				pathways. (Zhang et al.,
				2018)
Floating	Rosiglitazone	HPMC &	Solvent	A factorial study
microspheres	maleate	Fthyl cellulose	diffusion	pinpointed factors
		Luiji condiose	evaporation	affecting drug
			technique	microspheres. Batch F5,
				optimized for polymer
				concentration and
				stirring speed, showed
				top-tier drug entrapment,
				sustained release, and
				particle size. It
				outperformed other
				formulations, displaying
				superior floating,
				buoyancy, and prolonged
				drug release in vitro.
				(Rao et al., 2009)
Floating	Repaglinide	Eudragit S	Emulsion	The aim was to create
microspheres			solvent	buoyant drug delivery
			diffusion	for repaglinide
			method	using FLR-
				infused microspheres,
				enhancing bioavailability
				with easy preparation,
				strong buoyancy,
				high
				encapsulation, and
				sustained release. These
				microspheres address
				sustained-release
				challenges for controlled
				oral delivery. (Jain et al.,

				2005)
Floating	Aceclofenac	Eudragit RS	Solvent	Aceclofenac
microparticles		100	evaporation	microspheres floated
		100	method	well, releaseddrug
				slowly, and could be
				tailored in size and drug
				content. Diffusion
				controlled drug release,
				making them ideal for
				stomachdelivery.
				(Gattani et al., 2009)
Floating	Rifampicin	HPMC &	Solvent	It results that the new
microspheres		Ethyl cellulose	evaporation	system floats well and
			method	may enhance drug
				absorption, especially for
				rifampicin in
				tuberculosis treatment,
				by decreasing drug
				solubility and
				improvingbioavailability.
				Microspheres can be
				made into tablets,
				capsules, or oral
				suspensions. (P., Goyal
				et al., 2011)
Floating	Silymarin	HPMC &	Emulsion	The silymarin
microspheres		Ethyl cellulose	solvent	microspheres released
			evaporation	the drug slowly in
			method	simulated stomach
				conditions for 12 hours,
				suggesting they could
				enhance drug absorption

		and patient
		adherence. (Garg &
		Gupta, 2010)

4. Properties of Polymers:

4.1 Eudragit:

To improve the medicine's transport properties, polymer-based drug carriers are used. Additionally, one of the rare biodegradable copolymers is the Eudragit series. generated from different concentrations of soluble methacrylic and acrylic acid esters, which differ based on their functional groups (R). It is crucial to attain the anticipated drug release profile. The targeted drug's release profile was obtained by combining different polymer forms, such as Eudragit E100, Eudragit EPO, and Eudragit L100, with different Eudragit series. Furthermore, Patra and colleagues disclosed that multiple Eudragit types were applied in various applications to develop drug delivery systems utilising Eudragit E100 is a cationic copolymer. Films, transdermal sprays, ophthalmic solutions, tiny particles, floating drug delivery systems, and microparticles are among the many applications for Eudragit E100 Copolymer comprising ethyl acrylate, methyl methacrylate, and methacrylic acid ester, Eudragit RS100 makes up one of the cationic polymethacrylate polymers with a low concentration of quaternary ammonium ions.(Aung et al., 2021)

4.2 HPMC:

A component of cellulose A component of cellulose which are hydrophilic is a substance called methylcellulose, or HPMC. Because of its capacity to expand, gel, and thicken formulations for controlled release, it is frequently utilized in them. Moreover, HPMC has a benign nature and is useful for creating regulated drug delivery systems due to its swollen and simple compression qualities.(Hu M. et al., 2021)

4.3Ethyl Cellulose:

A hydrophilic derivative of cellulose is called ethyl cellulose (EC). It is a common white to light free-flowing powder that is employed in the production of devices for drug delivery that are controlled. EC is frequently employed in the production of regulated medication delivery systems. Because EC has relatively few adverse effects, it is safe to use in topical, ophthalmic, or vaginal formulations, tablets, and orally capsules. EC is a hydrophilic polymer that's inert with has good compressibility, relatively stable during storage, and no toxicity, making it a desirable choice for controlled drug delivery systems.(Rekhi G.S. & Jambhekar S.S., 1995; Wasilewska K. & Winnicka K., 2019)

4.4 Polyvinyl Alcohol:

A synthesised linear semicrystalline polymer called polyvinyl alcohol is produced by partially or fully hydrolysing poly (vinyl acetate). This adaptable substance has great absorption by the body or broken down under both aerobic and anaerobic conditions. PVA is thought to serve as an implementing compound which gives other substances an aqueous environment. The additional hydroxyl group is an effective area in combining PVA due to it provides new features and expands its range of uses. PVA has exceptional flexibility, biocompatibility, recyclability, & thermomechanical qualities. It is interesting that adding nanoparticles to PVA, such as carbon nanotubes, nanographene oxide, nanodiamonds, nanocellulose, titanium nanotubes, etc., significantly improves its thermomechanical capabilities.(Nair, 2019)

4.5 Gelatine:

Gelatine is an organic polymer formed by the hydrolytic breakdown of collagen's protein and its distinct amino acid structure. Gelatine is commonly found in tablets, granules, or powders. After utilization, it might be dissolved in water. Researchers have examined the utilization of gelatine as a matrix for three-dimensional cell culture widely. Gelatine is made up of 18 different types of complex amino acids chemically. 25.5% oxygen,6.8% hydrogen,50.5% carbon, and 17% nitrogen made up of gelatine.(Alipal et al., 2021)

5. Properties of Plasticizer:

5.1 Dibutlypthalate:

In order to facilitate latex coalescence and film production, DBP (plasticizer) reduces polymer-polymer bonding, such as hydrogen bonding, and establishes its own connections with the polymer lattice. The stronger but shorter elongation film was produced by plasticization using DBP. Tensile strength and the glass transition temperature typically drop as a result of plasticization with DBP because it lessens the intermolecular tensions between polymer chains.

5.2Polyethylene glycol:

Condensed ethylene oxide (EO) mixed the water synthesized into polymer that are called polyethylene glycols (PEGs).(Jang H.-J. et al., 2015) Many different applications available in these polymers or their derivatives in the food industry, pharmaceutical, and biological domains.(Casiraghi A. et al., 2015; Fruijtier-Pölloth C, 2005) PEGs and their derivatives are mostly utilized as solvents, surfactants, or stabilizers in skin treatments. Remarkably little research has been conducted to investigate the mechanisms by which PEGs affect actives' penetration. Utilizing experimental dispersion cells examinations, Sarpotdar and colleagues analysed the effect of PEG 400/water a combination on the absorption drugs oxaprozin and guanabana in human skin. As the concentration of PEG 400 in the formulations rose, it was observed that the flux values of both medicines decreased linearly. Because of its safety and compatibility when given to the human organism through different paths, PEG 400 is a polymer that the FDA has authorised for application in systems that deliver drugs.(Hoang Thi T.T. et al., 2020)

5.3Glycerine:

In creams and emulsions, glycerine is utilized as a solvent or co-solvent. In addition, glycerin is employed as an additive in patches and as an ingredient in both aqueous and non-aqueous gels.(Narkhede Sachin et al., 2023)

Glycerin functions as a penetration enhancer by improving the solubility of drug ingredients, increasing the diffusion of drugs across cell membranes and providing hydration to the skin. This softens the keratin layer of the stratum corneum, increasing the amount of drug that penetrates through the skin.(Pratama et al., 2020)

The formulation's tensile strength and drug release property are enhanced by an increased propylene glycol to glycerin mixture. The formulation with the maximum drug release and best efficiency in the antibiotic test is made up of glycerin and propylene glycol in a 4:6 ratio. (Duangjit et al., 2015)

6. Conclusion:

The optimization of a transdermal medication delivery system involves a number of factors. In transdermal systems, the design and selection of polymers, adhesives, penetration enhancers, and plasticizers is crucial to the physical properties of the formulation and the drug release characteristics. Plasticizers, in addition to the other ingredients in transdermal patches, significantly change the viscoelastic nature of the polymers. The use of plasticizers in transdermal drug delivery systems has been encouraged by the need to enhance the film's mechanical characteristics, reduce film cracking, give the film a more appealing appearance, and prevent film formation. Thus, it's important to give much consideration to both the type of plasticizer chosen and regulate its concentration in the formulation. Also, in this review floating microspheres offer an effective way to improve bioavailability and regulate the release of numerous medications, and they have demonstrated a significant potential for gastroretention.

7. Reference:

- Agarwal, S., Thakur, A., & Sharma, A. (2022). Development and evaluation of ketoprofen loaded floating microspheres for sustained delivery. *Materials Today: Proceedings*, 68, 647–652.
- Akotkar AM, Zanke AA, & Gite KV. (2023). Formulation And Evaluation Of Oral Microspheres Containing Antihypertensive Drugs By Emulsion Solvent Evaporation Method. *Journal of Population Therapeutics and Clinical Pharmacology*, 30(05), 635– 645.
- Al-Abadi, A. N. ,& Rassol, A. A. (2011). Preparation and in-vitro evaluation of floating microspheres of gabapentin. *Kufa Journal For Veterinary Medical Sciences*, 2(1), 77– 92.

- Alam, M. I., Alam, N., Singh, V., Alam, M. S., Ali, M. S., Anwer, T., &Safhi, M. M. (2013). preparation and evaluation of transdermal patch: a review. *World Journal of Pharmacy and Pharmaceutical Sciences*, 2(4), 2199–2233.
- Alipal, J., Pu'Ad, N. M., Lee, T. C., Nayan, N. H. M., Sahari, N., Basri, H., & Abdullah, H.
 Z. (2021). A review of gelatin: Properties, sources, process, applications, and commercialisation. *Materials Today: Proceedings*, 42, 240–250.
- Allena, R. T., Yadav, H. K., Sandina, S., & Sarat Chandra Prasad, M. (2012). Preparation and evaluation of transdermal patches of metformin hydrochloride using natural polymer for sustained release. *Int J Pharm Pharm Sci*, 4(3), 297–305.
- Amrutkar P.P, Chaudhari P.D, & Patil S.B. (2012). Design and in vitro evaluation of multiparticulate floating drug delivery system of zolpidem tartarate. *Colloids and Surfaces B: Biointerfaces*, 89(1), 182–187.
- Arshi, J., Manasa, S., Shabbeer, S., & Rao, K. (2023). Formulation And Evaluation Of Floating Microspheres Of Lercanidipine Hydrochloride. *European Journal of Pharmaceutical and Medical Research*, 10. www.ejpmr.com
- Arumugam, K. A. U. S. L. Y. A., Borawake, P. D. , & Shinde, J. V. (2021). Formulation And Evaluation Of Floating Microspheres Of Ciprofloxacin By Solvent Evaporation Method Using Different Polymers. *International Journal of Pharmacy and Pharmaceutical Sciences*, 13(7), 101–108.
- Aung, N. N., Ngawhirunpat, T., Rojanarata, T., Patrojanasophon, P., Opanasopit, P., &
 Pamornpathomkul, B. (2021). Enhancement of transdermal delivery of resveratrol using
 Eudragit and polyvinyl pyrrolidone-based dissolving microneedle patches. *Journal of Drug Delivery Science and Technology*, 61, 102284.
- Bansode, S. D., Kasture, V. S., Pawar, S. S., & Kasture, S. B. (2012). Formulation and evaluation of telmisartan microspheres by emulsion solvent evaporation technique. *Journal of Applied Pharmaceutical Science*, 2(10), 113–116.
- Basher, T. A., & Al-Akkam, E. J. (2020). Formulation and in-vitro evaluation of itraconazole floating microparticles. *Iraqi Journal of Pharmaceutical Sciences*, 29(1), 236–246.
- Baskar, G. V., Narayanan, N., Gaikwad, R., Abdul, S. (2010). Formulation and Evaluation of Gastroretentive Floating Multi-Particulate System of Metoprolol Tartarate. *Tropical Journal of Pharmaceutical Research*, 9(2), 181–186. http://www.tjpr.org

- Bhardwaj P, Chaurasia H, Chaurasia D, Prajapati SK, & Singh S. (2010). Formulation And In-Vitro Evaluation of Floating Microballoons of Indomethacin. *Acta Pol. Pharm*, 67, 291–298.
- Bhatia, C., Sachdeva, M., & Bajpai, M. (2012). Formulation and evaluation of transdermal patch of pregabalin. *International Journal of Pharmaceutical Sciences and Research*, 3(2), 569–575.
- Casiraghi A., Selmin F., Minghetti P, Cilurzo F, & Montanari L. (2015). Nonionic surfactants: Polyethylene glycol (peg) ethers and fatty acid esters as penetration enhancers. *Percutaneous Penetration Enhancers Chemical Methods in Penetration Enhancement*, 251–271.
- Chakraborty, S., Dey, B. K., Saha, S., Kar, A., & Saha, B. (2014). Design And Evaluation Of Floating Microspheres Of Amoxicillin Trihydrate By Ionotropic Gelation Method. *Journal of Applied Pharmaceutical Research*, 2(1), 39–47. www.japtronline.com
- Chilukala, S. (2016). Formulation Development of Floating Microspheres of Cefditoren Pivoxel by 3 2 Factorial Design and in Vitro Characterization. Asian Journal of Pharmaceutics (AJP), 10(1), 14.
- Da Silva, R. Y. P., de Menezes, D. L. B., Oliveira, V. D. S., Converti, A., & de Lima, Á. A. N. (2023). Microparticles in the Development and Improvement of Pharmaceutical Formulations: An Analysis of In Vitro and In Vivo Studies. *International journal of molecular sciences*, 24(6), 5441.
- Darapu, B. N., Sundaramoorthy, K., & Vetrichelvan, T. (2011). Formulation And In-Vitro Evaluation of Gastroretensive Floating Microspheres of Ranitidine Hydrochloride. *Research Journal of Pharmaceutical Dosage Forms and Technology*, 3(1), 24–00. www.pharmanest.in
- Duangjit, S., Buacheen, P., Priebprom, P., Limpanichkul, S., Asavapichayont, P., Chaimanee,
 P., &Ngawhirunpat, T. (2015). Development and evaluation of tamarind seed xyloglucan for transdermal patch of clindamycin. *Advanced Materials Research*, *1060*, 21–24.
- Dube TS, Ranpise NS, & Ranade AN. (2014). Formulation and Evaluation of Gastroretentive Microballoons Containing Baclofen for a Floating Oral Controlled Drug Delivery System. *Current Drug Delivery*, 11(6), 805–816.

- Dubey, M., Kesharwani, P., Tiwari, A., Chandel, R., Raja, K., & Sivakumar, T. (2012). Formulation and Evaluation of Floating Microsphere Containing Anti Diabetic Drug. *Int J Pharm Chem Sci*, 1(3), 1038–1047. www.ijpcsonline.com1038
- El-Gibaly, I. (2002). Development and in vitro evaluation of novel floating chitosan microcapsules for oral use: comparison with non-floating chitosan microspheres. *International Journal of Pharmaceutics*, 249(1–2), 7–21. www.elsevier.com/locate/ijpharm
- El-Kamel, A., Sokar, M., Al Gamal, S., & Naggar, V. (2001). Preparation and evaluation of ketoprofen floating oral delivery system 1. In *International Journal of Pharmaceutics* (Vol. 220). www.elsevier.com/locate/ijpharm
- Fruijtier-Pölloth C. (2005). Safety assessment on polyethylene glycols (PEGs) and their derivatives as used in cosmetic products. *Toxicology*, 214(1–2), 1–38.
- Garg, R., & Gupta, G. (2010a). Gastroretentive Floating Microspheres of Silymarin: Preparation and In Vitro Evaluation. *Tropical Journal of Pharmaceutical Research*, 9(1), 59–66. http://www.tjpr.org
- Gattani, Y. S. ,Kawtikwar, P. S. , &Sakarkar, D. M. (2009). Formulation and evaluation of Gastro retentive Multiparticulate Drug delivery system of Aceclofenac. *International Journal of ChemTech Research*, 1–10.
- Goyal, M. K., & Mehta, S. C. (2011). Preparation and evaluation of calcium silicate based floating microspheres of amoxicillin. *Journal of Applied Pharmaceutical Science*, 04, 137–141.
- Goyal, P., Gill, S., Gupta, U. D., Rath, G., Narang, R. K., & Goyal, A. K. (2011). Development and characterization of rifampicin loaded floating microspheres. *Artificial Cells, Blood Substitutes, and Biotechnology*, 39(5), 330–334.
- Hoang Thi T.T., Pilkington E.H, Nguyen D.H, Lee J.S., Park K.D., & Truong N.P. (2020).The importance of poly (ethylene glycol) alternatives for overcoming peg immunogenicity in drug delivery and bioconjugation. *Polymers*, *12*(2), 298.
- Hu M., Yang J, & Xu J. (2021). Structural and biological investigation of chitosan/hyaluronic acid with silanized-hydroxypropyl methylcellulose as an injectable reinforced interpenetrating network hydrogel for cartilage tissue engineering. *Drug Delivery*, 28(1), 607–619.

- Jain, S. K., Awasthi, A. M., Jain, N. K., & Agrawal, G. P. (2005). Calcium silicate based microspheres of repaglinide for gastroretentive floating drug delivery: Preparation and in vitro characterization. *Journal of Controlled Release*, 107(2), 300–309.
- Jang H.-J., Shin C.Y, & Kim K.-B. (2015). Safety evaluation of polyethylene glycol (PEG) compounds for cosmetic use. *Toxicological Research*, *31*, 105–136.
- Jenita, J. L. (2012). FORMULATION AND EVALUATION OF MICROPARTICLES CONTAINING CURCUMIN FOR COLORECTAL CANCER. *Journal of Drug Delivery & Therapeutics*, 2(3), 125–128. http://jddtonline.info
- Kamalakkannan V, Puratchikody A, & Ramanathan L. (2012). Formulation and In Vitro Evaluation of Solid Lipid Microparticles of Candesartan Cilexetil Floating Tablets. *Drug Delivery Letters*, 2(3), 202–212.
- Kesharvani, S. H. I. K. H. A., Jaiswal, P. K., Mukerjee, A. L. O. K., Singh, A. K. (2020). Formulation And Evaluation of Metformin Hydrochloride Loaded Floating Microspheres. *Int J Pharm Pharm Sci*, 74–82.
- Khan, D., Qindeel, M., Ahmed, N., Khan, A. U., Khan, S., & Rehman, A. U. (2020). Development of novel pH-sensitive nanoparticle-based transdermal patch for management of rheumatoid arthritis. *Nanomedicine*, 15(06), 603–624.
- Kriplani, P., Sharma A, Aman, P. P., Chopra, B., Dhingra, A.,& Deswal, G. (2018). Formulation and evaluation of transdermal patch of diclofenac sodium. *Global Journal* of Pharmacy and Pharmaceutical Sciences, 4(5), 001–004.
- Kumar, A., Chanda, S., Agarwal, S., Singh, M., Sharma, S., Vasant Bonde, G., & Kumar Tiwari, R. (2023). Formulation and evaluation of gastro-retentive Tinidazole loaded floating microsphere for sustained release. *Materials Today: Proceedings*, 80, 1810– 1815.
- Kumar, V., Jalwal, P., Nirja, J., & Hooda, T. (n.d.). *Formulation And Evaluation Of Floating Microsphere Of Ranitidine Hydrochloride*.
- Maghsoodi, M., Hemati, E., Qadermazi, B., & Yari, Z. (2011). Hollow microspheres for gastroretentive floating- pulsatile drug delivery: Preparation and in vitro evaluation. *Advanced Pharmaceutical Bulletin*, 1(2), 55–61.
- Meka L, Kesavan B, Kalamata VN, Eaga CM, Bandari S, Vobalaboina V, & Yamsani MR. (2009). Design and evaluation of polymeric coated minitablets as multiple unit

gastroretentive floating drug delivery systems for furosemide. *Journal of Pharmaceutical Sciences*, 98(6), 2122–2132.

- Nair, S. S. (2019). Polyvinyl alcohol based transdermal devices for enhanced skin permeation. *Res. J. Life Sci. Bioinform. Pharm. Chem. Sci*, *5*, 81–89.
- Narkhede Sachin, B., Maisuria, P., Kuvavala Fiza, A., Lad Raj, N., Maheta Meet, K., & Mistry Harsh, S. (2023). Formulation and evaluation of Glycerogelatin based meloxicam transdermal patch. *EPRA International Journal of Research and Development (IJRD)*, 8(8), 81–85.
- Odeku, O. A., Aderogba, A. A., Ajala, T. O., Akin-Ajani, O. D., &Okunlola, A. (2017). Formulation of floating metronidazole microspheres using cassava starch (Manihot esculenta) as polymer. *Journal of Pharmaceutical Investigation*, *47*(5), 445–451.
- Pandey, N., Sah, N. A., & Mahara, K. (2016). Formulation And Evaluation of Floating Microspheres of Nateglinide. *International Journal of Pharma Sciences and Research*, 7(11), 453–464.
- Pandey, P., Jain, S., Rajpoot, D. S., Kapoor, V., Gupta, N., & Saxena, S. (2019). Design,
 Formulation And Evaluation of Floating Microspheres of Losartan Potassium Using
 Ionotropic Gelation Method. *Asian J. Pharm. Res*, 9(2), 42–46. www.ajprjournal.com
- Pandya, N., Pandya, M., & Bhaskar, V. H. (2011). Preparation and in vitro characterization of porous carrier-based glipizide floating microspheres for gastric delivery. *Journal of Young Pharmacists*, 3(2), 97–104.
- Patel, D., Gohil, D., Patel, D., Shah, H., Patel, S., Pandya, K., & Shah, C. (2016). Formulation And Evaluation of Floating Microsponges of Allopurinol. *An International Journal of Pharmaceutical Sciences*,7(3), 135–154. http://www.pharmasm.com
- Patel, K. N., Patel, H. K., & Patel, V. A. (2012). Formulation and characterization of drug in adhesive transdermal patches of diclofenac acid. *Int J Pharm Pharm Sci*, *4*(1), 296–299.
- Patel, R. P., Patel, G., Patel, H.,& Baria, A. (2009). Formulation and evaluation of transdermal patch of aceclofenac. *Research Journal of Pharmaceutical Dosage Forms* and Technology, 1(2), 108–115.
- Prabhakar, D., Sreekanth, J.,&Jayaveera, K. N. (2013). Transdermal drug delivery patches: A review. *Journal of Drug Delivery and Therapeutics*, *3*(4), 231–241.

- Pratama, F. N., Umam, C., Ameliana, L., &Nurahmanto, D. (2020). The Effect ofGlycerin as penetration enhancer In a Ketoprofen Solid Preparation–Patch On In Vitro Penetration Study Through Rat Skin. Annals of Tropical Medicine and Public Health.
- Raj, B. S., Punitha, I. S.,&Bodiwala, J. (2012). Formulation And Evaluation Of Chitosan Prazosin Beads By Ionotropic Gelation Method. *Int J Res Pharm Chem*, 2, 974–983. www.ijrpc.com
- Raj BS, Pancholi J, & Samraj PI. (2015). Design and Evaluation of Floating Microspheres of Pantoprazole Sodium. *Pharmaceutical and Biosciences Journal*, 09–17.
- Rao, M. R. P., Borate, S. G., Thanki, K. C., Ranpise, A. A., & Parikh, G. N. (2009). Development and in vitro evaluation of floating rosiglitazone maleate microspheres. *Drug Development and Industrial Pharmacy*, 35(7), 834–842.
- Rekhi G.S., & Jambhekar S.S. (1995). Ethylcellulose-a polymer review. Drug Dev. Ind. Pharm., 21(1), 61–77.
- Sabry, S. A., Hasan, A. A., & Abdallah, M. H. (2015). Gastroretentive Nizatidine Loading Microballoons For Treatment Of Peptic Ulcer.*Int J Pharm Pharm Sci*, *7*, 220–225.
- Sagar, B., Singh, S., Bijender Sagar, C., &Jalwal, P. (2017). Formulation and evaluation of gastroretentive floating microspheres bearing metformin HCl for treatment of diabetes mellitus. *The Pharma Innovation Journal*, 6(10), 173–180. www.thepharmajournal.com
- Sah SK, Adhikari A, & Patil S. (2023). Formulation And Evaluation Of Gastro-Retentive Floating Microspheres Of Amiloride Hcl. *Latin American Journal of Pharmacy: A Life Science Journal*, 42(5), 553–559.
- Sangale SB, Barhate SD, Jain BV, & Potdar M. (2011). FORMULATION AND EVALUATION OF FLOATING FELODIPINE MICROSPHERE. International Journal of Pharma Research and Development., 3(2), 163–170.
- Sethi, B. H. A. W. A. N. A., Mazumder, & R. U. P. A. (2018). Comparative evaluation of selected polymers and plasticizer on transdermal drug delivery system. *Int J Appl Pharm*, 10(1), 67–73.
- Sharma, M., Kohli, S., & Dinda, A. (2015). In-vitro and in-vivo evaluation of repaglinide loaded floating microspheres prepared from different viscosity grades of HPMC polymer. *Saudi Pharmaceutical Journal*, 23(6), 675–682.

- Shwetha S, Kamath K, & Kumar SK. (2012). Design And Evaluation Of Floating Microspheres Of Rabeprazole Sodium. *International Journal of Pharmacy and Pharmaceutical Sciences.*, 4(3), 104–120.
- Sindhumol, P., Nair, C., & Harindran, J. J. P. I. J. (2018). Formulation and evaluation of floating alginate: Chitosan microspheres of cefixime. *Pharm. Innov. J*, 7(4), 919–928. www.thepharmajournal.com
- Tanwar, H., & Sachdeva, R. (2016). Transdermal drug delivery system: A review. International Journal of Pharmaceutical Sciences and Research, 7(6), 2274–2280.
- Wasilewska K., & Winnicka K. (2019). Ethylcellulose–a pharmaceutical excipient with multidirectional application in drug dosage forms development. Materials. *Materials.* ,12(20), 3386.
- Zhang, Y., Xi-Tong, Z., Qi, Z., Wang, B., & Zhang, T. (2018). Formulation development and evaluation of gastroretentive floating beads with Brucea javanica oil using ionotropic gelation technology. *Chinese Journal of Natural Medicines*, 16(4), 293–0301.