https://doi.org/10.48047/AFJBS.6.Si3.2024.2203-2208

A Study on Intuitionistic Pre * Connected Spaces

L. Jeyasudha¹, K. Bala Deepa Arasi²

Email: ¹jeyasudha555@gmail.com, ²baladeepa85@gmail.com

Article	Info
---------	------

Volume 6, Issue	Si3, June	2024
-----------------	-----------	------

Received: 17 April 2024 Accepted: 27 May 2024

Published: 20 June 2024

doi:10.48047/AFJBS.6.Si3.20242203-2208

ABSTRACT:

The major goal of this work is to introduce and investigate the concepts of Intuitionistic Pre * Connected (In short $\mathcal{J}P^*$ -Connected) Spaces using the concepts of intuitionistic pre * open (In short $\mathcal{J}P^*O$) sets. Also we give characterization for this connected space and discuss the relationship with other known intuitionistic connected spaces.

Keywords: $\mathcal{J}P^*$ - connected, $\mathcal{J}P^*$ - disconnected, $\mathcal{J}P$ - connected, \mathcal{J} - connected. **AMS subject classification (2010):** 54C05.

© 2024 L. Jeyasudha, This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Creative Commons license, and indicate if changes were made

1. Introduction

D. Coker [1] introduced the idea of intuitionistic sets for the first time in 1996. In 2017, G. Sasikala and M. Navaneethakrishnan [5] give the definition of intuitionistic pre open sets in $\mathcal{J}TS$. In 2021, G. Esther Rathinakani and M. Navaneethakrishnan [2,3,4] gives a new closure operator in intuitionistic topological spaces and define intuitionistic semi * open set. In 2023, we [6,7,8] introduced $\mathcal{J}P^*$ open and $\mathcal{J}P^*$ closed sets in $\mathcal{J}TS$ using the concepts of intuitionistic interior and intuitionistic generalized closure operators. Also we define $\mathcal{J}P^*$ -continuous maps and $\mathcal{J}P^*$ - open maps in $\mathcal{J}TS$.

In this study, we define $\mathcal{J}P^*$ - connected spaces using the concepts of $\mathcal{J}P^*O$ sets. We also demonstrate that the $\mathcal{J}P^*$ - connected space is intermediate between $\mathcal{J}P$ - connected space and \mathcal{J} - connected space.

Definition 1.1 [1] Let \hat{X}_J be a set that is not empty. An object with the form $M_J = \langle \hat{X}_J, M_{J1}, M_{J2} \rangle$, where M_{J1} and M_{J2} are subsets of \hat{X}_J satisfying $M_{J1} \cap M_{J2} = \varphi$, is known as an intuitionistic set ($\mathscr{J}S$ in short). The terms "set of members of M_J " and "set of non-members of M_J " refer to the sets M_{J1} and M_{J2} respectively.

Definition 1.2 [1] Assume that \hat{X}_J is a non-empty set, that $M_J = \langle \hat{X}_J, M_{J1}, M_{J2} \rangle$, that $N_J = \langle \hat{X}_J, N_{J1}, N_{J2} \rangle$ is an $\mathcal{J}S$'s and that $\{M_{Ji} : i \in J\}$ be arbitrary family of $\mathcal{J}S$'s. Then,

- a) $M_J \subseteq N_J \text{ iff } M_{J1} \subseteq N_{J1} \text{ and } M_{J2} \supseteq N_{J2}.$
- b) $M_J = N_J \text{ iff } M_J \subseteq N_J \text{ and } M_J \supseteq N_J.$
- c) The complement of M_J is defined as $M_J^c = \langle \dot{X}_J, M_{J2}, M_{J1} \rangle$.
- $\text{d}) \qquad \cup \ M_{Ji} = < \stackrel{}{X}_J, \cup \ M_{Ji1}, \cap \ M_{Ji2} > and \ \cap \ M_{Ji} = < \stackrel{}{X}_J, \cap \ M_{Ji1}, \cup \ M_{Ji2} >.$
- $e) \qquad M_J-N_J=M_J\,\cap\,N_J{}^c.$
- f) $\ddot{\varphi}_I = \langle \dot{X}_J, \varphi, \dot{X}_J \rangle$ and $\ddot{X}_I = \langle \dot{X}_J, \dot{X}_J, \varphi \rangle$.

Definition 1.3 [1] Assume that \hat{X}_J is a non-empty set and τ_I is the set of $\mathscr{G}S$'s of \hat{X}_J then τ_I is known as an intuitionistic topology ($\mathscr{G}T$ in short) on \hat{X}_J if it meets the criteria listed below:

- 1) $\ddot{X}_{I}, \, \ddot{\varphi}_{I} \in \tau_{I}.$
- 2) $M_J \cap N_J \in \tau_I$ for every $M_J, N_J \in \tau_I$.
- 3) $\cup M_{Ji} \in \tau_I$ for any arbitrary family $\{M_{Ji} : i \in J\} \subseteq \tau_I$.

The pair (\dot{X}_J, τ_I) is referred to as intuitionistic topological space (*JTS* in short) and intuitionistic open set (*JOS* in short) in \dot{X}_J is referred to as *JS* in τ_I . The intuitionistic closed set (*JCS* in short) in \dot{X}_J is regarded as the counterpart of *JOS* in \dot{X}_J .

Definition 1.4 [1] If (\dot{X}_J, τ_I) is a $\mathcal{J}TS$ and M_J is a $\mathcal{J}S$ in \dot{X}_J then the definition of the \mathcal{J} - interior operator of M_J and the \mathcal{J} - closure operator of M_J are as follows: (i) $\mathcal{J}int(M_J) = \bigcup \{N_J: N_J \text{ is } \mathcal{J}OS \text{ in } \dot{X}_J \& M_J \supseteq N_J\}$. (ii) $\mathcal{J}cl(M_J) = \cap \{N_J: N_J \text{ is } \mathcal{J}CS \text{ in } \dot{X}_J \& M_J \subseteq N_J\}$.

Definition 1.5 [2] If (X_J, τ_I) is an $\mathcal{J}TS$ and a $\mathcal{J}S$ M_J is known as the $\mathcal{J}g$ - closed set if $\mathcal{J}cl(M_J) \subseteq U_J$ whenever $M_J \subseteq U_J$ and U_J is $\mathcal{J}OS$ in X_J . The $\mathcal{J}g$ – open set in X_J is known as the $\mathcal{J}g$ - closed set's counterpart.

Definition 1.6 [2] If (\dot{X}_J, τ_I) is an $\mathcal{J}TS$ and M_J be a $\mathcal{J}S$ in \dot{X}_J then the definition of

a) $\mathscr{J}g$ - closure of M_J is, $\mathscr{J}cl^*(M_J) = \cap \{N_J : N_J \text{ is } \mathscr{J}g$ - CS in $\dot{X}_J \& M_J \subseteq N_J\}$.

b) $\mathcal{J}g\text{-interior of } M_J \text{ is, } \mathcal{J}int^*(M_J) = \cup \{N_J: N_J \text{ is } \mathcal{J}g\text{-} \text{ OS in } \dot{X}_J \& M_J \supseteq N_J\}.$

Definition 1.7 [5,7] If (\hat{X}_J, τ_I) is an $\mathcal{J}TS$ and a $\mathcal{J}S$ M_J in \hat{X}_J is known as the

- a) $\mathcal{J}PO$ set if $M_J \subseteq \mathcal{J}int(\mathcal{J}cl(M_J))$. The $\mathcal{J}PC$ set in \dot{X}_J is the $\mathcal{J}PO$ set's counterpart.
- b) $\mathcal{J}P^*O$ set if $M_J \subseteq \mathcal{J}int(\mathcal{J}cl^*(M_J))$. The $\mathcal{J}P^*C$ set in \hat{X}_J is the $\mathcal{J}P^*O$ set's counterpart.

c) \mathcal{JR}^*O set if $M_J = \mathcal{J}int(\mathcal{J}cl^*(M_J))$. The \mathcal{JR}^*C set in \dot{X}_J is the \mathcal{JR}^*O set's counterpart.

Definition 1.8 [5] If (\hat{X}_J, τ_I) is an $\mathcal{J}TS$ and a $\mathcal{J}S$ M_J in \hat{X}_J is known as the $\mathcal{J}P^*$ - regular set if it is both $\mathcal{J}P^*O$ and $\mathcal{J}P^*C$ set.

Theorem 1.9 [5] If (\dot{X}_J, τ_{IT}) is an $\mathcal{J}TS$ then,

- a) Every $\mathcal{J}O$ set is $\mathcal{J}P^*O$ set.
- b) Every $\mathcal{J}C$ set is $\mathcal{J}P^*C$ set.
- c) Every *J*P*O set is *J*PO set.
- d) Every $\mathcal{J}P^*C$ set is $\mathcal{J}PC$ set.

- e) Every \mathcal{JR}^*O set is \mathcal{JP}^*O set.
- f) Every \mathcal{GR}^*C set is \mathcal{JP}^*C set.
- g) Arbitrary union of $\mathcal{J}P^*O$ sets is $\mathcal{J}P^*O$ set.
- h) Intersection of $\mathcal{J}P^*C$ sets is $\mathcal{J}P^*C$ set.

Definition 1.10 Let (\hat{X}_J, τ_{TT}) be an $\mathscr{J}TS$. Then (\hat{X}_J, τ_{TT}) is called the

a) \mathcal{J} - connected space if \ddot{X}_I cannot be expressed as the union of two disjoint nonempty $\mathcal{J}O$ sets in \dot{X}_J .

b) $\mathcal{J}P$ - connected space if \ddot{X}_I cannot be expressed as the union of two disjoint nonempty $\mathcal{J}PO$ sets in \dot{X}_J .

c) \mathcal{JR}^* - connected space if \ddot{X}_I cannot be expressed as the union of two disjoint nonempty \mathcal{JR}^*O sets in \check{X}_J .

Definition 1.11 [6,8] Let $f_J : \dot{X}_J \rightarrow \dot{Y}_J$ is said to be

- a) $\mathcal{J}P^*$ continuous map if $f_J^{-1}(V_J)$ is $\mathcal{J}P^*O$ set in \hat{X}_J for every $\mathcal{J}O$ set V_J in \hat{Y}_J .
- b) $\mathcal{J}P^*$ irresolute map if $f_J^{-1}(V_J)$ is $\mathcal{J}P^*O$ set in \dot{X}_J for every $\mathcal{J}P^*O$ set V_J in \dot{Y}_J .
- c) Contra $\mathcal{J}P^*$ continuous map if $f_J^{-1}(V_J)$ is $\mathcal{J}P^*C$ set in \hat{X}_J for every $\mathcal{J}O$ set V_J in \hat{Y}_J .
- d) Contra $\mathcal{J}P^*$ irresolute map if $f_J^{-1}(V_J)$ is $\mathcal{J}P^*C$ set in X_J for every $\mathcal{J}P^*O$ set V_J in Y_J .
- e) $\mathcal{J}P^*$ open map if $f_J(V_J)$ is $\mathcal{J}P^*O$ set in \hat{Y}_J for every $\mathcal{J}O$ set V_J in \hat{X}_J .
- f) $\mathcal{J}P^*$ closed map if $f_J(V_J)$ is $\mathcal{J}P^*C$ set in \check{Y}_J for every $\mathcal{J}C$ set V_J in \check{X}_J .
- g) Pre $\mathcal{J}P^*$ open map if $f_J(V_J)$ is $\mathcal{J}P^*O$ set in \check{Y}_J for every $\mathcal{J}P^*O$ set V_J in \check{X}_J .
- h) Pre $\mathscr{J}P^*$ closed map if $f_J(V_J)$ is $\mathscr{J}P^*C$ set in \check{Y}_J for every $\mathscr{J}P^*C$ set V_J in \check{X}_J .

Theorem 1.12 [6] Let $f_J : \dot{X}_J \rightarrow \dot{Y}_J$ be a map then the followings are holds,

a) Every $\mathcal{J}P^*$ - Irresolute map is $\mathcal{J}P^*$ - continuous map.

b) Every Contra $\mathcal{J}P^*$ - Irresolute map is Contra $\mathcal{J}P^*$ - continuous map.

2. Intuitionistic Pre * Connected Spaces

Definition – **2.1.** Let (\dot{X}_J, τ_{IT}) be an $\mathcal{J}TS$. Then (\dot{X}_J, τ_{IT}) is called the $\mathcal{J}P^*$ - disconnected if there exists an $\mathcal{J}P^*O$ sets $M_J \neq \dot{\varphi}_I$ and $N_J \neq \dot{\varphi}_I$ such that $M_J \cup N_J = \ddot{X}_I$ and $M_J \cap N_J = \ddot{\varphi}_I$. **Definition** – **2.2.** Let (\dot{X}_J, τ_{IT}) be an $\mathcal{J}TS$. Then (\dot{X}_J, τ_{IT}) is called the $\mathcal{J}P^*$ - connected if it is not an $\mathcal{J}P^*$ - disconnected. (i.e), \ddot{X}_I cannot be expressed as the union of two disjoint nonempty $\mathcal{J}P^*O$ sets in \dot{X}_J is called the $\mathcal{J}P^*$ - connected.

Example – 2.3. Let $\hat{X}_J = \{a_{xj}, b_{xj}, c_{xj}\}$. Consider the $\mathscr{J}T$, $\tau_{TT} = \{\ddot{X}_I, \ddot{\phi}_I, \langle \dot{X}_J, \{a_{xj}\}, \{b_{xj}\} \rangle$, $\langle \dot{X}_J, \{b_{xj}\}, \{c_{xj}\} \rangle$, $\langle \dot{X}_J, \{a_{xj}, b_{xj}\}, \phi \rangle$, $\langle \dot{X}_J, \{b_{xj}, c_{xj}\} \rangle$ } then $\mathscr{J}P^*O(\dot{X}_J) = \{\ddot{X}_I, \ddot{\phi}_I, \langle \dot{X}_J, \phi, \{b_{xj}, c_{xj}\} \rangle$, $\langle \dot{X}_J, \{a_{xj}, b_{xj}\}, \phi \rangle$, $\langle \dot{X}_J, \{a_{xj}\}, \{b_{xj}\}, \langle c_{xj}\} \rangle$, $\langle \dot{X}_J, \{a_{xj}, b_{xj}\}, \phi \rangle$, $\langle \dot{X}_J, \{a_{xj}\}, \{b_{xj}\}, \{c_{xj}\} \rangle$, $\langle \dot{X}_J, \{a_{xj}\}, \{b_{xj}\}, \{c_{xj}\} \rangle$, $\langle \dot{X}_J, \{a_{xj}, b_{xj}\}, \{c_{xj}, b_{xj$

Theorem – 2.4. Let (\dot{X}_J, τ_{IT}) be an $\mathcal{J}TS$ then the followings are hold.

- a) Every $\mathcal{J}P^*$ connected is \mathcal{J} connected.
- b) Every $\mathcal{J}P^*$ connected is $\mathcal{J}\mathcal{R}^*$ connected.
- c) Every $\mathcal{J}P$ connected is $\mathcal{J}P^*$ connected.

Proof: (a) Let \hat{X}_J be a $\mathscr{J}P^*$ - connected. To prove, \hat{X}_J is \mathscr{J} - connected. Suppose \hat{X}_J is \mathscr{J} disconnected then there exists nonempty disjoint $\mathscr{J}O$ sets M_J and N_J such that $\ddot{X}_I = M_J \cup N_J$. Since M_J and N_J are $\mathscr{J}O$ sets then M_J and N_J are $\mathscr{J}P^*O$ sets. Therefore, \check{X}_J is $\mathscr{J}P^*$ disconnected. This is contradiction to our assumption. Hence \check{X}_J is \mathscr{J} - connected. (b) Let \hat{X}_J be a $\mathscr{J}P^*$ - connected. To prove, \hat{X}_J is $\mathscr{J}\mathcal{R}^*$ - connected. Suppose \hat{X}_J is $\mathscr{J}\mathcal{R}^*$ disconnected then there exists nonempty disjoint $\mathscr{J}\mathcal{R}^*O$ sets M_J and N_J such that $\ddot{X}_I = M \cup$ N. Since M_J and N_J are $\mathscr{J}\mathcal{R}^*O$ sets then M_J and N_J are $\mathscr{J}P^*O$ sets. Therefore, \dot{X}_J is $\mathscr{J}P^*$ disconnected. This is contradiction to our assumption. Hence \dot{X}_J is $\mathscr{J}\mathcal{R}^*$ - connected.

(c) Let \hat{X}_J be a $\mathscr{J}P$ - connected. To prove, \hat{X}_J is $\mathscr{J}P^*$ - connected. Suppose \hat{X}_J is $\mathscr{J}P^*$ disconnected then there exists nonempty disjoint $\mathscr{J}P^*O$ sets M_J and N_J such that $\ddot{X}_I = M_J \cup$ N_J . Since M_J and N_J are $\mathscr{J}P^*O$ sets then M_J and N_J are $\mathscr{J}PO$ sets. Therefore, \dot{X}_J is $\mathscr{J}P$ disconnected. This is contradiction to our assumption. Hence \dot{X}_J is $\mathscr{J}P^*$ - connected.

The converse of the above theorems need not be true as shows in the following example.

Example – 2.5. Let $\hat{X}_J = \{a_{xj}, b_{xj}\}$. Consider the $\mathscr{J}T$, $\tau_{IT} = \{\ddot{X}_I, \ddot{\phi}_I, \langle \dot{X}_J, \{a_{xj}\}, \phi \rangle, \langle \dot{X}_J, \{b_{xj}\}, \phi \rangle, \langle \dot{X}_J, \{b_{xj}\}, \phi \rangle, \langle \dot{X}_J, \{a_{xj}\}, \{b_{xj}\}, \langle b_{xj}\}, \langle b_{x$

Example – 2.6. In example – 2.5, $\mathcal{GR}^*O(\hat{X}_J) = { \ddot{X}_I, \dot{\phi}_I, <\dot{X}_J, \dot{\phi}, \dot{\phi} > }$. Clearly, \dot{X}_J is \mathcal{GR}^* -connected space but not a \mathcal{JP}^* - connected space.

Example – 2.7. Let $\hat{X}_J = \{a_{xj}, b_{xj}, c_{xj}\}$. Consider the $\mathcal{J}T$, $\tau_{IT} = \{\ddot{X}_I, \ddot{\phi}_I, \langle \dot{X}_J, \{a_{xj}\}, \{c_{xj}\} \rangle$, $\langle \dot{X}_J, \{a_{xj}, b_{xj}\} \rangle$, $\langle \dot{X}_J, \{a_{xj}\} \rangle$, $\langle b_{xj}, c_{xj}\} \rangle$, $\langle b$

Theorem – 2.8. An $\mathcal{J}TS$ (\dot{X}_J, τ_{IT}) has the only $\mathcal{J}P^*O$ and $\mathcal{J}P^*C$ sets are $\dot{\varphi}_I$ and \ddot{X}_I itself then (\dot{X}_J, τ_{IT}) is an $\mathcal{J}P^*$ - connected.

Proof: Let $\ddot{\varphi}_I$ and \ddot{X}_I are both $\mathscr{J}P^*O$ and $\mathscr{J}P^*C$ sets in \dot{X}_J . To prove, \dot{X}_J is $\mathscr{J}P^*$ - connected. Suppose \dot{X}_J is $\mathscr{J}P^*$ - disconnected then there exists nonempty disjoint $\mathscr{J}P^*O$ sets M_J and N_J such that $\ddot{X}_I = M_J \cup N_J$. Therefore, $M_J = N_J^c$ is $\mathscr{J}P^*C$ set. Hence, M_J is both $\mathscr{J}P^*O$ and $\mathscr{J}P^*C$ set. This is contradiction to our assumption. Hence \dot{X}_J is $\mathscr{J}P^*$ - connected.

The converse of the above theorem need not be true as shows in the following example.

Example – 2.9. Let $\hat{X}_J = \{a_{xj}, b_{xj}\}$. Consider the $\mathcal{J}T$, $\tau_{IT} = \{\hat{X}_I, \hat{\phi}_I, \langle \hat{X}_J, \phi, \{b_{xj}\} \rangle, \langle \hat{X}_J, \{b_{xj}\}, \phi \rangle\}$ then $\mathcal{J}P^*O(\hat{X}_J) = \tau_{IT}$. Clearly \hat{X}_J is $\mathcal{J}P^*$ - connected space but $\langle \hat{X}_J, \phi, \{b_{xj}\} \rangle$ is both $\mathcal{J}P^*O$ and $\mathcal{J}P^*C$ set in \hat{X}_J .

Theorem – 2.10. Let $(\dot{X}_J, \tau_{IT}) \& (\dot{Y}_J, \sigma_{IT})$ be two $\mathcal{J}TS$ and $f_J : (\dot{X}_J, \tau_{IT}) \rightarrow (\dot{Y}_J, \sigma_{IT})$ be surjection $\mathcal{J}P^*$ - Continuous Map then \dot{Y}_J is \mathcal{J} - connected if \dot{X}_J is $\mathcal{J}P^*$ - connected.

Proof: Suppose \check{Y}_J is \mathscr{J} - disconnected then there exists nonempty disjoint $\mathscr{J}O$ sets M_J and N_J such that $\ddot{Y}_I = M_J \cup N_J$. Since f is $\mathscr{J}P^*$ - continuous. Therefore, $f_J^{-1}(M_J)$ and $f_J^{-1}(N_J)$ are $\mathscr{J}P^*O$ sets in \check{X}_J . Since, $M_J \neq \check{\varphi}_I$ and $N_J \neq \check{\varphi}_I$ then $f_J^{-1}(M_J) \neq \check{\varphi}_I$ and $f_J^{-1}(N_J) \neq \check{\varphi}_I$. Since, $\ddot{Y}_I = M_J \cup N_J$. Therefore, $f_J^{-1}(\ddot{Y}_I) = \ddot{X}_I = f_J^{-1}(M_J) \cup f_J^{-1}(N_J)$. Also, $f_J^{-1}(M_J) \cap f_J^{-1}(N_J) = f_J^{-1}(M_J \cap N_J) = f_J^{-1}(\check{\varphi}_I) = \check{\varphi}_I$. Therefore, \check{X}_J is $\mathscr{J}P^*$ - disconnected. This is contradiction to our assumption. Hence \check{Y}_J is \mathscr{J} - connected.

Corollary – **2.11.** Let $(\dot{X}_J, \tau_{IT}) \& (\dot{Y}_J, \sigma_{IT})$ be two $\mathcal{J}TS$ and $f_J : (\dot{X}_J, \tau_{IT}) \rightarrow (\dot{Y}_J, \sigma_{IT})$ be surjection $\mathcal{J}P^*$ - Irresolute Map then \dot{Y}_J is \mathcal{J} - connected if \dot{X}_J is $\mathcal{J}P^*$ - connected.

Proof: Let $f_J : (\dot{X}_J, \tau_{IT}) \to (\dot{Y}_J, \sigma_{IT})$ be a surjection $\mathscr{J}P^*$ - Irresolute Map and \dot{X}_J be an $\mathscr{J}P^*$ - connected space. We know that, every $\mathscr{J}P^*$ - irresolute map is $\mathscr{J}P^*$ - continuous map then by theorem – 2.10, \dot{Y}_J is \mathscr{J} - connected.

Theorem – 2.12. Let $(\dot{X}_J, \tau_{TT}) \& (\dot{Y}_J, \sigma_{TT})$ be two $\mathcal{J}TS$ and $f_J : (\dot{X}_J, \tau_{TT}) \rightarrow (\dot{Y}_J, \sigma_{TT})$ be surjection $\mathcal{J}P^*$ - Irresolute Map then \dot{Y}_J is $\mathcal{J}P^*$ - connected if \dot{X}_J is $\mathcal{J}P^*$ - connected.

Proof: Suppose \check{Y}_J is $\mathscr{J}P^{*-}$ disconnected then there exists nonempty disjoint $\mathscr{J}P^*O$ sets M_J and N_J such that $\check{Y}_I = M_J \cup N_J$. Therefore, $M_J = N_J^c$ is $\mathscr{J}P^{*-}$ regular set in \check{Y}_J . Since, f_J is $\mathscr{J}P^{*-}$ irresolute map. Therefore, $f_J^{-1}(M_J)$ is $\mathscr{J}P^{*-}$ regular set in \check{X}_J . By theorem – 2.8, \check{X}_J is $\mathscr{J}P^{*-}$ disconnected. This is contradiction to our assumption. Hence \check{Y}_J is $\mathscr{J}P^{*-}$ connected.

Theorem – **2.13.** Let $(\mathring{X}_J, \tau_{IT})$ & $(\mathring{Y}_J, \sigma_{IT})$ be two $\mathscr{J}TS$ and $f_J : (\mathring{X}_J, \tau_{IT}) \rightarrow (\mathring{Y}_J, \sigma_{IT})$ be injection Pre $\mathscr{J}P^*$ - open and Pre $\mathscr{J}P^*$ - closed Map then \mathring{X}_J is $\mathscr{J}P^*$ - connected if \mathring{Y}_J is $\mathscr{J}P^*$ - connected.

Proof: Suppose \dot{X}_J is $\mathcal{J}P^*$ - disconnected then there exists nonempty disjoint $\mathcal{J}P^*O$ sets M_J and N_J such that $\ddot{X}_I = M_J \cup N_J$. Therefore, $M_J = N_J^c$ is $\mathcal{J}P^*C$ set. Hence, M_J is both $\mathcal{J}P^*O$ and $\mathcal{J}P^*C$ set in \dot{X}_J . Since, f_J is both Pre $\mathcal{J}P^*$ - open and Pre $\mathcal{J}P^*$ - closed map. Therefore, $f_J(M_J)$ is $\mathcal{J}P^*$ - regular set in \dot{Y}_J . By theorem – 2.8, \dot{Y}_J is $\mathcal{J}P^*$ - disconnected. This is contradiction to our assumption. Hence \dot{X}_J is $\mathcal{J}P^*$ - connected.

Theorem – 2.14. Let $(\dot{X}_J, \tau_{IT}) \& (\dot{Y}_J, \sigma_{IT})$ be two $\mathcal{J}TS$ and $f_J : (\dot{X}_J, \tau_{IT}) \rightarrow (\dot{Y}_J, \sigma_{IT})$ be injection $\mathcal{J}P^*$ - open and $\mathcal{J}P^*$ - closed Map then \dot{X}_J is \mathcal{J} - connected if \dot{Y}_J is $\mathcal{J}P^*$ - connected.

Proof: Suppose \dot{X}_J is \mathcal{J} - disconnected then there exists nonempty disjoint $\mathcal{J}O$ sets M_J and N_J such that $\ddot{X}_I = M_J \cup N_J$. Therefore, $M_J = N_J^c$ is both $\mathcal{J}O$ and $\mathcal{J}C$ set in \dot{X}_J . Hence, M_J is both $\mathcal{J}P^*O$ and $\mathcal{J}P^*C$ set in \dot{X}_J . Since, f_J is both $\mathcal{J}P^*$ - open and $\mathcal{J}P^*$ - closed map. Therefore, $f_J(M_J)$ is $\mathcal{J}P^*$ - regular set in \dot{Y}_J . By theorem – 2.8, \dot{Y}_J is $\mathcal{J}P^*$ - disconnected. This is contradiction to our assumption. Hence \dot{X}_J is \mathcal{J} - connected.

Theorem – **2.15.** Let $(\hat{X}_J, \tau_{IT}) \& (\hat{Y}_J, \sigma_{IT})$ be two $\mathcal{J}TS$ and $f_J : (\hat{X}_J, \tau_{IT}) \rightarrow (\hat{Y}_J, \sigma_{IT})$ be onto Contra $\mathcal{J}P^*$ - continuous Map then \hat{Y}_J is \mathcal{J} - connected if \hat{X}_J is $\mathcal{J}P^*$ - connected.

Proof: Suppose \check{Y}_J is \mathcal{J} - disconnected then there exists nonempty disjoint $\mathcal{J}O$ sets M_J and N_J such that $\ddot{Y}_I = M_J \cup N_J$. Therefore, $M_J = N_J^c$ is both $\mathcal{J}O$ and $\mathcal{J}C$ set in \check{Y}_J . Since, f_J is Contra $\mathcal{J}P^*$ - continuous map. Therefore, $f_J^{-1}(M_J)$ is $\mathcal{J}P^*$ - regular set in \check{X}_J . By theorem – 2.8, \check{X}_J is $\mathcal{J}P^*$ - disconnected. This is contradiction to our assumption. Hence \check{Y}_J is \mathcal{J} - connected.

Theorem – 2.16. Let (\hat{X}_J, τ_{TT}) & (\hat{Y}_J, σ_{TT}) be two $\mathcal{J}TS$ and $f_J : (\hat{X}_J, \tau_{TT}) \rightarrow (\hat{Y}_J, \sigma_{TT})$ be onto Contra $\mathcal{J}P^*$ - Irresolute Map then \hat{Y}_J is \mathcal{J} - connected if \hat{X}_J is $\mathcal{J}P^*$ - connected.

Proof: Let $f_J : (\dot{X}_J, \tau_{IT}) \rightarrow (\dot{Y}_J, \sigma_{IT})$ be a Contra $\mathscr{J}P^*$ - Irresolute Map. Therefore, f_J is Contra $\mathscr{J}P^*$ - continuous map. Since, \dot{X}_J be a $\mathscr{J}P^*$ - connected space then by theorem – 2.10, \dot{Y}_J is \mathscr{J} - connected.

3. Conclusion

We discussed the some of the properties of $\mathcal{J}P^*$ - connected spaces in this paper. We intend to conduct research in the future $\mathcal{J}P^*$ C₅ - connected space, $\mathcal{J}P^*$ - connected sets, $\mathcal{J}P^*$ - compact space, $\mathcal{J}P^*$ - normal space and so on.

4. References

1. D. Coker, 'An Introduction to Intuitionistic Topological Spaces', Busefal, 2000, vol. 81, 51 -56.

- 2. Esther Rathinakani, G and Navaneethakrishnan, M, 'A New Closure Operator in Intuitionistic Topological Spaces', Xi'an Shiyou Daxue Xuebao, Journal of Xi'an shiyou university, 2021, vol. 17, 473-476.
- 3. Esther Rathinakani, G and Navaneethakrishnan, M, 'A Study on Intuitionistic Semi * Open Set', Design Engineering (Toronto), 2021, vol. 9, 5043-5049.
- 4. Esther Rathinakani, G and Navaneethakrishnan, M, 'On Intuitionistic Semi * Continuous Functions', Ratio Mathematica, 2022, vol. 44, 65-75.
- 5. G. Sasikala and M. Navaneetha Krishnan, 'On Intuitionistic pre Open Sets', International Journal of Pure and Applied Mathematics, 2017, vol, 116, 281-292.
- 6. L. Jeyasudha and K. Bala deepa arasi, 'Intuitionistic Pre * Open Maps in Intuitionistic Topological Spaces', International Journal of Food and Nutritional Sciences, 2022, vol. 11, 16259-16269.
- 7. L. Jeyasudha and K. Bala deepa arasi "*JP**- Open sets in Intuitionistic Topological Spaces", 2023 (communicated).
- 8. L. Jeyasudha and K. Bala deepa arasi *JP**- Continuous maps in Intuitionistic Topological Spaces, 2023 (communicated).