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Abstract 

Pulmonary fibrosis (PF) is a progressive and often fatal lung disease 

characterized by the accumulation of excessive extracellular matrix and 

scarring. Despite recent advancements with pirfenidone and nintedanib, 

which slow disease progression, effective treatments to halt or reverse PF 

remain elusive. This review explores the multifaceted role of cytokines in 

PF pathogenesis, focusing on transforming growth factor-beta (TGF-β), 

platelet-derived growth factor (PDGF), interleukins (ILs), and tumor 

necrosis factor-alpha (TNF-α). Understanding the intricate interplay 

between these cytokines is crucial for developing targeted therapeutic 

interventions. Additionally, we discuss emerging pharmacological 

strategies, such as PDGF receptor inhibitors and IL modulation, alongside 

natural solutions that may offer complementary approaches to managing 

PF. By elucidating the mechanisms underlying cytokine-mediated fibrotic 

alterations, this review aims to provide insights into potential avenues for 

improving PF treatment outcomes. 

Keywords- Pulmonary Fibrosis, Cytokines, Natural Products, therapeutic 

targets, Covid-19. 
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Abbreviation- Pulmonary fibrosis(PF), Tissue inhibitor of metalloproteinase (TIMP),Yin 

Yang 1 (YY1), α-smooth muscle actin (α-SMA), Extracellular signal-regulated kinase 

(ERK), Type 2 congenital lymphocytes (ILC2), Jun N-terminal kinase (JNK), Matrix 

metalloproteinase (MMP), Mesenchymal progenitor cells (MPC), Extra cellular matrix 

(ECM), Epithelial mesenchymal transition (EMT), Focal adhesion kinase (FAK). 

1. Introduction 

Pulmonary fibrosis (PF) is a prevalent, advancing, irreversible, and ultimately deadly long- 

term lung condition marked by the accumulation of excessive extracellular matrix and 

scarring in the lungs, as mentioned by (Wanet al., 2023). It leads to functional impairments, 

severe respiratory issues, and ultimately, mortality, with a median survival time of 2 to 4 

years following diagnosis.(Hosseiniet al., 2021) mentioned that PF physiopathology is 

composed of three main processes: Alveolar epithelial lesions resulting from genetics and 

environment, vascular disorders involving neovascularization of nonfibrotic tissues, and 

oxidative stress induced by reactive oxygen species. 

(Selvarajahet al., 2023) pointed out in his studies that the approval of pirfenidone (Esbriet) 

and nintedanib (Ofev) marked a breakthrough in treating IPF by slowing its progression. 

However, they don't stop or reverse the disease and come with significant side effects. 

(Wanget al., 2021) reported that, the yearly incidence of IPF varies between 0.9 and 13.0 

per 100,000 people globally, has a severely devastating clinical course, and has a significant 

socioeconomic impact.The average age of IPF patients is 65–70 years, with incidence rising 

with age globally. (Maheret al., 2021) pointed out that thefactors contributing to the increase 

include aging populations, greater disease awareness, and improved diagnostics. IPF affects 

males more than females and is associated with risk factors like smoking, exposure to 

metal/wood dust, and genetic factors. 

(Dhooriaet al., 2022) reported that the adjusted prevalence estimates for each country in the 

Asia-Pacific area ranged from 0.57 to 4.51 per 10,000 of the population; in European 

countries, they ranged from 0.33 to 2.51 per 10,000. In North America, the prevalence 

estimates ranged from 2.40 to 2.98 per 10,000. United States demonstrated adjusted 

prevalence of 2.40 per 10,000.5 In 2022, there were 2,005 subjects enrolled in India for a 

study. Among them, 17.0% were identified as having IPF. The leading estimates for the raw 

national burden of IPF are in the range of 75,000 to 150,000 cases (in thousands), while the 

alternate estimates for IPF range from 46,000 to 91,000 cases (in thousands). 
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Figure 1. Pathogenesis of PF 

 

 

2. Cytokines related with fibrotic alterations in the lung 

2.1 TGF-β 

TGF-β isoforms are key regulators ensuring the balance between appropriate inflammatory 

responses and avoiding excessive matrix production (fibrosis) or tissue destruction 

(emphysema or bronchiectasis). Sheppard(2006) mentioned in his studies that TGF-βacts as a 

chemotactic factor for macrophages and mast cells, enhancing their retention within the 

airway epithelium. 

Zhangand Phan(2004) proposed that, TGF-β stimulates and differentiates various cell types, 

including mesenchymal cells, into myofibroblasts, which are key contributors to fibrotic 

lesions. Over time, these myofibroblasts replace eosinophils as the primary drivers of fibrosis 

progression. 

Wilson & Wynn (2009) proposed that the activity of TGF-β is tightly regulated post- 

transcriptionally by latency-associated protein (LAP), which maintains TGF-β in an inactive 

state until release by agents commonly found in fibrotic conditions.(Santanaet al., 1995) 

addressed in his studies,the activated TGF-β induces the synthesis of several extracellular 
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matrix (ECM) molecules such as fibronectin, type 1 collagen, and tenascin. TGF-β not only 

promotes ECM production but also reduces matrix degradation by regulating protease and 

inhibitor expression. 

(Simeet al., 1997) reported that, the overexpression of active TGF-β1 in rats resulted in 

significant histopathological effects, including inflammatory cell accumulation dominated by 

mononuclear cells. The inflammation induced by TGF-β1 overexpression led to rapid 

pulmonary fibrosis, beginning around blood vessels and airways, and spreading throughout 

the lung interstitium, with increased fibroblast proliferation and ECM deposition extending to 

the pleural surface. 

2.2 PDGF 

Platelet-Derived Growth Factor (PDGF) stands as a pivotal factor in numerous physiological 

processes, making it a focal point of research and therapeutic exploration.(Dadrichet al., 

2016)mentioned that, the PDGF family comprises of four subunits (PDGF-A,B, C,D), which 

activate PDGF receptor tyrosine kinases α and β, mediating their biological functions. 

(Sasakiet al., 2000)proposed that, PDGF, along with the cytokines causing inflammation, 

such as IL-1β and TNF-α, not only independently stimulates lung fibroblasts to generate 

MMPs like MMP-3 and MMP-9, crucial for breaking down extracellular matrix proteins, but 

also amplifies this effect when combined, leading to increased MMP production, cell 

proliferation, and chemotactic responses in lung fibroblasts. 

(Sun et al., 2016) highlighted in his studies that,different forms of PDGF are implicated in 

lung remodeling and fibrosis, with PDGF-BB signaling playing a crucial role in these 

processes.PDGF-BB activation correlates with lung fibroblast proliferation in fibrotic 

conditions.It induces PRMT1 (protein arginine methyltransferase 1) expression, vital for 

fibroblast proliferation control. Inhibiting PRMT1 may offer a therapeutic target for reducing 

fibrosis in chronic inflammatory lung diseases. 

(Aonoet al., 2005) pointed out that therapeutic interventions utilizing imatinib, aninhibitor 

for PDGF-tyrosine kinase targeting PDGFR (PGDF receptor), c-KIT (Cellular-Kit Proto- 

Oncogene), and Bcr-Abl (Breakpoint Cluster Region-Abelson Oncogene), have shown 

substantial efficacy in mitigating fibrosis in both bleomycin-induced and radiation-induced 

PF. 
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2.3 Interleukin (IL) 

ILs constitute a family of cytokines primarily synthesized by lymphocytes, monocytes, or 

macrophages, exerting their effects on various cell types. (Qin et al., 2023) proposed that 

characterized by complexity in both structure and role, interleukins perform a major function 

in diverse processes, notably immune regulation and inflammation within pulmonary tissue. 

(Kleeet al., 2016 and Passalacqua et al., 2017) reported that during the onset of PF, IL- 

1,4,6, 11, 13 perform a major function by fostering the multiplication and accumulation of 

pulmonary fibroblasts, promotingECM accumulation, promoting collagen production, and 

contributing to the restoration of lung tissue. (Szikszet al., 2015 and Huang et al., 2002) 

mentioned that IL-7, 10,12, 18 exert a mitigating influence by suppressing inflammatory 

factors and regulating immunity. 

(She et al., 2021) suggested that interleukin levels exhibit variations not only amongst 

individuals with and without PF but also across various phases of PF. 

(Wang et al., 2023) discussed in his studies that, IL-1stands as a key player in the 

emergence and advancement of lung fibrosis, emanating chiefly from macrophages, 

monocytes, fibroblasts, and endothelial cells. (Osei et al., 2020) mentioned in his studies that, 

IL-1α and IL-1β are key players in activating pathways that lead to fibrosis. Both of them are 

potent inflammatory molecules, triggering immune cell activation and recruitment to the 

lungs. This exacerbates the inflammatory response linked to fibrotic lung conditions. They 

promote the proliferation and activation of fibroblasts, causing an excess accumulation of 

ECM proteins like collagen, fibronectin, and periostin, hallmark features of pulmonary 

fibrosis. 

(She et al., 2021) suggested that IL-4 has contrasting effects on pulmonary fibrosis. It 

promotes collagen production and fibroblast differentiation to myofibroblasts through the 

activation of JNK/ERK pathway. Conversely, IL-4 also limits T cell inflammation, thus 

reducing lung injury. (Huax et al., 2003) suggested thatincreased IL-4 levels are detected in 

lung injury-induced fibrosis models, implicating its involvement in disease 

progression.Analysis of bleomycin-induced lung injury in IL-4-deficient mice revealed 

heightened early pathological manifestations. 

(Groves et al., 2016) reported that,IL-6 performs a multifaceted function in fibrotic 

diseases.(Dawson et al., 2021) suggested that IL-6 stimulates fibroblast proliferation via 

MAPK activation and exhibits profibrotic effects dependent on epigenetic regulation. 
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Furthermore, (Li et al., 2022) mentioned in his studies that, IL-6 contributes to apoptosis 

resistance in myofibroblasts, leading to persistent accumulation of extracellular matrix 

(ECM). Moreover, IL-6 dysregulates autophagy, exacerbating fibrotic processes. 

(NG et al., 2019)proposed in his studies that,IL-11 promotes myofibroblast activation and 

ECM deposition in response to various profibrotic stimuli, including TGF-β1, PDGF, FGF2, 

and IL-13.(NG et al., 2020) reported that,IL-11 exacerbates lung fibrosis when administered 

or overexpressed in mice, resulting in collagen accumulation, parenchymal disruption, and 

activation of invasive fibroblasts akin to those in IPF. Conversely, inhibiting IL-11 signaling 

via pharmacological or genetic interventions yields therapeutic benefits by reducing 

pulmonary fibrosis and associated pathological signaling pathways such as ERK and SMAD. 

(Passalacqua et al., 2017) reported that,IL-13 stimulates fibroblast proliferation and 

extracellular matrix synthesis, induces pro-fibrotic cytokines, and is associated with increased 

collagen production. Studies in mice have shown that IL-13 overexpression induces lung 

fibrosis, while its neutralization attenuates fibrosis in bleomycin-induced lung injury.(Nie et 

al., 2017)reported that,Akt1 was implicated in mediating the release of IL-13, particularly 

under IL-33 treatment, which activates macrophages. 

(Szikszet al., 2015) demonstrated that, elevated IL-10 levels in silica-exposed mice lungs 

and bronchoalveolar lavage, coupled with increased lung inflammation in IL-10 knockout 

mice, highlight IL-10's role in mitigating pulmonary fibrosis, as demonstrated by genetic IL- 

10 delivery reducing TGF-𝛽 production in bleomycin-induced fibrosis models. 

(Huang et al., 2002) suggested that IL-7 induces Smad7 expression, resulting in the 

inhibition of TGF-β pathway activation. and collagen synthesis in PF fibroblasts. 

Role of all the interleukins is depicted in table 1. 
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Table 1 Involvement of interleukins in PF. 

 

 

Interleukin 

Pro- 

Inflammatory/ 

anti- 
Inflammatorya 

Pro- 

fibrotic/ 

anti- 
Fibroticb 

 

Mechanisms 

 

References 

IL-1α ▲ ▲ Encourage fibroblast to adopt a pro-inflammatory phenotype and 

release cytokines. 

(Huang et al.,2002) 

IL-1β ▲ ▲ (Huang et al., 2002) Stimulates the influx of lymphocytes and 

neutrophils, resulting in lung fibrosis and inflammation. 

Stimulate fibroblasts by IL-1β to synthesize collagen and fibrin. 

(Gasse et al.,2007) 

IL-4 ○ ▲ Stimulate fibroblasts to express the collagen gene. 

Prompts myofibroblast transformation by stimulating JNK/ERK 

signalling. 

(Sempowski et al., 

1996) 

IL-5 ○ ▲ Facilitates lung eosinophil recruitment, triggering production of 

cytokines that cause fibrosis. 

(Gharaee- 

Kermaniet 

al.,1998) 

IL-6 Dual role ▲ Released by polarised M2-like macrophages in the bleomycin-induced 

fibrotic milieu, combines with IL-4 & 13 to exacerbate fibrotic 

condition in mice. 

Plays a fibrogenic and fibrosis-inhibiting effect on macrophages in the 

late stages of PF and TIIAs in the early stages. 

(Aumiller et 

al.,2013) 
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Table 1 Continued 
 

 

 

Interleukin 

Pro- 

Inflammatory/ 

Anti- 

Inflammatorya 

Pro- 

fibrotic/ 

anti- 

Fibroticb 

 

Mechanisms 

 

References 

IL-7 ○ ▼ Mediates Smad7 activation via JAK/STAT signalling and produces fibrosis- 

inhibitory effect. 

Blocks phosphorylation of protein kinase C-δ induced by TGF-β in 

fibroblasts from lungs. 

(Huang et 

al.,2002) 

IL-8 ○ ▲ MPC-derived IL-8 autonomously stimulates the expansion, transformation 

and transit of MPCs. 

Moreover, via CXCR1/2 receptors it draws macrophages to fibroblastic focal 

points 

(Yang et al.,2018) 

IL-9 Dual role ▼ IL-9 protects against fibrosis of lung caused by Bleomycin and has anti- 

inflammatory properties. 

In order to prevent silica-induced lung fibrosis, macrophages produce more 

PGE2 when IL-9 is overexpressed. 

Mice that have had their lung fibrosis and inflammation caused by silica 

reduced when IL-9 is neutralised by a particular Ab. 

(Sugimoto et al., 

2019) 
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IL-10 ▼ ▼ Prolonged overexpression of IL-10 can activate M2 macrophages, which in 

turn can lead to fibrosis. 

(Kurosaki et al., 

2018) 

 

 

 

 

 

 

Table 1 Continued 
 

 

 

Interleukin 

Pro- 

Inflammatory/ 

Anti- 

Inflammatorya 

Pro- 

fibrotic/ 

anti- 

Fibroticb 

 

Mechanisms 

 

References 

IL-11 ○ ▲ Through the autocrine transmission of atypical ERK signal, IL-11 stimulates 

fibrin production and fibrosis. 

In vitro, IL-11 induces the transformation of fibroblast phenotype and 

amplifies ERK regulated collagen production. 

(Ng et al., 2019) 

IL-12 ○ ▼ Th2 cells may become Th1 cells in response to IL-12, which would increase 

IFN-γ levels and inhibit fibroblasts from forming collagen. 

(Keane et al., 

2001) 

IL-13 ○ ▲ In IPF lung fibroblasts, IL-13 significantly boosts collagen I and α-SMA 

production. 

Controls the JNK signal. 

(Guo et al., 2015) 
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   Induces proliferation of fibroblast by blocking PGE2 synthesis and COX 

expression. 

 

 

IL-18 

 

▲ 

 

▲ Upregulates Snail-1, α-SMA, and downregulates E-cadherin, IL-18 causes 

EMT and aids in bleomycin induced pulmonary fibrosis. 

(Zhanget al., 

2019) 

 

 

 

Table 1 Continued 
 

 

 

Interleukin 

Pro- 

Inflammatory/ 

Anti- 

Inflammatorya 

Pro- 

fibrotic/ 

anti- 

Fibroticb 

 

Mechanisms 

 

References 

IL-22 ▼ ▼ Targets alveolar epithelia, inhibits EMT and has an anti-fibrotic impact. (Lianget al., 

2013) 

IL-23 ○ ▲ The generation of IL-17 by CD4+ T cells to induce PF is mediated by IL-23. (Gasseet al., 

2011) 

IL-25 ○ ▲ Facilitate fibroblast proliferation, differentiation, and collagen synthesis 

through interaction with IL-17BR. 

Fibrosis is encouraged by IL-25, which causes ILC2 to produce IL-13. 

(Xuet al., 2019) 

IL-27 ▼ ▼ Release of IL-13 by ILC2 when triggered by IL-25, which causes fibrosis. (Donget al., 2016) 
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IL-32 γ ▲ ▼ Prevents fibrosis by blocking the activation of FAK and paxillin. (Honget al., 2018) 

IL-33 ○ ▲ Contribute to fibrotic process by producing M2 macrophages. (Liet al., 2014) 

IL-37 ▼ ▼ Upregulates autophagy activity in affected lung tissue by increasing the level 

of LC3II. 

(Kimet al., 2019) 

 

 

 

 

(a) Pro-inflammatory: ▲; anti-inflammatory: ▼ (b) Pro-fibrosis: ▲; anti-fibrosis: ▼; neither or unknown: ○ 
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2.4 TNF α 

Razzaque and Taguchi (2003)pointed out in his studies,TNF-α, a strong inducer of 

inflammation, is initially synthesized as a glycoprotein bound to the cell membrane and is 

cleaved into a biologically active 17-kDa monomeric peptide. 

(Bolouraniet al., 2019) mentioned that,TNF-α, primarily released from M1 macrophages, 

alters the phenotype of macrophages and fibroblasts, promoting inflammation over tissue 

repair.Agostini and Gurrieri(2006) proposed that, TNF-alpha stimulates cellular interactions 

and cytokine/chemokine modulation. Moreover, TNF-alpha triggers fibroblast proliferation. 

(Bolouraniet al., 2019) reported that, even dormant fibroblasts respond to TNF-α, which 

stimulates the secretion of lumican and expression of integrins, perpetuating fibroblast 

activation in both autocrine and paracrine manners. 

(Wanet al., 2023) reported that, TNF-alpha induces the upregulation of vascular cell 

adhesion molecule. Furthermore, (Linet al., 2016) reported that, this includes the turning on 

of protein kinase C alpha (PKCα), resulting in the generation of oxidative molecules. ROS, in 

turn, activate MAPKpathways, including ERK1/2, p38 MAPK, and JNK1/2. This leads to the 

exacerbation of fibrotic condition. 

(Houet al., 2018) reported that, in the model of pulmonary fibrosis induced by bleomycin, 

there is an elevation in TNF-alpha levels, accompanied by an increase in the expression of the 

NF-κB p65 subunit. 

2.5 Chemokine (C-C motif) & (C-X-C motif) ligand (CCL & CXCL) 

Cells producing cytokines are effectively attracted to injury sites by chemokine gradients. 

The CC and CXC chemotactic cytokine families have been extensively studied in fibrosis 

progression. (Sugaet al., 1999) mentioned in his studies, that people with IPF had higher 

levels of CCL2 in their blood and bronchoalveolar lavage (BAL) fluid. 

(Sunet al., 2011)reported that IL-10 can trigger macrophage activation via the CCL2/CCR2 

pathway, resulting in fibroblast buildup and subsequent fibrotic degeneration. 

(Muneesaet al., 2021)highlighted in his studies that, CXCR3, the receptor for CXCL9, 

shows elevated expression near cells undergoing epithelial-mesenchymal transition (EMT) in 

IPF patients. Conversely, CXCL9 exhibits antifibrotic effects by inhibiting the TGF-β 

signaling pathway, reducing Smad2&3 phosphorylation in alveolar epithelial cells (AECs). 
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Agostini and Gurrieri(2006) proposed that, CXC chemokines, such as IL-8/CXCL8 and 

ENA-78/CXCL5, are elevated in PF and promote aberrant angiogenesis. This means that 

these chemokines contribute to the pathological vascular remodeling observed in PF. 

Conversely,Agostini and Gurrieri(2006) mentioned in his studies, IP-10/CXCL10, exhibits 

fibrosis-limiting effects by attenuating fibroblast migration and reducing fibroblast 

accumulation. Additionally, IP-10/CXCL10 activates the chemokine receptor CXCR3, which 

performs a protective function in lung fibrosis by stimulating the production of interferon- 

gamma (IFN-γ). 

Keane (2008) demonstrated that, experimental mice with pulmonary fibrosis induced by 

bleomycin, increased levels of CXCL2 and CXCL3 (ELR-positive) are associated with 

fibrosis, while decreased levels of CXCL10 and CXCL11 (ELR-negative) correlate with 

reduced fibrosis when administered exogenously.Furthermore, mice deficient in CXCR3 or 

CXCL10 exhibit increased mortality and progressive fibrosis, suggesting a protective role for 

these chemokines in limiting fibrosis. 

3. COVID-19 and PF 

At the forefront of COVID-19 stands SARS-CoV-2 (Severe Acute Respiratory Syndrome 

Coronavirus 2), a virus surrounded by an envelope, known for its single-stranded, positive- 

sense RNA genome. (Guarinoet al., 2022; Cugnoet al., 2022 and Patruccoet al., 

2021)mentioned in his study that, this viral agent serves as the instigator of the ongoing 

pandemic. The primary avenue for human-to-human transmission has been predominantly 

attributed to respiratory droplets.(Hosseiniet al., 2020) discussed in his study that, SARS- 

CoV-2 is a coronavirus that is part of a family distinguished by its segmented RNA content 

and encapsulated form.Furthermore, (Tranet al., 2022)reported that, the virus's spike protein, 

cleaved by various serine proteases, facilitates rapid transmission and infectivity. 

3.1 Pathogenesis 

In exploring the etiology of post-COVID-19 pulmonary fibrosis, two prominent theories have 

emerged: the "Two-hit hypothesis" positing a dual insult scenario involving genetic 

predisposition or pre-existing subclinical interstitial lung abnormalities, and the theory 

suggesting a direct effect of SARS-CoV-2on the profibrotic cascade, stated byAlrajhi NN, 

2023. 
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3.1.1 "Two-hit hypothesis" 

Alrajhi NN, 2023mentioned the "two-hit hypothesis" in his study, which suggests that the 

development of fibrosis involves two separate insults or triggers acting together. The first hit 

occurs when the virus along with other factors damage the pulmonary tissue. This initial 

insult affects either lungs already genetically predisposed to fibrosis or those with subclinical 

interstitial lung abnormalities (ILA), which are found in 7%–10% of people, in general. The 

second hit refers to additional insults or factors, such as prolonged mechanical ventilation, 

secondary bacterial infections, persistent inflammation, or other genetic and environmental 

factors. These secondary hits exacerbate lung injury and contribute to the progression of 

fibrosis, working in conjunction with the initial insult. 

3.1.2 Direct effect of SARS-CoV-2 on the profibrotic cascade 

(Tranet al., 2022 and Alrajhi NN, 2023) addressed that, SARS-CoV-2 enters cells primarily 

through interaction with ACE2receptors, along with αvβ3 and αvβ6 integrins, which are 

located proximal to ACE2. Both elevated levels of ACE2 and αVβ integrins trigger activation 

of the fibrosis-promoting pathway, including the induction of TGF-β and the generation of 

reactive oxygen species.TGF-β drives fibroblasts to become collagen-producing 

myofibroblasts, responsible for accumulation of collagen. Reactive oxygen speciesexacerbate 

the inflammation process by inducing oxidative stress and activating pro-inflammatory 

signaling pathways. 

4. Potential Targets for PF Therapy 

 
A variety of treatment objectives have been recognized for addressing the course of therapy, 

diagnosis, and outlook of PF. Prominent therapeutic targets encompass oxidative stress, cell 

signalling mediators, growth factors, and transcription-related variables. 

 

The envisioned treatment targetsare outlined in Figure 2. 
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4.1 Oxidative stress 

Oxidative stress plays a pivotal role in the pathogenesis of pulmonary fibrosis (PF), 

contributing to disease initiation and progression. Elevated levels of reactive oxygen species 

(ROS) lead to cellular damage and inflammationwithin the lungs, exacerbating tissue injury 

and promoting fibrotic remodeling. Understanding the intricate interplay between oxidative 

stress and PF pathogenesis is critical for developing targeted therapeutic interventions to 

mitigate disease progression and improve patient outcomes. 

(Estornutet al., 2022)reported that, enzymes like NOXs, MPO, xanthine oxidase, and NOS 

contribute to ROS/RNS production in the lungs. 

[Chereshet al., 2013;Kato and Hecker 2020] reported that,NOX oxidoreductases have a 

vital function in cellular mechanisms by catalyzing reductions that generate ROS, which are 

involved in signaling, microbial defence, and tissue damage. Particularly, NOX1, NOX2, and 

NOX4 are prominently implicated in the onset and progression of pulmonary fibrosis. 

Research findings of (Amaraet al., 2010)suggests that NOX4 is essential in modulating the 

phenotype of pulmonary myofibroblasts in IPF, influencing the α-SMA protein levels and 

procollagen I, regulating Smad2/3 activation, and facilitating fibroblast migration in response 

to TGF-β1 and PDGF-BB.(Heckeret al., 2012)reported that, mice lacking NOX4 were 

shielded from bleomycin-induced lung fibrosis due to reduced epithelial cell death, and 

inhibiting NOX4 lowered ROS production, protecting against apoptosis. Notably, NOX4 

deficiency had minimal impact on inflammationafter bleomycin injury, indicating that NOX4 

primarily affects fibrosis by regulating epithelial cell death rather than inflammation. 

(Veithet al., 2019) demonstrated that, NOX2, integral to the innate immune response, 

predominantly acts in phagocytic cells IPF. It contributes to alveolar epithelial cell death via 

ROS production, heightened in IPF patient neutrophils, indicating a specific role in these 

cells. NOX2 deficiency in mice protects against fibrosis induction, potentially involving non- 

immune cell NOX2 expression. 
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4.2 Cell Communication Pathways 

 

 

4.2.1 TGF-β/Smad signalling cascade 

 
The TGF-β/Smad signalling cascade is a versatile signalling cascade pivotal in inflammation, 

tissue repair, and fibrogenesis. Yan and Ping(2014) mentioned that, TGF-β/Smad signalling 

cascadeexerts a critical functionin a number of events, like as epithelial injury, myofibroblast 

expansion, maturation, and the production of ECM. 

Miyazono (2009) discussed in his study, TGF-β binds to its receptors, forming a 

complexthat phosphorylates Smad2 and Smad3. Furthermore, Smad4 is produces a complex 

with the phosphorylated form of Smad3 and Smad2. This complex undergoes moves into the 

nucleus, which facilitates the activation of transcriptionalregulators associated with EMT and 

encourages the EMT process. 

(Jianget al., 2014) pointed out that, directly targeting TGF-β is challenging due to its 

multiple physiological functions, thus understanding its downstream signaling pathways may 

offer insights for developing novel fibrotic disorder treatments.Study performed by (Shiet al., 

2014)indicates that various active compounds found in natural products have the potential to 

ameliorate PF by modulating the TGF-β/Smad signalling cascade. 
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Figure 2. Envisioned treatment targets of PF 

 

 

 

 

 

 

 

4.2.2 PI3K (Phosphoinositide 3-kinase) signalling cascade 

PI3Ks are enzymes consisting of a regulatory subunit linked to a catalytic subunit, known as 

p110. (Margariaet al., 2022) reported that, while p110α and p110β are widely expressed, 

p110δ and p110γ are specifically found in leukocytes. 

Yan and Ping (2014) mentioned that, the PI3K-Akt signaling pathway has a fundamental 

significance in regulating cell proliferationand survival by preventing cellular suicide. 

Moreover, PI3K-Akt signaling interacts with various pathways such as VEGF, MAPK, and 
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focal adhesion, forming a complex network that regulates cell behaviour in pulmonary 

fibrosis. 

Research performed by (Zhang et al., 2016) suggeststhat bleomycin administration 

increased Akt phosphorylation without altering total Akt levels, indicating pathway 

involvement in lung fibrosis. Blocking PI3K/Akt with LY294002 inhibited BLM-induced p- 

Akt expression without affecting total Akt levels. This resulted in reduced inflammatory cell 

infiltration and proinflammatory cytokine levels while increase in anti-inflammatory cytokine 

IL-10. Furthermore, LY294002 treatment also suppressed myofibroblast expansion, 

fibronectin matrix formation, and collagen deposition, preserving lung compliance. 

 

 

4.2.3 MAPK (Mitogen-Activated Protein Kinase) signalling cascade 

MAP kinases (MAPKs) are crucial enzymes that relay signals from receptors on the cell 

surface to targets within the cell in response to various stimuli, mentioned by (Yoshidaet al., 

2002) in his study. 

(Wanget al., 2021)discussed that, the MAPK family members areassociated in modulating 

TGF-β1 triggered signaling pathways and are significant regulators of epithelial- 

mesenchymal transition (EMT).Saleem(2024) pointed out that, the MAPK signaling 

pathways, including p38, ERK, and JNK, controlscellular homeostasis.Furthermore, 

(Yoshidaet al., 2002) mentioned that, while p38 MAPK and JNK respond to environmental 

stress and inflammation, promoting apoptosis and cytokine expression, ERK is activated by 

growth signals, supporting cell proliferation and survival. 

Ye and Hu(2021)pointed out that, TGF-β1 activates the MAPK family, particularly 

ERK1/2, which phosphorylates and activates p90RSK. This influences Smad signaling, 

indicating crosstalk between MAPK and Smad pathways. These interactions contribute to 

myofibroblast differentiation, EMT/EndMT (Endothelial mesenchymal transition), and 

fibrogenesis in IPF. 

(Antoniouet al., 2010)highlighted that, therapeutic intervention aimed at modulating MAPK 

signaling has demonstrated potential efficacy in addressing both idiopathic pulmonary 

fibrosis (IPF) and cancer, underscoring its importance as a prospective therapeutic avenue 

[86]. 
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4.2.4 Wnt/β-catenin signalling cascade 

Study conducted by (Shiet al., 2017) suggests that, the Wnt/β-catenin cascade hinges on Wnt 

binding to its coreceptors, LRP5 or LRP6, and a member of the FZD family. This interaction 

triggers cytosolic β-catenin accumulation. 

Yan and Ping (2014) mentioned that, the Wnt/β-catenin signaling cascade interacts with 

TGF-β, synergistically contributing to the progression of IPF. TGF-β activates Wnt/β-catenin 

signaling via ERK1/2 phosphorylation, inhibits GSK-3β activity, and promotes cellular 

matrix accumulation and β-catenin nuclear translocation. This pathway also regulates cell 

apoptosis, crucial in scar repair during pulmonary fibrosis. 

(Andersson-Sjölandet al., 2016) pointed out that, in lung endothelial cells, the onset of 

Wnt/β-catenin communication triggers a shift from vascular-associated fibroblasts to cells 

with characteristics similar to myofibroblasts.This transition results in the accumulation of 

ECM and increased tissue stiffness, thereby assisting in the development of PF.Additionally, 

(Caoet al., 2020) highlighted that, suppressing the Wnt signalling pathway led to the 

inhibition of myofibroblast differentiation, ultimately ameliorating PF lesions [89]. 

Research findings of (Königshoffet al., 2017) reveal increased expression of genes targeted 

by the Wnt pathway in IPF lungs, suggesting its activation. Observation of β-catenin staining 

in ATII cells and fibroblasts further supports the activation of Wnt signaling. 

 

 

4.2.5 ROCK (Rho-associated coiled-coil-forming protein kinase) signalling 

cascade 

The ROCKis essential for tissue repair process, because it promotes actomyosin contraction 

and actin assembly, which reformulate cytoskeletal components, as suggested by Julian and 

Olson (2014). 

(Shimizuet al., 2014) pointed out that, elevated ROCK activity is seen in fibrotic lesions 

from both mice models and people with IPF. At the area of injury, this heightened activity 

triggers the endothelial and epithelial cells as well as fibroblast, to become profibrotic. 

(Knipeet al., 2018) it was found that both ROCK isoforms, ROCK1 and ROCK2, assist in 

the advancement of PF in the bleomycin mouse model. Additionally, the study revealed that a 
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reduction in the activity of each isoform has a preventive impact against PF caused by 

bleomycin. 

 

 

4.3 Growth Factors 

Growth factors play a significant role in pulmonary fibrosis. Key growth factors implicated in 

pulmonary fibrosis include TGF-β, PDGF, VEGF and CTGF. 

TGF-β is central to the pathogenesis of IPF, promoting EMT in alveolar epithelial cells and 

severe pulmonary fibrosis, as per (Sureshbabuet al., 2011). 

(Abdollahiet al., 2005) mentioned that,the PDGF family binds to PDGFR-a and PDGFR-b, 

activating their tyrosine kinase activity to modulate cellular functions.(Nishiokaet al., 2013) 

suggested that, increased PDGF-A expression in mice models and presence of PDGF-BB and 

PDGF-AA in rats, promote lung fibroblast growth. PDGF isoforms, especially PDGF-B, are 

implicated in lung fibrosis. Enhanced PDGF expression in IPF patients suggests its role in 

fibrotic lung diseases. 

(Chonget al., 2023) pointed out that, inhibiting PDGF-BB with Imatinib or APB5 reduces 

PF, while Nintedanib, an approved treatment, targets PDGFR and other receptors, limiting 

fibroblast activity. Further investigation into platelet-derived factors in PF is crucial. 

Additionally, Imatinib/Gleevec, SU9518, and SU11657, inhibitors of PDGF signaling, 

notably decreased lung fibrosis in a radiation-induced mouse model, pointed out by 

(Abdollahiet al., 2005). 

Vascular endothelial growth factor (VEGF) has various actions directly related to the 

pathogenesis of IPF, including promoting epithelial multiplication and preventing 

programmed death of epithelial cells, mentioned by (Robertset al., 2007). 

Furthermore,(Farkaset al., 2009) mentioned that, because of its ability to shield endothelial 

cells, VEGF is also essential in preventing vascular alteration. On the other hand,(Leeet al., 

2004) mentioned that, type-2 inflammation is linked to VEGF, which may amplify pre- 

existing fibrogenic reactions. 

(Farkaset al., 2009) mentioned that, in idiopathic pulmonary fibrosis, VEGF decreases 

while PEDF increases, impacting fibrosis and angiogenesis. Despite reduced VEGF, TGF-β1 

can still stimulate it, potentially worsening fibrosis and angiogenesis. 
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A recent experiment performed by (Kasuyaet al., 2021), demonstrates that VEGF 

overexpression focused at the lungs significantly reduces buildup of collagen, mortality, 

death of epithelial cells and histological signs of tissue remodelling when exposed to 

bleomycin. 

(Isshikiet al., 2021) discussed that, CTGF, referred to as CCN2(cellular communication 

factor 2), is involved in fundamental biological functions such as ossification, 

neovascularization, and wound healing. Furthermore, CTGF investigation is directed towards 

tissue fibrosis, where elevated levels are noted in different fibrotic conditions affecting 

organs like the kidney, heart, liver, skin, and lungs.Effendiand Nagano(2022) pointed out 

that, CTGF expression is regulated by physiological and pathological factors at 

transcriptional, post-transcriptional, and translational levels.CTGF serves diverse roles, 

including signal transduction initiation, cytokine regulation, ECM turnover, and modulation 

of cytokine and growth factor activity. 

(Vanstapelet al., 2021) suggested that, including the kidney, liver, heart, and lungs, CTGF 

upregulation in IPF, observed in fibroblasts, broncho-alveolar lavage, plasma, and lung 

tissue. Animal models confirm increased CTGF levels in fibroblasts, promoting a profibrotic 

environment, even in lungs resistant to fibrosis induction. 

(Bickelhauptet al., 2017) demonstrated that, FG-3019 (an anti-CTGF antibody) 

administration transiently improved lung remodeling in mice exposed to radiation, enhancing 

health and lifespan. 

Future studies could explore CTGF-targeting therapies for PF linked to COVID-19 or other 

causes, offering potential treatment avenues. 

4.4 Transcription factors 

Transcription factors performs a crucial function in pulmonary fibrosisby modulating the 

expression of genes involved in fibrotic processes. Transcription factors like TGF-β, NF-κB, 

STAT3, HIF-1, FOXOs, HSP27, and Smad proteins are key drivers of pulmonary fibrosis. 

(Yuet al., 2020) mentioned that,the NF-κB pathway encompasses two branches: the canonical 

and non-canonical pathways. The canonical pathway responds to various stimuli, activating 

NF-κB through IκB (Inhibitor of κB) protein phosphorylation mediated by IKK (IκB Kinase). 

The non-canonical pathway, triggered by specific TNF (Tumor Necrosis Factor) receptors, 
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involves NIK (NF-κB Inducing Kinase) accumulation due to TRAF3 (TNFR-associated 

factor 3) degradation, leading to p100 phosphorylation and NF-κB activation. 

(Titan et al., 2017) pointed out that, in vitro experiments show time-dependent NF-κB 

expression and EMT marker induction in human epithelial cells. In vivo studies demonstrate 

that repetitive NF-κB pathway stimulation causes airway epithelial cell morphological 

changes, intensifying airway fibrosis. 

(Knightet al., 2011)mentioned that, STAT3 is a crucial transcription factor, existing in two 

isoforms: STAT3a and STAT3b. While STAT3a is essential for cell viability, STAT3b acts 

as a dominant negative factor.(Pedrozaet al., 2016) pointed out that, in pulmonary fibrosis, 

STAT-3 activation, driven mainly by IL-6 and TGF-β, is crucial for disease progression. 

Further he stated that, elevated STAT-3 phosphorylation in lung tissue promotes fibrosis by 

regulating cell survival, migration, proliferation, and differentiation. 

(Pechkovskyet al., 2012) stated that, in pulmonary fibrosis, STAT3 regulates fibroblast 

function, where constitutively phosphorylated STAT3 is linked to reduced expression of α- 

SMA, Thy-1/CD90, and α-v β-3 integrin. 

Furthermore,(Prêleet al., 2012) mentioned in his study that, STAT3 activation affects how 

fibroblasts behave, leading to changes like decreased proliferation, modified expression of 

genes involved in cell death, and shifts in cell surface markers like Thy-1/CD90 and integrin 

αvβ3. 

Hypoxia, a common feature in fibrotic tissues, affects different cell types due to insufficient 

oxygen levels and activates the hypoxia-inducible factor (HIF)-1, which plays a crucial role 

in fibrosis.(Goodwinet al., 2018)mentioned that, under aerobic conditions, HIF-1αis 

degraded, but in low oxygen levels, it teams up with HIF-1β to activate genes for adapting to 

hypoxia, including shifting metabolism to anaerobic glycolysis. Furthermore, (Aquino- 

Gálvezet al., 2019) stated that hypoxia-induced accumulation of HIF-1α&2α, particularly 

pronounced in IPF, suggests a shift towards anaerobic metabolism akin to cancer cells. 

(Uenoet al., 2011) stated that, in pulmonary fibrosis, TGF-β triggers PAI-1 transcription via 

HIF-1 deposition, emphasizing the role of HIF-1 in alveolar macrophages and its potential as 

a therapeutic target. 

(Wanget al., 2017) proposed that Hsp27 actively participates in the fibrotic progression by 

regulating the differentiation of lung fibroblasts through pathways such as Smad3 and 
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ERK.(Sontakeet al., 2017) mentioned that, Hsp90 serves as a facilitator of fibroblast 

activation, and inhibiting the ATPase activity of Hsp90 has been demonstrated to lessens the 

severity of PF. 

(Altintaset al., 2016) mentioned that, the FoxOs constitutes a conserved DNA-binding site 

present in family of transcriptional regulators including four isoforms in mammals: FoxO1, 

FoxO3, FoxO4, and FoxO6. Activation of FoxO3 through UCN-01 has been observed to 

reverse phenotypic alterations and impede the advancement of idiopathic pulmonary fibrosis. 

This implies that FoxO3 may be a fresh and viable target for the treatment of IPF. 

5. Plant sources as therapeutic agents 

Natural compounds are valued for their ability to influence metabolism, combat oxidative 

stress, reduce inflammation, and modulate the immune system, as per (Mijatovićet al., 2018). 

(Bahri et al., 2017) stated that, numerous preclinical investigations have demonstrated that 

numerous natural products derived from plants possess both preventive and therapeutic 

properties against PF. These effects are achieved through various mechanisms, including the 

reduction  of  oxidative  stress,  attenuation  of  inflammation,  inhibition  of  fibroblast 

multiplication and stimulation, and normalization of biochemical reactions. 

These results imply that, in clinical settings, these natural compounds may be able to prevent 

the beginning of PF and decelerate its progression. 

5.1 Alkaloids 

(Hosseiniet al., 2021) stated that, alkaloids are basic chemicals that frequently have a ring 

like structure with one or more nitrogen atoms. In their protonated state, they are water- 

soluble owing to their primary nature under acidic conditions. However, in a neutral form, 

they tend to be lipophilic, particularly under alkaline conditions. 

Role of all the reported alkaloids are given in table 2. 
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Table 2Plant sources containing alkaloids as their active constituents and their effects. 
 

 

CHEMICAL 
GROUP 

SOURCE 
ACTIVE 

CONSTITUENT 
EFFECTS REFS. 

  

A
L

K
A

L
O

ID
S

 

Tripterygium 

wilfordii Hook. f 

Isorhynchophylli- 

ne 

Anti-inflammatory (Qiuet al., 

2020) 

Sophorae 

flavescens radix 

Matrine Suppresses TGF-β, 

Smad 2&3 signalling. 

(Li et al., 

2020) 

Indigo naturalis Indirubin Suppresses TGF-β1, 

Smadsignalling. 

(Wang et 

al., 2020) 

Chelidonii 

herba 

Chelerythrine Activation of Nrf2, 

ARE 

signaltransduction. 

(Peng et 

al., 2021) 

Coptidis 

rhizoma 

Berberine Activation of PPAR-γ. (Guan et 

al., 2018) 

Amaryllidaceae Lycorine Inhibition of NLRP3 

expression. 

(Lianget 

al., 2020) 

Leonuri herba Leonurine Upregulates AKT 

signalling. 

(Zhu et 

al., 2021) 

Arenaria 

kansuensis 

β-carboline 

alkaloids 

Inhibit NF-κB /p65 

phosphorylation; 

Suppress MCP-1; 

Inhibits TNF-α, IL-6 

and IL-1β; 

(Cui et 

al., 2019) 
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   Suppress EMT.  

 

 

Stephania 

tetrandra 

 

 

Tetrandrine 

 

 

Suppresses secretion 

of α-SMA,fibronectin, 

vimentin, and type 1 

collagen. 

Inhibit fibroblast 

proliferation. 

 

 

(Liu et 

al., 2021) 

 

 

 

 

Table 2 Continued 
 

 

CHEMICAL 

GROUP 
SOURCE 

ACTIVE 

CONSTITUENT 
EFFECTS REFS. 

  

A
L

K
A

L
O

ID
S

 

Tea, coffee, etc. Caffeine Inhibits basal (Tatleret 

  expression of α-SMA al., 2016) 

  gene; Downregulates  

  TGF-β1.  

Nelumbo Isoliensinine Decreases (Xiaoet 

nucifera Gaertn  Hydroxyproline al., 2005) 

  content, lung  

  histological injury,  

  MDA;  

  Increases SOD;  

  Downregulates TNF-  

  α, TGF-β1.  

 

 

 

5.2 Flavonoids 
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Flavonoids are polyphenolic compounds characterized by a 15-carbon skeleton. Their 

bioactivity stems from various structural features, including hydroxyl groups (-OH) and other 

substituents, such as methoxy (-OCH3) and glycosyl moieties (-O-R), which can modulate 

their antioxidant, anti-inflammatory, and antifibrotic properties. 

(Wenet al., 2021)highlighted in his study that, natural flavonoids are of great interest as 

potential therapeutic agents due to their diverse physiological effects, including anticancer, 

anti-inflammatory, autoimmune protection, and antioxidant properties. Furthermore, (Wanget 

al., 2023) pointed out that,numerous natural flavonoids, including quercetin, have been 

investigated in clinical trials for their potential efficacy in treating patients with PF. 

Role of all the reported flavanoids is given in table 3. 

 

 

Table 3Plant sources containing flavonoids as their active constituents and their effects. 

CHEMICAL ACTIVE 

GROUP SOURCE CONSTITUENT 

Scutellariae radix Biacalein 

Erigeron 

breviscapus 

Scutellarin 

EFFECT 

Regulate CaMKII, PI3K 

& AKT signalling; 

Prevent EMT; 

Inhibit miR-21. 

Suppresses ROS 

production; 

Modulate Smad and β- 

catenin pathways. 

NF-κB, NLRP3 

signalling regulation; 

Inhibition of PI3K, Akt 

signalling. 

REFS. 

(Zhaoet 

al., 2020) 

Various fruits and Quercetin 

vegetables 

(Takanoet 

al., 2020) 

(Penget 

al., 2020) 

Citrus aurantium L 

(Renet al., 

2019) 

Hesperidin 

Citrus fruits 

Reduction of TGF-β, 

Smad 2&3 

and NF-κB signalling. 
(Zhouet 

al., 2019) 

F
L

A
V

O
N

O
ID

S
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Alpiniae ofcinarum 

rhizoma 

Galangin Suppress EMT. (Wanget 

al., 2020) 

Aronia 

melanocarpa 

Cyanidin-3 

galactoside 

Inhibit TGF-β, mTOR 

signalling. 

(Cuiet al., 

2022) 

Hippophae fructus Isorhamnetin Suppress EMT. (Zhenget 

al., 2019) 

Ampelopsis 

grossedentata 

Dihydromyricetin Suppresses TGF-β1 

Signalling; 

Regulation of STAT3, 

p- STAT3 signalling. 

(Xiaoet 

al., 2021) 

 

 

 

Table 3Continued. 
 

CHEMICAL 

GROUP 

 

SOURCE 

ACTIVE 

CONSTITUENT 

 

EFFECT 

 

REFS. 

 Camptotheca 

acuminata Decne 

Hyperoside AKT, GSK3b 

signalling regulation. 

(Huanget 

al., 2020) 

 
Myrica rubra 

Sieb 

Myricetin Smad and non-Smad 

signalling regulation. 

(Liet al., 

2020) 

  F
L

A
V

O
N

O
ID

S
 Aurantii fructus 

immaturus 

Neohespridin TGF-β, Smad3 

signalling inhibition. 

(Guoet al., 

2019) 

Astragali radix Biacalin Increases SOD. (Changet 

al., 2021) 

 Erigeron 

breviscapus 

Scutellarin NF-κB, NLRP3 

signalling regulation. 

(Penget 

al., 2020) 

 
Various plant 

sources 

Epicatechin Reduces inflammation 

and oxidative stress. 

(Shariatiet 

al., 2019) 
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  Pinocembrin TLR4, NF-κB & 

NLRP3 signalling 

inhibition. 

(Ganet al., 

2021) 

Rhodiolae 

crenulatae radix 

Rutin Suppresses TGF-β1; 

Inhibits α- SMA, 

Col I&III production. 

(Baiet al., 

2020) 

Juglans Juglanin Sting suppression (Sunet al., 

2020) 
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Table 3Continued. 
 

CHEMICAL 

GROUP 

 

SOURCE 

ACTIVE 

CONSTITUENT 

 

EFFECT 

 

REFS. 

  

F
L

A
V

O
N

O
ID

S
 

Lonicera 

japonica 

Luteolin Suppresses neutrophil 

infiltration in BALF, 

collagen deposition & 

TGF-β1 expression; 

Inhibits αSMA 

expression, type I 

collagen; 

Retains epithelial 

morphology; 

Reduces Smad3 

phosphorylation. 

(Chenet al., 

2010) 

Oroxyli semen Chrysin TGF-β1 signalling 

inhibition. 

(Kseibatiet 

al., 2020) 

Silybi fructus Silibinin Decreases IL-1β, IL-6, 

TNF-α in BALF & 

pulmonary tissue; 

Suppresses TGF-β and 

p-smad2/3expression in 

pulmonary tissue; 

Reduces collagen-I and 

fibronectin levels in the 

lungs; 

Decreases α-SMA 

expression in 

pulmonary tissue; 

(Aliet al., 

2021) 
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Table 3Continued. 
 

CHEMICAL 

GROUP 

 

SOURCE 

ACTIVE 

CONSTITUENT 

 

EFFECT 

 

REFS. 

 Ampelopsis 

grossedentata 

Dihydromyricetin Downregulates TGF- 

β1/Smad signaling 

pathways; 

Suppresses 

Expression of α- 

SMA and 

fibronectin. 

(Xiaoet al., 

2021) 

 Rhododendron 

brachycarpum 

Hyperoside AKT, GSK3b 

signalling regulation. 

(Huanget 

al., 2020) 

 
Epimedii folium Icariin Suppresses hippo 

signalling. 

(Duet al., 

2021) 

 Scutellaria 

baicalensis 

Biacalein Suppresses CTGF 

expression. 

(Sunet al., 

2020) 

F
L

A
V

O
N

O
ID

S
 

 

Rhodiolae 

crenulatae radix 

Rutin Reduces expression 

of TGF- β1. 

Suppresses α-SMA; 

Prevent collagen 

deposition; 

Decreases lung 

hydroxyproline 

level. 

(Baiet al., 

2020) 

 Artemisia annua 

L 

Dihydromyricetin Suppresses TGF-β1, 

Smad signalling. 

(Xiaoet al., 

2021) 

 Glycyrrhizae 

radix 

Isoliquiritigenin Suppresses PI3K, 

AKT & mTOR 

Signalling. 

(Heet al., 

2020) 

 Rhizoma 

Kaempferiae 

Kaempferol Anti-inflammatory 

action. 

(Liuet al., 

2019) 
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Table 3Continued. 

 

CHEMICAL 

GROUP 

 

SOURCE 

ACTIVE 

CONSTITUENT 

 

EFFECT 

 

REFS. 

 Hippophae 

fructus 

Isorhamnetin EMT suppression. (Zhenget 

al., 2019) 

 Radix Puerariae Radix puerariae 

extracts 

Suppress oxidative 

stress induced by 

paraquat. 

(Liuet al., 

2015) 

  

F
L

A
V

O
N

O
ID

S
  

Various herbs 

and vegetables 

Apigenin Reduces TGF-β, 

TNF-α, 

Hydroxyproline 

content. 

Increases SOD. 

Chen and 

Zhao (2016) 

 

 

TLR4- Toll-like receptor 4; GSK3B- Glycogen Synthetase Kinase 3beta; 

 

5.3 Glycosides 

Glycosides, found in plants, are studied for potential therapeutic effects in pulmonary 

fibrosis. 

(Chenet al., 2022) demonstrated in his study that, loganin and morroniside, iridoid 

glycosides, displayed protective effects against lung injury and fibrosis by reducing 

inflammationand regulating signaling pathways. They also decreased collagen deposition, 

suggesting their potential as therapeutic agents for lung diseases. 

Role of all the reported glycosides are given in table 4. 
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Table 4 Plant sources containing glycosides as their active constituents and their effects. 
 

 

CHEMICAL 

GROUP 

 

SOURCE 

ACTIVE 

CONSTITUENT 

 

EFFECT 

 

REFS. 

  

G
L

Y
C

O
S

ID
E

 

Rhei radix et 

rhizoma 

Rhapontin TGF-β/Smad 

signalling 

regulation. 

(Tao et al., 

2017) 

Mangifera indica 

L. 

Mangiferin 

(Polyphenol 

glycoside) 

Inhibits TGF-β1, 

Smad 2&3 

signalling. 

(Jiaet al., 

2019) 

Prunus 

armeniaca semen 

amarum 

Amygdalin Downregulates 

TGF-β1, Smad 

2&3 signalling. 

(Wanget al., 

2019) 

Gentianae radix 

et rhizoma 

Gentiopicroside Anti- 

inflammatory. 

(Chenet al., 

2018) 

Rosmarinus 

officinalis 

Carnosol Anti-infammatory. 

Antioxidant. 

(Kalantaret 

al., 2021) 

Dioscorea 

polystachya 

Turczaninow 

Dioscin Promotes 

autophagy 

in alveolar 

macrophages. 

(Duet al., 

2019) 

Pterocypsela 

laciniata 

Lettuce glycoside 

B 

Decreases fatality 

rates; 

Lowered MDA 

levels; 

Boosted SOD and 

other antioxidant 

enzyme function; 

Normalized serum 

concentrations of 

TGF-β1, IL-6, and 

(Zhouet al., 

2022) 
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Table 4 Continued 

 

CHEMICAL 

GROUP 

 

SOURCE 

ACTIVE 

CONSTITUENT 

 

EFFECT 

 

REFS. 

 Trigonella 

foenum- 

graecum 

(Fenugreek) 

Trigonelline Inhibition of NF- 

κB/NLRP3/IL-1β 

signaling; 

Deactivation of 

S1P/Hippo signaling; 

Reduction of EMT, 

cellular apoptosis, and 

senescence. 

(Zyedaet 

al., 2024) 

  G
L

Y
C

O
S

ID
E

    

 Bletilla striata Coelonin Inhibition of IL-1β,6; 

Suppresses TNF-α; 

Suppression of NF-κB 

activity. 

(Jianget 

al., 2019) 

 

5.4 Polyphenols 

Natural antioxidants called polyphenols are gaining attention for their potential to prevent and 

cure several illnesses, including cancer. Furthermore,these substances' antifibrotic properties 

have been studied. For example,(Liet al., 2013)mentioned that flavonoids obtained from the 

Chinese plant Hedysari Radix decrease the advancement of PF. 

Additionally,(Impellizzeriet al., 2015)pointed out that polyphenols 

reducinginflammationand oxidative stress have been reported, which includes resveratrol, 

quercetin, and grape leaf extract high in dihydroquercetin. These substances show reduction 

in NF-κBp65 relocation and down-regulation of COX2 (cyclo-oxygenase-2) in mice exposed 

to bleomycin. 

TNF-α. 
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Role of all the reported polyphenols are given in table 5. 

 

Table 5 Plant sources containing polyphenols as their active constituents and their 

effects 

 

CHEMICAL 

GROUP 

 

SOURCE 

ACTIVE 

CONSTITUENT 

 

EFFECT 

 

REFS. 

 Polygoni 

cuspidati 

rhizoma et 

radix 

Polydatins TGF-β1/Smad 

signaling 

inhibition. 

(Liuet al., 

2020) 

  Schisantherin A Downregulates 

ERK signalling. 

(Zhuanget 

al., 2020) 
 Schisandra 

chinensis 

fructus 

 

Schisantherin B Suppresses WNT 

signalling. 

(Wanget 

al., 2020) 

 Ferulae resina Ferulic acid Blocks TGF-β1, 

Smad3 signaling. 

(Aliet al., 

2021) 

  

P
O

L
Y

P
H

E
N

O
L

S
 

Vaccinium spp Pterostilbene TGF-β1 signalling 

inhibition. 

(Penget al., 

2021) 

Salviae 

miltiorrhizae 

radix et 

rhizoma 

Salvianolic acid B Anti-infammatory 

and antioxidant. 

(Liuet al., 

2018) 

 
Rhei radix et 

rhizoma 

Sinapic Acid Blocking of NF- 

κB/ NRF2/HO-1 

signalling 

(Raish et 

al., 2020) 

 Zingiberis 

rhizoma recens 

Zingerone Impacts signalling 

of iNOS and TGF- 

β1. 

(Gungoret 

al., 2020) 

 Gallnut Gallic acid 

derivative 

Anti-inflammatory 

antioxidant. 

(Ronget al., 

2018) 
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Mangifera 

indica 

Mangiferin Blocking TGF-β1, 

Smad 2&3 

signaling. 

(Jiaet al., 

2019) 

 

 

 

 

Table 5 continued 

 

CHEMICAL 

GROUP 

 

SOURCE 

ACTIVE 

CONSTITUENT 

 

EFFECT 

 

REFS. 

 Rosmarinus 

offcinalis 

Rosmarinic acid Blocks RhoA/Rock 

signaling. 

(Zhanget 

al., 2020) 

 
Kaempferiae 

rhizoma 

Alpha-Mangostin Regulates AMPK 

signaling. 

(Liet al., 

2019) 

 Rhei radix et 

rhizoma 

Chrysophenol Downregulates 

Wnt & β-catenin 

signaling. 

(Qiet al., 

2020) 

 Grape Resveratrol Controls AP-1 and 

MAPK signalling. 

(Wanget 

al., 2018) 

  

P
O

L
Y

P
H

E
N

O
L

S
 

Kaempferiae 

rhizoma 

Alpha-Mangostin Controls the 

MAPK & AP-1 

signalling. 

(Liet al., 

2019) 

Lonicerae 

japonicae fos 

Chlorogenic acid Suppresses 

endoplasmic 

reticulum stress. 

(Wanget 

al., 2017) 

 Asarum 

heterotropoid 

es 

Asarinin Activates PPARγ; 

Downregulates 

TGF-β, AKT & 

MAPK signalling. 

(Zeng et 

al., 2023) 

 Various plant 

sources 

Quercetin Regulation of 

Smad 

and β-catenin 

signalling; 

(Takanoet 

al., 2020; 

and Veithet 

al., 2017) 



Page 9633 of 9666 

Manjunatha P Mudagal/Afr.J.Bio.Sc. 6(5)(2024).9599-9666 

 

Supresses IL-8 and 

TNF-α. 

CHEMICAL 

GROUP SOURCE 

Glycine max 

(Linn.) Merr 

ACTIVE 

CONSTITUENT EFFECT REFS. 

Phloretin AMPK activation (Choet al., 

2017) 
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P
O

L
Y

P
H

E
N

O
L

S
 

E. prostrata Wedelolactone AMPK, TGFβ1 & 

Raf-MAPK 

pathway activation; 

Suppress fibroblast 

proliferation. 

(Yanget al., 

2019) 

Green tea EpigallocateChin- 

3- gallate 

Reduces collagen 

deposition and 

MDA levels; 

Increases SOD 

activity; 

Balances serum 

levels of 

inflammatory 

cytokines. 

(Youet al., 

2014) 

Grape Proanthocyanidin Suppresses 

inflammatory 

responses, edema, 

fibrosis severity 

and extension; 

Reduces 

accumulation of 

inflammatory cells, 

iNOS staining, and 

hydroxyproline 

levels. 

(Agackiranet 

al., 2012) 

 

 

 

 

 

 

 

Table 5 Continued 
 

CHEMICAL SOURCE ACTIVE EFFECT REFS. 
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GROUP CONSTITUENT   

Atractylodes 

lancea 

Rikkunshito Suppresses IL-1β & 

6 and TGF-β1 

expression; 

Improves survival 

rate; 

Downregulates NF- 

κB signaling 

pathway. 

(Tsubouchi 

et al., 

2014) 

Salviae 

miltiorrhiza 

 

Salvianolic acid B 

 

Mitigate oxidative 

damage & prevent 

programmed death 

of endothelial cells; 

Modulates MAPK as 

well as NF-κB 

signaling cascades. 

(Liuet al., 

2018) 

  

P
O

L
Y

P
H

E
N

O
L

S
 

  

Curcuma 

longa. 

Curcumin Inhibits COX-2, NF- 

κB-p65, and 

fibronectin 

expression; 

Suppresses NF-κB- 

p105 expression; 

Minimizes mRNA 

levels of PDGF, 

CTGF, NFκB, 

MMP. 

(Shaikhet 

al., 2020) 
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CHEMICAL 

GROUP 

 

SOURCE 

ACTIVE 

CONSTITUENT 

 

EFFECT 

 

REFS. 

 Tamarindus 

indica 

Procyanidins Regulates Nox4 

and p38 MAPK 

expression. 

Reduces oxidative 

stress 

Suppresses 

collagen deposition 

Ameeramja 

and Perumal 

(2018) 

  

P
O

L
Y

P
H

E
N

O
L

S
 

   

Date palm Date palm sap Increases SOD and 

CAT Decreases 

MDA and 

hydroxyproline 

Lung architecture 

improvement 

 

 

5.5 Terpenoids 

Plants emit a wide range of volatile organic compounds, predominantly terpenes and 

terpenoids, which are significant plant secondary metabolites. These compounds, formed by 

linking isoprene units, possess diverse biological activities.(Kimet al., 2020)pointed out that, 

recent investigations have uncovered new terpenes and terpenoids, broadening the spectrum 

of potential chemotherapeutic agents for clinical trials. 

(Nguyenet al., 2012) mentioned that, based on the chemical structure, terpenoids may be 

categorized into numerous groups, such as monoterpenes, sesquiterpenes, diterpenes, and 

triterpenes. 

(Zhanget al., 2022) highlighted that,total terpenoids of I. japonica alleviated LPS-induced 

lung damage by targeting TLR4 and Nrf2 pathways, reducing inflammationand oxidative 

stress. It inhibited COX-2 and phosphorylation of p65, p38, ERK, and JNK via MAPK/NF- 

κB, independently of TLR4, while activating Nrf2 pathway proteins through Nrf2 receptor 

activation. 

Furthermore,(Xieet al., 2023)demonstrated that,Glycyrrhizic acid (GA), extracted from the 

herbal medicine Glycyrrhiza uralensis Fisch. effectively mitigates BLM-induced lung 
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fibrosis and inhibits epithelial-to-mesenchymal transition (EMT). Utilizing GA via nebulized 

inhalation holds potential for treating pulmonary fibrosis clinically, as it suppresses the TGF- 

β/Smad pathway. 

Role of all the reported terpenoids are given in table 6. 

 

Table 6 Plant sources containing terpenoids as their active constituents and their effects. 

 

CHEMICAL 

GROUP 

 

SOURCE 

ACTIVE 

CONSTITUENT 

 

EFFECT 

 

REFS. 

  

T
E

R
P

E
N

O
ID

S
 

Andrographis 

herba 

Andrographolide Suppresses TGF-β1, 

Smad 2&3 

and Erk 1&2 signalling; 

AKT, mTOR signalling 

regulation; 

Prevents ECM 

deposition. 

(Liet al., 

2020) 

Tripterygium 

wilfordii 

Hook. f 

Triptolide FAK, calin signalling 

regulation; 

EMT suppression. 

(Zhanget 

al., 2019) 

Rabdosia 

japonica 

Glaucocalyxin Reduces lung 

macrophage and 

neutrophil infiltration; 

Suppresses release of 

proinflammatory 

cytokines in lung tissue 

and BALF; 

Suppresses NF-κB 

activation. 

(Yanget al., 

2017) 

Azadirachta 

indica 

Nimbolide Suppresses TGF- 

β/Smad signaling; 

Inhibits EMT; 

Reduces collagen; 

Alters autophagy 

(Goudet al., 

2019) 
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Table 6 Continued 

 

CHEMICAL 

GROUP 

 

SOURCE 

ACTIVE 

CONSTITUENT 

 

EFFECT 

 

REFS. 

  

T
E

R
P

E
N

O
ID

S
 

Atractylodis 

rhizoma 

Atractylon Modulation of TGFBR2 

expression. 

(Zenget al., 

2021) 

Pyrethrum 

parthenium 

(L.) Sm 

Parthenolide NF-κB, Snail signalling 

inhibition. 

(Liet al., 

2018) 

Curcuma 

aromatica 

Salisb 

Curdione TGF-β, Smad3 

signalling inhibition. 

(Liuet al., 

2020) 

Gynostemma 

pentaphyllum 

(Thunb.) 

Makino 

Gypenoside AKT, mTOR, c-Myc 

signalling inhibition. 

(Liuet al., 

2022) 

Siratia 

grosvenorii 

Mogrol TGF-β1 and AMPK 

signaling regulation. 

(Liuet al., 

2021) 

Atractylodis 

rhizoma 

Atractylodin TGF-β1, Smad 

signaling inhibition. 

(Changet 

al., 2021) 

Multiple 

plant 

sources 

Hederagenin Regulates 

Ras/JNK/NFAT4 axis 

(Maet al., 

2020) 

Podocarpus 

nagi 

Nagilactone D TGF-β/Smad3 signaling 

inhibition. 

(Liet al., 

2020) 

Andrographis 

herba 

Andrographolide AKT/ mTOR signaling 

regulation. 

(Liet al., 

2021) 

signaling proteins. 
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Table 6 Continued 

 

CHEMICAL 

GROUP 

 

SOURCE 

ACTIVE 

CONSTITUENT 

 

EFFECT 

 

REFS. 

 Birch bark Betulinic acid Wnt/β-catenin 

signaling inhibition. 

(Liet al., 

2021) 

 
Atractylodis 

rhizoma 

Atractylenolide III Nrf2/NQO1/ HO-1 

signalling activation. 

Huai and 

Ding. 

(2020) 

 
Siratia 

grosvenorii 

Mogrol TGF-β1 and AMPK 

signaling regulation. 

(Liuet al., 

2021) 

 
Aucklandiae 

radix 

Costunolide Anti-oxidative and 

anti-inflammatory 

effects; 

Reduces IL-6 and NF- 

KB expression; 

Inhibits α-SMA and 

collagen transcription; 

Downregulates Smad2 

signaling pathway and 

NOX4 expression. 

(Liet al., 

2019) 

  

T
E

R
P

E
N

O
ID

S
    

 
Artemisia 

annua L. 

Dihydroartemisnin Anti-inflammatory; 

Inhibit TGF-β1, 

JAK2, phosphorylated 

JAK2, STAT3, and 

phosphorylated 

STAT3 activity; 

(Youet al., 

2022) 



Page 9640 of 9666 

Manjunatha P Mudagal/Afr.J.Bio.Sc. 6(5)(2024).9599-9666 

 

 

 
 

 

 

 

Table 6 Continued 
 

 

CHEMICAL 

GROUP 

 

SOURCE 

ACTIVE 

CONSTITUENT 

 

EFFECT 

 

REFS. 

  

T
E

R
P

E
N

O
ID

S
 

Citrus fruits D-limonene Suppression of PI3K, 

AKT, NF-κB p65 

signalling cascade; 

Protection against lung 

fibrosis by Bleomycin. 

(Yanget 

al., 2021) 

Rabdosiae 

rubescentis 

herba 

Oridonin TGF-β/ Smad signaling 

regulation. 

(Fuet al., 

2018) 

Siraitia 

grosvenorii 

Mogroside IIIE Reduces Nitric Oxide 

release in macrophages; 

Reduces MPO; 

Downregulates TLR4, 

MyD88, MAPK 

signalling pathway. 

(Taoet al., 

2017) 

Centella 

asiatica 

Asiatic acid Reduces TGF-β1 

expression in lung tissues; 

Decreases Collagen, α- 

SMA, and TIMP-1 level; 

Inactivate Smads and 

ERK1/2 signaling 

pathways; 

(Donget 

al., 2017) 

Suppress 

alveoliinflammation; 

Mitigates lung damage 

and fibrosis. 
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6. Conclusion 

 

This review underscores the intricate involvement of cytokines in pulmonary fibrosis, 

shedding light on potential therapeutic avenues and emphasizing the need for further research 

in this complex field.Through exploring both conventional therapeutic avenues and emerging 

natural solutions, it provides a holistic perspective on managing this challenging condition. 

By bridging traditional and innovative approaches, this comprehensive analysis opens doors 

to promising directions for research and clinical practice in the realm of pulmonary fibrosis. 
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