
Mrs. A. Priyadarshini / Afr.J.Bio.Sc. 6(6) (2024).478-487 ISSN: 2663-2187

https://doi.org/10.33472/AFJBS.6.6.2024.478-487

Adaboost Fuzzy SVM Based Software Defect Prediction
1 Mrs. A. Priyadarshini, 2 Dr.V.Krishnapriya

1 Research Scholar, Sri Ramakrishna College Arts &Science and

Assistant Professor , PSGR Krishammal College for women, Coimbatore.
2 Associate Professor & Head Department of Computer Science with Cognitive System, Sri

Ramakrishna College Arts & Science, Coimbatore.
1 ndpriya7@gmail.com

Article History
Volume 6,Issue 6, 2024
Received:07 Mar 2024
Accepted : 31 Mar 2024
doi: 10.33472/AFJBS.6.6.2024.478-487

I. INTRODUCTION

Software fault prediction is the process of estimating errors in a software product during

and after development, using previously defined metrics or historical defect data gathered from

previous similar projects. Early in the development process, or even before starting a project,

the ability to estimate software faults can be invaluable in minimising software development

time and effort, where accurate SFP can reduce the efforts required to detect software errors

throughout the software life cycle and minimise the number of modules developed in each

activity.Defect prediction is a method of developing models that are used early in the process

to detect defective systems such as units or classes. This can be accomplished by categorising

the modules as defect-prone or not. To identify the classification module, various methods are

used, the most common of which are support vector classifiers (SVC), random forests, and

naive Bayes, decision trees (DT), and neural networks (NN). The detected defect prone

modules are given high priority during the progress testing phases, while the non-defect prone

Sciences

Abstract

Software Defect Prediction (SDP) is a critical task in the software

development process that forecasts which modules are more prone to errors

and faults before the testing phase begins. This paper proposes a SMOTE

algorithm to handle class balanced dataset issue. Adaboost Priority based

Fuzzy SVM classification technique is proposed for classifying the

balanced data sets. This proposed method reduces error rate compared with

other existing machine learning and Priority based Fuzzy SVM methods.

Experimental results showed that proposed scheme yields better accuracy

than the existing techniques.

Keywords: Software Defect Prediction, Balanced Data set, Adaboost

Classification

Page 479 of 10
Mrs. A. Priyadarshini / Afr.J.Bio.Sc. 6(6) (2024).478-487

modules are examined as time and budget allow. The classification feature, known as the

relationship between the attributes and the training dataset class label, is established on the

classifier method and examined using formulae for target categorization. These rules will also

be required in the future to define dataset class labels. Thus, the unknown datasets can be

categorized using the classification patterns and a classifier.

As a result of massive deployment of software, defining software defects, finding the

defect, and identifying it is a repetitive task for researchers. The primary goal of categorising

the software dataset as a model for bug prediction into defective and non-defective datasets is

to reduce the number of bugs in the dataset. According to this method, the input software

dataset is given to the classifier where the user knows the actual class values.

The following steps is the way the paper is structured. In Section II, a detailed description

of existing techniques in the field of Software Defect Prediction is furnished. The proposed

framework for software prediction with various datasets is discussed in Section III. Section IV

presents the experimental results. Finally, section V brings the paper to a conclusion.

II. RELATED WORK

This section provides a brief overview of existing techniques in the field of SDP.

Several researchers have used ML techniques for SDP during the early stages of software

development. To solve the Software Fault Prediction (SFP) problem, Kassaymeh S et al [1]

proposed the Salp Swarm Algorithm (SSA) combined with a Back Propagation Neural

Network (BPNN). The SFP problem is a well-known software engineering problem that is

concerned with anticipating software defects that are likely to appear during or after a software

project. In order to evaluate their method, they used six performance measures (AUC,

confusion matrix, sensitivity, specificity, accuracy, and ER). One limitation identified in their

research is the high computational cost of most data sets. Therefore, a new strategy to optimize

the proposed algorithm in terms of computational cost can be developed in future.

Mangla M et al [2] used a sequential ensemble model to formalise the SFP method. The

proposed model is tested using eight datasets from well-known repositories. The performance

of their sequential ensemble model is evaluated using various error metrics, including average

absolute error, average relative error, and prediction. Another error metric, root mean squared

error (RMSE), is not used for performance analysis because it assigns larger weights to larger

errors because it squares the errors before averaging out, and thus it is more suitable for

applications focusing on large errors. As a result, the RMSE should be more useful when large

errors are especially undesirable. The results of their model were encouraging, and they

supported the use of ensemble modelling for SFP.

DePaaS—Defect Prediction as a Service—a cloud-based, multi-model SDP framework

was proposed by Pandit M et al [3]. It is designed to be a global, unified platform that serves

both researchers who create SDP models and software industry practitioners who use the defect

prediction services provided by these SDP models. The author described the DePaaS usage

context, five types of users, and five initial use cases, as well as a layered, modular architecture.

It defined the structure and behaviour of architectural elements. It defined the structure and

behaviour of architectural elements.

Page 480 of 10
Mrs. A. Priyadarshini / Afr.J.Bio.Sc. 6(6) (2024).478-487

Odejide BJ et al [4] used sampling methods on software defect datasets to alleviate the

latent class imbalance problem by balancing the number of minority and majority class

instances present, resulting in new defect datasets that did not have a class imbalance problem.

On defect datasets from NASA and PROMISE repositories, three data oversampling methods

(SMOTE, ADASYN, and ROS) and two data under sampling methods (RUS and NM) are

used, while DT and RF classifiers are used on the original and newly developed software defect

datasets. The author demonstrated that the data sampling methods investigated can overcome

the class imbalance problem in SDP datasets. Furthermore, in the majority of cases, the data

sampling methods improved the prediction performances of the tested prediction models. In

terms of data sampling effectiveness, the examined oversampling approaches had a greater

(positive) influence on the prediction models than their under sampling counterparts.

Balogun AO et al [5] addressed the SDP concepts and the class imbalance problem as

described in order to develop a successful SDP model. On software defect datasets, data

sampling methods are used to alleviate the latent class imbalance problem by levelling the

number of minority and majority class instances observed, resulting in new defect datasets with

no class imbalance problem. On defect datasets from the NASA repository, three data

oversampling methods (SMOTE, ADASYN, and ROS) and two data under sampling methods

(RUS and NM) are used, while ensemble (Bagging and Boosting) NB and DT classifiers are

used on the original and newly developed software defect datasets.

For defect prediction, Mohammad UG et al [6] used machine learning techniques such

as RF and SVM, as well as ensemble classifiers such as bagging, Adaboost, voting, and

stacking. To evaluate the performance of an optimization model, key parameters such as

precision, recall, and f1-measure are used. After addressing the imbalanced dataset issue, the

proposed model improves the performance of all algorithms.

Wahono RS et al [7] presented a framework for comparing the performance of

classification algorithms in the prediction of software defects. The framework is made up of

nine NASA MDP datasets, ten classification algorithms, a ten fold cross validation model, and

an AUC accuracy indicator. Friedman and Nemenyi are used to test the significance of model

AUC differences. The experimental results show that the LR outperforms the others in the

majority of NASA MDP datasets. NB, NN, SVM, and k* all perform well, with no statistically

significant difference between them. Decision tree-based classifiers, as well as LDA and k-

NN, tend to underperform.

Tsunoda M et al [8] discussed how feature reduction techniques can improve the

predictive accuracy of software defect prediction models. They used the bandit algorithm (BA)

to select a suitable feature reduction technique for defect prediction in this work. The Bandit

Algorithm dynamically chooses the best technique from among candidates based on a

comparison of test and prediction results on tested modules. As a result, it is expected that BA

will prevent accuracy degradation. BANP had nearly the same or higher accuracy than existing

approaches. That is, BANP could reduce the effort required to evaluate reduction techniques

while avoiding the degradation of prediction accuracy. Their approaches suggested here can

assist in selecting a suitable feature reduction technique that can improve the prediction model's

overall accuracy.

Feng S et al [9] discovered in SDP that defect-containing datasets are normally

imbalanced, a problem known as the class imbalance problem. Oversampling techniques are

Page 481 of 10
Mrs. A. Priyadarshini / Afr.J.Bio.Sc. 6(6) (2024).478-487

commonly used to solve the problem. To address these issues, the Complexity-based

Oversampling Technique (COSTE) was proposed as a novel oversampling technique. COSTE

uses the complexity of instances rather than the distance between them to aid in the selection

of those that will be used to generate synthetic instances, etc.

Tang S et al [10] proposed the transfer-learning algorithm TSboostDF for solving the

CPDP problem. To overcome the shortcomings of the traditional CPDP algorithms,

TSboostDF combines the BLS sampling method, which is based on sample weight, with the

transfer-learning method. Their algorithm outperformed other transfer-learning-based CPDP

algorithms in terms of performance. The effects of multi-source transfer learning on CPDP

merit further research by integrating information from multiple source projects for knowledge

transfer. This strategy will assist classifiers in improving their performance on CPDP problems.

Pandey SK et al [11] ran 864 experiments across three public datasets, analysing the

noise endure for well-known SDP models. They had manually inserted noise ranging from 0%

to 80%. They used four baseline SDP methods and trained them on noisy datasets. To avoid

the problem of class imbalance, they used random sampling. The author proposed a method

that can tolerate maximum noise while still outperforming baseline methods, and he compared

the performance without using sampling methods. They discovered that the proposed approach

outperforms baseline technologies with noisy instances and imbalanced data.

The preceding discussion demonstrated various methodologies used for defect

prediction in the balanced dataset. Adaboost priority-based fuzzy SVM is used in our proposed

work to predict defects in various data sets. The section that follows elaborates on the proposed

methodology and the results obtained for performance measures.

III. METHODOLOGY

Software defect prediction (SDP) is a critical tool for assessing software quality and

lowering development costs. Data collected during the software lifecycle can be used to

forecast software defects. Many SDP models have been proposed recently; however, their

performance was not always ideal. In this study, defected data sets are classified as defective

or non-defective using Adaboost Priority based Fuzzy SVM.

Fig 3.1 Flow Chart for Proposed Methodology

Page 482 of 10
Mrs. A. Priyadarshini / Afr.J.Bio.Sc. 6(6) (2024).478-487

Fig 3.1 shows the flow of the proposed framework. It depicts that defected data set is taken

as input. The data set having defections are predicted by Adaboost priority based fuzzy SVM

technique. If the error count is greater than zero the data set is defective otherwise non

defective.

A. Data Set Pre Processing

The acquired data sets were pre-processed to prepare them for subsequent machine

learning approaches.

SMOTE (Synthetic Minority Over-sampling Technique) is a method of sampling the

minority population by generating data points synthetically. The number of nearest neighbours

chosen at random corresponds to the amount of sampling required. To begin, the difference

between the sample under consideration and its corresponding nearest neighbours is calculated,

multiplied by a random number between 0 and 1, and finally added to the original vector under

consideration. It is important to note, however, that SMOTE cannot be applied to the entire

data set and then split into testing and training sets.

If the data is first oversampled and then split into test and train sets, the results will be

misleading because there is a high chance that the same data will be present in both sets. To

avoid this, the data is first split into test and train sets, and the SMOTE is applied over the

training data set for proper testing set validation.

B. Adaboost Priority Based Fuzzy SVM

Adaboost is a popular boosting algorithm that gradually increases the weights of the

classifier's classification error weights. Create a new classifier in each iteration to overcome

the failure of the old classifier, and then link the newly created classifier to the voting process.

As a result of the Adaboost essence, the weak classifier is promoted to the strong classifier,

which is an adaptive lifting technique. As a result, as the number of training data increases, so

does the classification error rate. The Adaboost algorithm employs the following steps. Takes

the training dataset and all training samples to learn the first weak learning classifier, and also

provides the maximum number of iterations (M). The incorrect classification of sample and

other data is combined to represent the new training dataset, while the sample weight is

adjusted. Repeat these process M times. The new training data samples are generated for the

next iteration learning classifier, which is based on a new weight, and finally, the strong

classifier with improved classification effect is generated.

C. Performance Evaluation

One of the most important basic measures for evaluating the effectiveness of predictive

models is classification accuracy, also known as the right classification rate. It is used to

compute the proportion of correctly classified cases compared to total occurrences.

Precision is another metric that is calculated by dividing the number of instances

correctly classified as faulty (TP) by the total number of instances classified as defective (TP

+ FP). Furthermore, recall quantifies the proportion of defective cases correctly classified (TP)

to the total number of faulty instances (TP + FN). The F-score is a harmonic mean of accuracy

Page 483 of 10
Mrs. A. Priyadarshini / Afr.J.Bio.Sc. 6(6) (2024).478-487

and recall that has been used in numerous studies. By balancing TPR and FPR, ROC-AUC

calculates the area under the receiver operating characteristic (ROC) curve.

Accuracy =TP +TN/TP + TN + FP + FN (1)

Precision = TP /TP + FP (2)

Recall = TP /TP + FN (3)

F-Score =2 * Precision * Recall/Precision + Recall (4)

G-measure is another measure used in software defect prediction. It is defined as a harmonic

mean of recall and specificity. Probability of false alarm (PF) is the ratio of clean instances

wrongly classified as defective (FP) among the total clean instances (FP + TN).

IV. RESULT AND DISCUSSION

The following table shows the accuracy for the machine learning algorithm used in the

dataset.

TABLE I ACCURACY FOR THE USED ML ALGORITHMS IN THE DATASET – CM1

Algorithm name Accuracy

SVM 95

SMOTE SVM 96

SMOTE Fuzzy SVM 97

SMOTE Adoptive Fuzzy SVM 98.2

Fig 4.1Accuracy for the used ML algorithms in the dataset – CM1

SVM SMOTE SVM
SMOTE Fuzzy

SVM

SMOTE
Adoptive

Fuzzy SVM

Accuracy 95 96 97 98.2

93

94

95

96

97

98

99

A
cc

u
ra

cy
(%

)

Dataset -CM1

Page 484 of 10
Mrs. A. Priyadarshini / Afr.J.Bio.Sc. 6(6) (2024).478-487

The following table shows the accuracy values obtained for various machine learning

algorithms used and for the dataset KC1.

TABLE II ACCURACY FOR THE USED ML ALGORITHMS IN THE DATASET – KC1

Algorithm name Accuracy

SVM 91

SMOTE SVM 93.5

SMOTE Fuzzy SVM 95

SMOTE Adoptive Fuzzy SVM 97

Fig 4.2Accuracy for the used ML algorithms in the dataset – KC1

TABLE III ACCURACY FOR THE USED ML ALGORITHMS IN THE DATASET –

KC2

SVM SMOTE SVM
SMOTE Fuzzy

SVM

SMOTE
Adoptive

Fuzzy SVM

Accuracy 91 93.5 95 97

88

90

92

94

96

98

A
cc

u
ra

cy
(%

)

Dataset -KC1

Algorithm name Accuracy

SVM 90

SMOTE SVM 92

SMOTE Fuzzy SVM 94.2

SMOTE Adoptive Fuzzy

SVM
96

Page 485 of 10
Mrs. A. Priyadarshini / Afr.J.Bio.Sc. 6(6) (2024).478-487

Fig 4.3Accuracy for the used ML algorithms in the dataset – KC2

TABLE IVACCURACY FOR THE USED ML ALGORITHMS IN THE DATASET – PC1

Fig 4.4Accuracy for the used ML algorithms in the dataset – PC1

SVM SMOTE SVM
SMOTE Fuzzy

SVM

SMOTE
Adoptive

Fuzzy SVM

Accuracy 90 92 94.2 96

86

88

90

92

94

96

98

A
cc

u
ra

cy
(%

)

Dataset -KC2

SVM SMOTE SVM
SMOTE Fuzzy

SVM

SMOTE
Adoptive

Fuzzy SVM

Accuracy 94.8 95.6 96.2 98

93

94

95

96

97

98

99

A
cc

u
ra

cy
(%

)

Dataset-PC1

Algorithm name Accuracy

SVM
94.8

SMOTE SVM 95.6

SMOTE Fuzzy SVM 96.2

SMOTE Adoptive Fuzzy SVM 98

Page 486 of 10
Mrs. A. Priyadarshini / Afr.J.Bio.Sc. 6(6) (2024).478-487

 From the above graph, proposed SMOTE adaptive fuzzy SVM algorithm yields 98%

accuracy for the dataset we used PC1.

V. CONCLUSION

Software defect prediction is a technique that uses data to create a prediction model that

predicts future software faults. Several approaches have been proposed that make use of

various datasets, metrics, and performance measures. This paper investigated the use of

machine learning algorithms in the prediction of software bugs. The following machine

learning techniques were used: NB, Random Forest, and Priority based Fuzzy SVM. Three real

testing/debugging datasets are used in the evaluation process. The accuracy, precision, recall,

F-measure, and RMSE measures are used to collect experimental results. The results show that

ML techniques are effective methods for predicting future software bugs. The comparison

results revealed that the proposed classifier outperformed the others.

References:

[1]. Kassaymeh S, Abdullah S, Al-Betar MA, Alweshah M. Salp swarm optimizer for

modeling the software fault prediction problem. Journal of King Saud University-

Computer and Information Sciences. 2022 Jun 1;34(6):3365-78.

[2]. Mangla M, Sharma N, Mohanty SN. A sequential ensemble model for software fault

prediction. Innovations in Systems and Software Engineering. 2022 Jun;18(2):301-8.

[3]. Pandit M, Gupta D, Anand D, Goyal N, Aljahdali HM, Mansilla AO, Kadry S, Kumar

A. Towards design and feasibility analysis of DePaaS: AI based global unified software

defect prediction framework. Applied Sciences. 2022 Jan 4;12(1):493.

[4]. Odejide BJ, Bajeh AO, Balogun AO, Alanamu ZO, Adewole KS, Akintola AG, Salihu

SA, Usman-Hamza FE, Mojeed HA. An Empirical Study on Data Sampling Methods

in Addressing Class Imbalance Problem in Software Defect Prediction. InComputer

Science On-line Conference 2022 (pp. 594-610). Springer, Cham.

[5]. Balogun AO, Odejide BJ, Bajeh AO, Alanamu ZO, Usman-Hamza FE, Adeleke HO,

Mabayoje MA, Yusuff SR. Empirical Analysis of Data Sampling-Based Ensemble

Methods in Software Defect Prediction. InInternational Conference on Computational

Science and Its Applications 2022 (pp. 363-379). Springer, Cham.

[6]. Mohammad UG, Imtiaz S, Shakya M, Almadhor A, Anwar F. An Optimized Feature

Selection Method Using Ensemble Classifiers in Software Defect Prediction for

Healthcare Systems. Wireless Communications and Mobile Computing. 2022 Jun

27;2022.

[7]. Wahono RS, Herman NS, Ahmad S. A comparison framework of classification models

for software defect prediction. Advanced Science Letters. 2014 Oct 1;20(10-11):1945-

50.

[8]. Tsunoda M, Monden A, Toda K, Tahir A, Bennin KE, Nakasai K, Nagura M,

Matsumoto K. Using Bandit Algorithms for Selecting Feature Reduction Techniques

in Software Defect Prediction. In2022 IEEE/ACM 19th International Conference on

Mining Software Repositories (MSR) 2022 May 23 (pp. 670-681). IEEE.

Page 487 of 10
Mrs. A. Priyadarshini / Afr.J.Bio.Sc. 6(6) (2024).478-487

[9]. Feng S, Keung J, Yu X, Xiao Y, Bennin KE, Kabir MA, Zhang M. COSTE:

Complexity-based Over Sampling TEchnique to alleviate the class imbalance problem

in software defect prediction. Information and Software Technology. 2021 Jan

1;129:106432.

[10]. Tang S, Huang S, Zheng C, Liu E, Zong C, Ding Y. A novel cross-project software

defect prediction algorithm based on transfer learning. Tsinghua Science and

Technology. 2021 Aug 17;27(1):41-57.

[11]. Pandey SK, Mishra RB, Tripathi AK. Machine learning based methods for software

fault prediction: A survey. Expert Systems with Applications. 2021 Jun 15;172:114595.

[12]. Li, Z., Jing, X.Y. and Zhu, X., 2018. Progress on approaches to software defect

prediction. Iet Software, 12(3), pp.161-175.

[13]. Qiao, L., Li, X., Umer, Q. and Guo, P., 2020. Deep learning based software defect

prediction. Neurocomputing, 385, pp.100-110.

[14]. Cai, X., Niu, Y., Geng, S., Zhang, J., Cui, Z., Li, J. and Chen, J., 2020. An under‐

sampled software defect prediction method based on hybrid multi‐objective cuckoo

search. Concurrency and Computation: Practice and Experience, 32(5), p.e5478.

[15]. Li, N., Shepperd, M. and Guo, Y., 2020. A systematic review of unsupervised learning

techniques for software defect prediction. Information and Software Technology, 122,

p.106287.

[16]. Esteves, G., Figueiredo, E., Veloso, A., Viggiato, M. and Ziviani, N., 2020.

Understanding machine learning software defect predictions. Automated Software

Engineering, 27(3), pp.369-392.

