
Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) ISSN: 2663-2187

https://doi.org/10.33472/AFJBS.6 9.2024.3769-3784

Efficient GPU job allocation in Cloud using the predicted CPU and GPU

usage properties

Abuda Chad Ferrino1 and Tae Young Choe2*
1M.S. Student, Department of Computer AI Convergence Engineering, Kumoh National

Institute of Technology, Korea
2Professor, Department of Computer AI Convergence Engineering, Kumoh National

Institute of Technology, Korea

*Corresponding author: Tae Young Choe

Volume 6, Issue 9, 2024

Received: 09 March 2024

Accepted: 10 April 2024

Published: 20 May 2024

doi:10.33472/AFJBS.6.9.2024.3769-3784

1. Introduction
Deep learning is used in various fields such as Chat-GPT[1], that generates responses to user

inquiries. It is also used for structure design to predict equipment failure[2], automatic vehicle

incident model [3], and video anomaly detection[4]. With the success of deep learning used in

various fields of study, the complexity of these deep learning models also increases as a higher

number of parameters and layers yield better accuracy. As proposed on the Convolutional Neural

Network (CNN) used in [4], the stacked 3x3 convolution kernels from VGG16 have been increased

up to 7x7 convolution kernels. The increase in parameters and layers of a neural network model also

Abstract

One objective of GPU scheduling in Cloud is to minimize the

completion times of given deep learning models. Difficulties of GPU

scheduling come from a diverse type of parameters including model

architectures and GPU types. The previous GPU scheduling

research had used a small set of parameters, which made it difficult

to reduce the job completion time (JCT). This paper introduces an

improved GPU scheduling approach that reduces job completion

time by predicting execution time and various resource consumption

parameters including GPU Utilization%, GPU Memory

Utilization%, GPU Memory, and CPU Utilization%. The

experimental results show that the proposed model improves JCT by

up to 4.2%. on GPU Allocation based on Computing Efficiency

compared to Driple, and the makespan is reduced up to 18.9% on

GPU Allocation based on Execution time in comparison to Driple.

Keywords: Deep Learning, Cloud Computing, GPU Job Scheduling,

Convolutional Neural Network, Performance Estimation

https://doi.org/10.33472/AFJBS.6

 Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) Page 3770 to 10

increases the training time needed to train a given model to obtain a desirable accuracy. The trend in

the increased complexity of deep learning models not only increases training times but also increases

the hardware requirements of training such models. Scheduling in deep learning is to allocate

computational resources and jobs that will optimize and accelerate model training. One of the

difficulties of scheduling jobs for deep learning models is that there is a diverse amount of model

architectures. As a result, scheduling mechanisms must be able to adapt to these different model

architectures and allocate the jobs accordingly based on the specific needs of a given model.

Previous work [5] claimed that operations used in a model have different impacts on execution time,

but in this work, they only calculated the execution time of each operation and scaled it into an entire

iteration. Meanwhile [6] focused on the ‘features’ derived from the network being trained, the data

being trained, and the hardware that the model is being trained on, for evaluating resource

consumption to estimate execution time. However, this work only utilized a VGG16 model to test

their model. Meanwhile, others focused only on the Central Processing Unit (CPU) [7] to estimate

the execution time of Convolutional Neural Networks (CNN) on a single CNN model with three

different architectural sizes. Lastly, [8] introduced Graph Neural Network (GNN) and utilized

Graphics Processing Unit (GPU) and network parameters for resource consumption prediction to

estimate the resource consumption based on three prediction targets, for each resource consumption

parameter totaling up to 12 total prediction targets, while it considers the entire graph as an input,

which involves all the operations found within the graph, they only focused on GPU parameters such

as GPU Utilization% and GPU Memory Utilization%. In this paper, resource consumption and

execution time prediction is explored by evaluating the different Resource Consumption parameters

that are obtained from the GPU, and CPU, during training, to create a model that will be utilized to

predict resource consumption and execution time for predicting the GPU allocation of a given Deep

Learning task, and lastly, applying a scheduling algorithm, such as First-In First-Out (FIFO) and

Shortest Job First (SJF) to test the effectiveness of this approach in real-world applications. This

paper also introduces a new approach for predicting GPU Job allocation by using computing

efficiency, which is derived from the resource consumption prediction parameters. To achieve these

objectives this study aimed to:

- Create a dataset with four resource consumption parameters (GPU Utilization, GPU

Memory Utilization, CPU Utilization, and GPU Memory) and four prediction targets for

each parameter (Average Burst Time, Average Idle Time, Average Peak Consumption,

Execution Time) which totals up to 16 prediction metrics.

- Develop a model that will not only predict resource consumption but also the execution time

of a given input which can be used for scheduling jobs.

- Evaluate the performance of prediction targets as parameters for GPU allocation and its

effects on job scheduling using FIFO and SJF scheduling policies.

2. Background and Related Works
2.1. Job Profiling

Previous works such as [6] dissected a given model architecture and utilized what they called

Layer Features, which includes batch size, optimizer, and activation function. In addition, they also

included layer-specific features, such as Convolutional features, pooling features, and so on, which

are mostly found on a CNN model, in this example they only used VGG16. They also included some

GPU hardware specification as part of their training features to create a profiler that will predict the

execution time of each layer, to predict the full model execution time. However, this is very limited

to models that are like VGG16. Another work involves the use of a CPU [7] instead of a GPU for

profiling CNNs of varying model architecture sizes. They mainly utilized forward propagation and

backward propagation per image for their measurements to predict the execution time, which is also

found in [9]. However, in [9], they used a multi-GPU approach and were limited by small-scale CNN

 Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) Page 3771 to 10

model architectures. Lastly, in [8] they profiled an input task, as shown in Figure 1, and utilized

TensorFlow to convert it to a graph, which produces an adjacency matrix and feature matrix. This

job profiler produces three outputs that describe the resource consumption input, namely active time,

idle time, and average peak consumption. With these, they were able to estimate the resource

consumption of various models with different hyperparameter settings.

Figure 1. Input Task Conversion to Graph

2.2. Resource Consumption Parameters

The system used in this paper uses a job profiler based on Driple [10] to create a model that will

predict resource consumption by the usage of resource consumption parameters on GPU, and CPU

along with execution time, which will then be used for scheduling. While other works only used

GPU, CPU, or multi-GPU hardware settings. This paper proposes to utilize both GPU and CPU

parameters, namely GPU Utilization%, GPU Memory, GPU Memory Utilization%, and CPU

Utilization%. The GPU parameters are obtained via the usage of the NVIDIA System Management

Interface (nvidia-smi) library [11] and CPU parameters were obtained using psutil library which

calculates the CPU Utilization% for all cores. These parameters are profiled in an interval of 1/6 per

second. Previous work [8], utilized only GPU Utilization% and GPU Memory Utilization for GPU

parameters. However, in this approach the prediction output of these input parameters will be used

for GPU allocation of jobs, hence the addition of GPU Memory, and CPU Utilization% on the

resource consumption parameters are proposed. As these parameters can also affect the performance

of training a model as larger architectures would prefer bigger amounts of GPU Memory for optimal

performance, in some cases, it will not be able to train the model at all [12][17][18]. Moreover, based

on initial experiments using the same hyperparameter settings of a VGG model on 3 machines, as

seen in Table 1, the RTX2070 machine simulated as a low-performance system shows that the

resource usage between the other two machines is significant. This was identified as a CPU

bottleneck that can occur on lower-performance systems, which makes the training time longer and

makes it difficult to perform job profiling during training as shown on the vgg19 model.

Table 1. Profiling of Average GPU Utilization (%) , GPU Memory (MB) for VGG Models

Dataset GTX1080 RTX2070 Titan X Model

ImageNet

98.84%,7840.87 26.59%,5738.25 98.27%,11926.75 vgg11

99.18%,7856.85 16.16%, 5622.33 98.74%,11929.67 vgg16

89.95%,7712.80 - 98.88%,11930.06 vgg19

 Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) Page 3772 to 10

2.3. Evaluation of Resource Consumption

In this work, similar output parameters were utilized. However, in the context of a scheduler, the

amount of resources consumed by a job is of importance. Hence, the output parameters are proposed

to be defined as follows: burst time is the upper half of the median for each resource type, while idle

time is defined by the lower half of the median for each resource type. For example, for a workload

having a GPU utilization between 0-60%, the burst time is 31-60%, while idle time is 0-30%

utilization. For the peak consumption, it considers the maximum capacity of each resource type,

which is > 90% of its maximum value. In terms of GPU utilization, it will be data that’s > 90%

utilization and for memory, it will be > 90% of the total available memory in the GPU. These are

represented by the black dotted line representing the median and red dotted lines representing the

boundary for peak consumption data points on the right side, as seen on an example benchmark in

Figure 2. By measuring GPU Memory Utilization%, GPU Utilization%, GPU Memory, and CPU

Utilization% for each workload, they are converted into these three parameters using these criteria.

These are then grouped together by their respective hardware setup to create a dataset, which will be

used to train a model to produce the predicted resource consumption on a given GPU or hardware

setup. These predicted values are then used for GPU allocation of succeeding deep learning

workloads.

For scheduling, the execution time of a workload also helps with decision-making for job

allocation. Hence, in addition to the mentioned parameters, the execution time will also be included

as part of the input and output parameters. The input execution time will be measured during the job

profiling phase, and it will be normalized based on the maximum and minimum execution time

values found on the dataset. The output execution time will be part of the prediction targets along

with the three mentioned parameters, burst time, idle time, and average peak consumption.

Therefore, this paper profiles five different resource consumption parameters, GPU Utilization%,

GPU Memory Utilization%, GPU Memory, CPU Util%, and Wall-Clock Execution Time. Among

the hardware resource consumption parameters, each will have four prediction output targets (burst

time, idle time, average peak consumption, and execution time), having a total of 16 prediction

output parameters, as shown in Table 2.

Table 2. Resource Consumption Parameters for Profiling

Proposed Parameters Prediction Targets

GPU Utilization% Burst Time, Idle Time, Average Peak Consumption, Execution Time

GPU Memory Utilization% Burst Time, Idle Time, Average Peak Consumption, Execution Time

GPU Memory Burst Time, Idle Time, Average Peak Consumption, Execution Time

CPU Utilization% Burst Time, Idle Time, Average Peak Consumption, Execution Time

Wall Clock Execution Time -Part of the prediction targets above-

.

 Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) Page 3773 to 10

Figure 2. Output Parameters’ boundary lines in a K-means Cluster

2.4. Job Scheduling

Previous works on job scheduling implemented a generalized wide range of scheduling policies

[13], such as First-In-First-Out (FIFO) and Shortest Job First (SJF) policies, to measure the

makespan, which is the amount of time it takes to complete all the jobs scheduled, and job

completion time for deep learning training workloads. While Gavel focused on job allocation based

on policies, and to improve makespan and JCT, they did not use a prediction model and they did not

consider hardware resource consumption parameters. Another scheduler focused on a directed

acyclic graph (DAG) [14], which involves adding idle time in between jobs to decrease the average

job completion time of the workloads. While they used graphs as inputs, it did not involve deep

learning workloads. The proposed model has additional input parameters and prediction targets

compared to the previous work [8]. Specifically, the proposed model intends to profile jobs based on

GPU, and CPU parameters, such as GPU Utilization%, GPU Memory Utilization%, GPU Memory,

and CPU Utilization%, while also including Execution Time. This is different compared to the

previous model which only uses GPU Resources such as, GPU Utilization%, and GPU Memory

Utilization%, and network parameters. However, in this research, network parameters were not

considered since deep learning workloads are allocated on a single machine after GPU Allocation

and network parameters does not impact the performance of training. This research introduces

computing efficiency that is derived from the resource consumption prediction to schedule jobs. The

performance of computing efficiency is evaluated by measuring the makespan and average job

completion time using FIFO and SJF policies. A similar approach is also applied to job allocation

based on predicted execution time.

3. Methodology
3.1. Job Profiler

The system workflow consisted of two major parts, namely the job profiler and the job scheduler.

The job profiler is responsible for the creation of the proposed prediction model that will be utilized

to help the schedule decide which GPU to allocate for a given job. First, the job profiler, as seen in

Figure 3, takes in a training workload, which is represented by a given neural network model, the

dataset to be used, and its hyperparameters such as batch size, epochs, and optimizer. The training

 Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) Page 3774 to 10

workload consists of all the combinations of these settings, as shown in Table 3, which totals up to

384 training workloads for a given GPU.

Figure 3. Job Profiler Workflow

Table 3. Hyperparameter Settings

Datasets Optimizer Batch Size Epoch Models

ImageNet,

Cifar10
SGD,Adam 8,16,32,64 10,20

vgg11, vgg16, vgg19, lenet, googlenet, densenet40-k12,

densenet100-k12, inception3,inception4, resnet20,

resnet50, resnet101

When starting a training workload, the model being trained is converted into a graph, producing

an adjacency matrix that describes the connectivity between nodes and edges, having a value of 1 if

there is a connection and 0 if there is none, while the feature matrix consists of tensor size and node

type. The node type is the operations found in each model, such as Conv2D, that is converted into a

float number by implementing frequency encoding, which estimates the number of occurrences of a

given operation found in a dataset. This implementation is similar to the one used in Driple [10]. At

the same time, the resource consumption of the system was profiled based on four parameters: GPU

Memory Utilization%, GPU Utilization%, GPU Memory, and CPU Utilization% at a rate of 1/6 per

second, including the total Execution Time of a given workload. These parameters are segregated

into Burst data points and Idle data points using Kmeans, shown previously in Figure 2, to label them

into two clusters according to their resource consumption. These labeled data points are then used to

obtain the data for average burst time, average idle time, and average peak consumption rate. Once

the data for all parameters are converted, it is then combined with the adjacency matrix, feature

matrix, and execution time to create a single entry into the dataset which also includes, the GPU

type, the dataset used for training, and the hyperparameters used for the training. Given the settings

in Table 3, a dataset will contain 384 training workloads for each GPU that will be used for training

the proposed model. In this study, three GPUs were used for job profiling which means that there

were three datasets that were created.

Once the necessary datasets have been created, with the help of the Driple model [10], these

datasets were trained and evaluated based on the loss function Mean Square Error (MSE) where N is

the number of data, y is the ground truth and ŷ is the predicted value.

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − ŷ𝑖)

2𝑁
𝑖=1 (1)

 Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) Page 3775 to 10

3.2. Job Scheduler

Once the prediction model is trained, the best model will be used by the job scheduler, as shown

in Figure 4. The job scheduler takes in a deep learning training workload as an input, containing the

model architecture, and hyperparameter settings. Similarly, since the prediction model takes

adjacency matrices and feature matrices as input, the input workload must be converted to a graph to

obtain these matrices. After the conversion, the matrices will then be fed as an input to the prediction

model, and the prediction model will produce 16 prediction targets, one for each resource

consumption type, namely Average Burst Time, Average Idle Time, Average Peak Consumption,

and Execution Time. Among these prediction targets, the scheduler will decide which GPU should a

given job be allocated to by measuring the execution time for each dataset and measuring the

computing efficiency (ŷ𝑒𝑓𝑓) by obtaining a summation of the quotient of the predicted average peak

consumption rate (ŷ𝑝𝑒𝑎𝑘) divided by the predicted average burst time(ŷ𝑏𝑢𝑟𝑠𝑡) for all resource

consumption parameters.

ŷ𝑒𝑓𝑓 = ∑
ŷ𝑝𝑒𝑎𝑘

ŷ𝑏𝑢𝑟𝑠𝑡

𝑁
𝑖=1 (2)

For the execution time, the lower the value, the better the performance of a given workload,

hence, GPUs with the lowest predicted execution time will be preferred when scheduling this task.

On the other hand, for computing efficiency, the higher the average peak consumption-average burst

time ratio translates to the computing resources being fully utilized by the workload while having

minimal idle time. Therefore, when considering computing efficiency, the GPU with the highest

ratio will be preferred when scheduling a given task. This will be done for all available jobs in the

scheduler until all the jobs are assigned.

Algorithm 1. Pseudocode for scheduling based on execution time predictions.

 Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) Page 3776 to 10

Algorithm 2. Pseudocode for scheduling based on computing efficiency.

The performance of the scheduler will be measured by calculating the average job completion

time, and the makespan of the schedule. The scheduler workload that will be used for the

experiments will be using the combinations of the hyperparameter settings in Table 4. Since the

models trivial, alexnet, and resnet32 are not a part of the dataset in which the model was trained on,

these models will be considered as unknown inputs. The scheduler workload will involve up to 96

jobs for GPU allocation.

Table 4. Scheduler Workload

Datasets Optimizer Batch Size Epoch Models

ImageNet,

Cifar10
SGD,Adam 8,16,32,64 10,20 trivial, alexnet, resnet32

Figure 4. Scheduler Workflow

4. Experiments and Results

4.1. Experiment Setup

The experiment was applied on three different servers, which are GTX 1080 8GB, RTX 2070

8GB, and Titan X 12GB, as shown in Table 5. The operating system used was Ubuntu 18.04, while

using Tensorflow 2.5, and CUDA 11.2 to train a workload on two datasets, which are ImageNet and

Cifar10. Training setting is specified by using a combination of different optimizers, batch sizes,

epochs, and models as shown in Table 3, with the help of TensorFlow benchmark library [15]. For

training the prediction model, recommended setup by [8] was used and executed on PyTorch 1.8.1

 Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) Page 3777 to 10

Table 5. Machine Specifications

GPU Type CPU Model
GPU Memory

Capacity
Memory (RAM)

GTX1080 Intel Core i7-4790K 8 GB 32GB

RTX2070 AMD Ryzen 5 3600 8 GB 32GB

TitanX Intel Core i7-6900k 12 GB 64GB

4.2. Hyperparameter Analysis

To better understand the effects of each hyperparameter to the execution time, along with the

hardware specifications, Batch Size, Epochs, Optimizers, and GPU Execution times were analyzed

as shown in Figures 5,6, and 7. It can be inferred from the epoch comparison that for the settings

used in this experiment, when the number of epochs is doubled, the execution time is also doubled.

On the other hand, as the batch size increases, the execution time decreases, and the improvement is

approximately 20% from batch size 8 to batch size 16. However, as the batch size continues to

increase, the difference in execution time becomes minimal as seen on batch size 32 and batch size

64.

Figure 5. Execution Times based on Epochs and Batch Sizes among the 3 GPU Machines

For the optimizers, the difference in execution time is very minimal as shown in Figure 6. Hence,

when considering the execution time of a model based on hyperparameters, epochs and batch size

has a higher priority compared to optimizers. Lastly, in Figure 7, the execution time of these models

 Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) Page 3778 to 10

on three machines for these hyperparameter settings shows that GTX1080 has the highest average

execution time, and TitanX has the lowest average execution time. For the graphs shown in Figures

5,6, and 7, there are some points where the execution time is 0, this is due to the GPU Memory being

insufficient, hence the training model cannot be loaded onto the machine and was unable to train the

model. It can be observed in Figure 7, that for GTX1080, and RTX2070 it was unable to train the

models, that were configured to be Adam optimizer and batch size 64, while TitanX, having a bigger

memory capacity, was able to load and train the model.

Figure 6. Execution Times based on Optimizers among the 3 GPU Machines

Figure 7. Execution Time Comparison between 3 GPU Machines

 Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) Page 3779 to 10

4.3. Evaluating the proposed model

To test the accuracy of the prediction model, the proposed model was trained on the three GPU

datasets generated, to evaluate the validation loss, training time, and epochs. The original model is

based on the previous work [8] which uses GPU Utilization%, and GPU Memory Utilization% as

inputs. The proposed model changes the input parameters into GPU Utilization%, GPU Memory

Utilization%, CPU Utilization% , and GPU Memory, with also the inclusion of Execution Time.

Cases where the proposed model does not include Execution Time and removing one of the input

parameters, such as GPU Memory, were also observed to compare the validation loss between these

four setups. In Table 6, from the validation loss perspective, the original model has the best accuracy

on the RTX2070 dataset, while the Proposed Model has the best accuracy on the other two datasets,

the GTX1080 dataset and TitanX dataset. However, looking at the total loss across the three datasets,

the proposed model w/o Execution Time performs the best among the four models tested. While the

proposed model also has a higher loss compared to the original model, this is expected due to the

increase in parameter inputs, with an increase in total loss of about 6.84%.

Table 6. Validation Loss

Model

Validation Loss Evaluation

GTX1080 RTX2070 TitanX Total Loss
Total Loss vs Original

Model

Original Model 0.0217 0.0072 0.0281 0.057 0

Proposed Model w/o

Execution Time
0.0187 0.0098 0.0268 0.0553 -2.98245614

Proposed Model w/o

GPU Memory
0.0236 0.012 0.0319 0.0675 +18.42105263

Proposed Model 0.0171 0.0239 0.0199 0.0609 +6.842105263

 Considering the Validation Loss, it has been observed that the increase in input parameters

increases the complexity of the model, while being advantageous on some datasets, are all seeing

increases, among the sum of three different datasets in validation loss. Hence, in line with the

previous work [8], Transfer Learning is also explored in this research to determine the effects of

transfer learning on the validation loss and how it is constructed.

4.4. Transfer Learning

Transfer learning involves using a pre-trained model and using its features as a reference when

starting to train a new model. Using these features as a starting point, the training time and epochs

required to train a new model will be decreased while also maintaining a similar amount of

validation loss. It is also advantageous for models trained on smaller datasets [16], since the datasets

used in the experiments only consist of 320 samples for each GPU. To select which model to use as a

pre-trained model for transfer learning, based on the validation loss in Table 6 for the proposed

model, the GTX1080 dataset has the lowest validation loss, based on this, it has the best accuracy

among the other two datasets. The original model, despite having the best accuracy between all test

cases, was not considered because it uses a different set of inputs compared to the proposed model

and it would be lacking the features that are necessary to be transferred to the new model that will be

trained. Therefore, GTX1080 for the proposed model is selected to be the pre-trained model used for

transfer learning.

In Table 7, the validation loss is evaluated between the proposed model with Transfer Learning

and the model without Transfer Learning. For the validation loss, there is a 5% improvement in the

 Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) Page 3780 to 10

accuracy when Transfer Learning is applied, as the total loss goes down to 0.0578. This is almost

comparable to the previous model, Driple, which has a validation loss of 0.057.

Table 7. Validation Loss

Model

Validation Loss Evaluation

GTX1080 RTX2070 TitanX Total Loss
Total Loss vs Proposed

Model w/o TL

Proposed Model w/o TL 0.0171 0.0239 0.0199 0.0609 0

Proposed Model w/ TL 0.0174 0.0172 0.0232 0.0578 -5.090311987

Due to the improvement in the validation loss, the proposed model with transfer learning was used

as the prediction model that was used for scheduling jobs using FIFO and SJF.

4.5. Evaluation of Execution Time and Computing Efficiency

By utilizing the proposed model with transfer learning as the prediction model, the jobs in Table 4

was loaded in as input to the prediction model to predict where each job should be allocated based on

Execution Time and Computing Efficiency. For scheduling, execution time should be sufficient

when trying to allocate jobs, but in the context of Deep Learning, it is also important to know how

much resources would be needed for a job to perform optimally, hence computing efficiency (ŷ𝑒𝑓𝑓)

which takes the ratio of average peak consumption and burst time of a resource consumption

parameter, was also explored. A simulation running 12 jobs on each GPU with the same parameters

for both Execution Time and Computing Efficiency was tested on SJF Scheduling in two scenarios.

First, the prediction model will predict the execution time and computing efficiency, and then the

jobs will be sorted before or after the jobs are allocated to each of the available GPUs. In Table 8, the

Average JCT and Makespan of the simulation show that for execution time, the Average JCT is

lower if the jobs are sorted after allocation. Despite the makespan being a few seconds higher

compared to sorting jobs before allocation, the difference is minimal. On the other hand, for the

simulation of SJF in terms of efficiency, as observed in Table 9, the results are similar to Execution

Time, however the difference between the average JCT is minimal, but the difference in makespan is

substantial compared to the simulation in terms of Execution Time. Based on the results from these

two simulations, sorting the jobs after allocation is preferable due to it being consistently lower in

average JCT and having a better makespan in this setup.

Table 8. SJF Simulation for Execution Time Simulation (seconds)

 GTX1080 RTX2070 TitanX
Average

JCT
Makespan

SJF sort job before allocation 6977.265 2282.544 2368.067 968.9897 2090.189

SJF sort job after allocation 2021.589 1421.938 7475.873 909.95 2095.376

 Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) Page 3781 to 10

Table 9. SJF Simulation for Efficiency (seconds)

 GTX1080 RTX2070 TitanX
Average

JCT
Makespan

SJF sort job before allocation 1165.553 3350.324 7358.036 989.4928 3400.582

SJF sort job after allocation 4596.604 2503.162 4745.45 987.1014 2148.096

4.6. Performance Comparison based on Computing Efficiency

Since the previous work [8] uses different input parameters compared to the proposed model,

which includes CPU Util%, GPU Memory, and Execution Time, the proposed model and the Driple

model were compared based on scheduling based on FIFO and SJF (sorting after job allocation),

with the average JCT and makespan as the evaluation parameters. Since the previous work does not

have the Execution Time as its parameter, the comparison was based on the computing efficiency by

using Equation 2 to calculate the computing efficiency for each prediction target and obtaining the

maximum total value for each resource consumption parameter as basis for GPU allocation. The

GPU allocation mostly ignored the GTX1080 GPU for this setup, having 0 jobs allocated on this

machine, and the rest of the jobs distributed on the other two machines for both FIFO and SJF, as

observed in Tables 10 and 11. Still, it can be observed that while Average JCT is higher on FIFO, it

is about 4.2% lower than Driple for SJF. However, looking at the makespan for each scheduling

algorithm, it can be considered that Driple is superior, even though the proposed model is marginally

higher by approximately 1.2% on SJF.

Table 10 FIFO based on Computing Efficiency (seconds)

 GTX1080 RTX2070 TitanX
Average

JCT
Makespan

Driple 0 13814.65 14048.61 13970.62 30734.92

Proposed Model 0 11135.98 19748.27 14903.86 35929.98

Table 11. SJF based on Computing Efficiency (seconds)

 GTX1080 RTX2070 TitanX
Average

JCT
Makespan

Driple 0 13182.03 5737.863 9459.945 29827.69

Proposed Model 0 5957.097 14534.12 9060.584 30182.41

4.7. GPU Allocation based on Execution Time

This time, the proposed model based on execution time prediction was observed for FIFO and

SJF algorithm, the predicted execution time with the minimum value was the basis for GPU

allocation. As shown in Table 12, the scheduling based on the execution time prediction of the

proposed model increases by approximately 19.8% when using SJF scheduling compared to FIFO.

However, the makespan decreases by approximately 12.66% when using SJF scheduling. Comparing

this with the prediction results based on computing efficiency, the makespan is reduced by up to

18.9%.

 Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) Page 3782 to 10

Table 12. Scheduling based on Execution Time Prediction (seconds)

 GTX1080 RTX2070 TitanX
Average

JCT
Makespan

Proposed Model (FIFO) 1137.847 10285.88 11487.41 9367.663 27694.29

Proposed Model (SJF) 1170.366 12684.82 12580.51 11225.95 24190.34

As seen in the GPU allocation based on Execution Time and Computing Efficiency, the scheduler

performed better on makespan when based on Execution Time, and on average JCT, when based on

computing efficiency. Regardless, GPU Allocation based on computing efficiency ignores one of the

machines, so even if the JCT was ideal there is still room for improvement. While the GPU

Allocation based on Execution Time improves the makespan and uses all the machines, the JCT

higher compared to the allocation based on Execution Time. Hence, improvements in future works,

such as combining both the efficiency and execution time to improve both JCT and Makespan are

considered.

5. Conclusion
On multiple tests on the hyperparameter settings used in this research, it was found that epochs

are the major factor when it comes to execution time, with the batch size also having a big impact if

the batch size is smaller. With a growing batch size, the reduction in execution time becomes less

apparent. For smaller datasets, it is concluded that transfer learning performs way better than models

without transfer learning, improving the model accuracy by 5.09%. By simulating job sorting for SJF

before allocation and after allocation, it was found that sorting jobs after allocation gives a 6.09%

boost in average JCT, while makespan can be improved by up to 36.83%. Using this information, the

scheduling mechanism was tested based on execution time and computing efficiency using FIFO and

SJF (sorting after job allocation). The results show that GPU allocation based on computing

efficiency, compared with the previous work, the average JCT is improved up to 4.2%. While on the

case of GPU allocation based on execution time, the makespan was improved up to 18.9% compared

to the previous work. However, there were still cases where the GPU allocation based on Execution

Time increased the average JCT, and the allocation based on computing efficiency, did not distribute

the jobs to all the available machines. Due to these observations, future work is considered which

involves combining both the GPU allocation based on Computing Efficiency and GPU Allocation

based on Execution Time, to seek improvements on both JCT and Makespan. This work is also

limited by using only Convolutional Neural Networks. Including more models from different

applications and having a bigger dataset available for this application would help create a more

generalized model for scheduling in the future.

6. Acknowledgements
This research was supported by Kumoh National Institute of Technology (2022-2023)

References

[1] OpenAI (2023). GPT-4 Technical Report. ArXiv, abs/2303.08774.

doi: https://doi.org/10.48550/arXiv.2303.08774

[2] Jang, S.B. (2021). Deep Neural Network Structure Design for Equipment Failure Prediction in

Smart Factory. Asia-pacific Journal of Convergent Research Interchange, FuCoS, ISSN : 2508-9080

(Print); 2671-5325 (Online), Vol.7, No.12, 1-10.

doi: http://dx.doi.org/10.47116/apjcri.2021.12.01

 Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) Page 3783 to 10

[3] Kim, D. (2018). Deep Learning Neural Networks for Automatic Vehicle Incident Detection.

Asia-pacific Journal of Convergent Research Interchange. SoCoRI, ISSN : 2508-9080 (Print); 2671-

5325 (Online), Vol.4, No.3, pp. 107-117

doi: http://dx.doi.org/10.14257/apjcri.2018.09.11

[4] Kim, T.H. (2022).Video Anomaly Detection Based on Convolutional Neural Network, Asia-

pacific Journal of Convergent Research Interchange, FuCoS, ISSN : 2508-9080 (Print); 2671-5325

(Online), Vol.8, No.11, pp. 73-87

doi: http://dx.doi.org/10.47116/apjcri.2022.11.06

[5] Yu, G., Gao. Y, Golikov P., Pekhimenko G. (2021), Habitat: A Runtime-Based Computational

Performance Predictor for Deep Neural Network Training. Proceedings of the 2021 USENIX Annual

Technical Conference, USENIX ATC'21,

[6] Justus, D., Brennan, J., Bonner, S., & McGough, A.S. (2018). Predicting the Computational Cost

of Deep Learning Models. 2018 IEEE International Conference on Big Data (Big Data), 3873-3882.

doi: https://doi.org/10.1109/BigData.2018.8622396

[7] Viebke, A., Pllana, S., Memeti, S., & Kolodziej, J. (2019). Performance Modelling of Deep

Learning on Intel Many Integrated Core Architectures. 2019 International Conference on High

Performance Computing & Simulation (HPCS), 724-731.

doi: https://doi.org/10.1109/HPCS48598.2019.9188090

[8] Yang, G., Shin, C, Lee, J., Yoo, Y. & Yoo, C. (2022). Prediction of the Resource Consumption of

Distributed Deep Learning Systems. Proceedings of the ACM on Measurement and Analysis of

Computing Systems. 6. 1-25.

doi: https://doi.org/10.1145/3530895

[9] Pei, Z., Li, C., Qin, X., Chen, X., Wei, G. (2019). Iteration Time Prediction for CNN in Multi-

GPU Platform: Modeling and Analysis. IEEE Access. PP. 1-1.

doi: https://doi.org/10.1109/ACCESS.2019.2916550

[10] Yang, G. (2022). Driple, https://github.com/gsyang33/Driple

[11] https://developer.nvidia.com/nvidia-system-management-interface

[12] Shin C., Yang G., Yoo Y., Lee J., Yoo C. (2022). Xonar: Profiling-based Job Orderer for

Distributed Deep Learning. 2022 IEEE 15th International Conference on Cloud Computing

(CLOUD), pp. 112-114

doi: https://doi.org/10.1109/CLOUD55607.2022.00030

[13] D. Narayanan, K. Santhanam, F. Kazhamiaka, A. Phanishayee, M. Zaharia (2020).

Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning Workloads. Proceedings of the

14th USENIX Symposium on Operating Systems Design and Implementation, PP. 481-498

[14] Y. Duan and J. Wu (2021). Improving Learning-Based DAG Scheduling by Inserting Deliberate

Idle Slots. IEEE Network, vol. 35, no. 6, pp. 133-139

doi: 10.1109/MNET.001.2100231

 Abuda Chad Ferrino/Afr.J.Bio.Sc. 6(9) (2024) Page 3784 to 10

[15] https://github.com/tensorflow/benchmarks/tree/master/scripts/tf_cnn_benchmarks, (2022)

[16] Shu, M. (2019). Deep learning for image classification on very small datasets using transfer

learning.

[17] Tanya Street and Jugal Simelane. (2019). Research on Cloud Service Provider Recommendation

Model Based on User Preference. International Journal of Smart Business and Technology, vol.7,

no.1, May, (2019), Global Vision Press, pp:1-16,10.21742/IJSBT.2019.7.1.01

[18] Anitha R and C Vidyaraj (2019). An Adaptive Computational Model for Threshold Based VM

Migration and Job Scheduling in Cloud. International Journal of Future Generation Communication

and Networking, vol.12, no.2, pp. 1-10). Doi: 10.33832/ijfgcn.2019.12.2.01.

