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1. Introduction 
Deep learning is used in various fields such as Chat-GPT[1], that generates responses to user 

inquiries. It is also used for structure design to predict equipment failure[2], automatic vehicle 

incident model [3], and video anomaly detection[4]. With the success of deep learning used in 

various fields of study, the complexity of these deep learning models also increases as a higher 

number of parameters and layers yield better accuracy. As proposed on the Convolutional Neural 

Network (CNN) used in [4], the stacked 3x3 convolution kernels from VGG16 have been increased 

up to 7x7 convolution kernels. The increase in parameters and layers of a neural network model also 
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increases the training time needed to train a given model to obtain a desirable accuracy. The trend in 

the increased complexity of deep learning models not only increases training times but also increases 

the hardware requirements of training such models. Scheduling in deep learning is to allocate 

computational resources and jobs that will optimize and accelerate model training. One of the 

difficulties of scheduling jobs for deep learning models is that there is a diverse amount of model 

architectures. As a result, scheduling mechanisms must be able to adapt to these different model 

architectures and allocate the jobs accordingly based on the specific needs of a given model. 

Previous work [5] claimed that operations used in a model have different impacts on execution time, 

but in this work, they only calculated the execution time of each operation and scaled it into an entire 

iteration. Meanwhile [6] focused on the ‘features’ derived from the network being trained, the data 

being trained, and the hardware that the model is being trained on, for evaluating resource 

consumption to estimate execution time. However, this work only utilized a VGG16 model to test 

their model. Meanwhile, others focused only on the Central Processing Unit (CPU) [7] to estimate 

the execution time of Convolutional Neural Networks (CNN) on a single CNN model with three 

different architectural sizes. Lastly, [8] introduced Graph Neural Network (GNN) and utilized 

Graphics Processing Unit (GPU) and network parameters for resource consumption prediction to 

estimate the resource consumption based on three prediction targets, for each resource consumption 

parameter totaling up to 12 total prediction targets, while it considers the entire graph as an input, 

which involves all the operations found within the graph, they only focused on GPU parameters such 

as GPU Utilization% and GPU Memory Utilization%. In this paper, resource consumption and 

execution time prediction is explored by evaluating the different Resource Consumption parameters 

that are obtained from the GPU, and CPU, during training, to create a model that will be utilized to 

predict resource consumption and execution time for predicting the GPU allocation of a given Deep 

Learning task, and lastly, applying a scheduling algorithm, such as First-In First-Out (FIFO) and 

Shortest Job First (SJF) to test the effectiveness of this approach in real-world applications. This 

paper also introduces a new approach for predicting GPU Job allocation by using computing 

efficiency, which is derived from the resource consumption prediction parameters. To achieve these 

objectives this study aimed to: 

- Create a dataset with four resource consumption parameters (GPU Utilization, GPU 

Memory Utilization, CPU Utilization, and GPU Memory) and four prediction targets for 

each parameter (Average Burst Time, Average Idle Time, Average Peak Consumption, 

Execution Time) which totals up to 16 prediction metrics. 

- Develop a model that will not only predict resource consumption but also the execution time 

of a given input which can be used for scheduling jobs. 

- Evaluate the performance of prediction targets as parameters for GPU allocation and its 

effects on job scheduling using FIFO and SJF scheduling policies. 

 

2. Background and Related Works 
2.1. Job Profiling 

Previous works such as [6] dissected a given model architecture and utilized what they called 

Layer Features, which includes batch size, optimizer, and activation function.  In addition, they also 

included layer-specific features, such as Convolutional features, pooling features, and so on, which 

are mostly found on a CNN model, in this example they only used VGG16. They also included some 

GPU hardware specification as part of their training features to create a profiler that will predict the 

execution time of each layer, to predict the full model execution time. However, this is very limited 

to models that are like VGG16. Another work involves the use of a CPU [7] instead of a GPU for 

profiling CNNs of varying model architecture sizes.  They mainly utilized forward propagation and 

backward propagation per image for their measurements to predict the execution time, which is also 

found in [9]. However, in [9], they used a multi-GPU approach and were limited by small-scale CNN 
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model architectures. Lastly, in [8] they profiled an input task, as shown in Figure 1, and utilized 

TensorFlow to convert it to a graph, which produces an adjacency matrix and feature matrix. This 

job profiler produces three outputs that describe the resource consumption input, namely active time, 

idle time, and average peak consumption. With these, they were able to estimate the resource 

consumption of various models with different hyperparameter settings. 

 

Figure 1. Input Task Conversion to Graph 

2.2. Resource Consumption Parameters 

The system used in this paper uses a job profiler based on Driple [10] to create a model that will 

predict resource consumption by the usage of resource consumption parameters on GPU, and CPU 

along with execution time, which will then be used for scheduling. While other works only used 

GPU, CPU, or multi-GPU hardware settings. This paper proposes to utilize both GPU and CPU 

parameters, namely GPU Utilization%, GPU Memory, GPU Memory Utilization%, and CPU 

Utilization%. The GPU parameters are obtained via the usage of the NVIDIA System Management 

Interface (nvidia-smi) library [11] and CPU parameters were obtained using psutil library which 

calculates the CPU Utilization% for all cores. These parameters are profiled in an interval of 1/6 per 

second. Previous work [8], utilized only GPU Utilization% and GPU Memory Utilization for GPU 

parameters. However, in this approach the prediction output of these input parameters will be used 

for GPU allocation of jobs, hence the addition of GPU Memory, and CPU Utilization% on the 

resource consumption parameters are proposed. As these parameters can also affect the performance 

of training a model as larger architectures would prefer bigger amounts of GPU Memory for optimal 

performance, in some cases, it will not be able to train the model at all [12][17][18]. Moreover, based 

on initial experiments using the same hyperparameter settings of a VGG model on 3 machines, as 

seen in Table 1, the RTX2070 machine simulated as a low-performance system shows that the 

resource usage between the other two machines is significant. This was identified as a CPU 

bottleneck that can occur on lower-performance systems, which makes the training time longer and 

makes it difficult to perform job profiling during training as shown on the vgg19 model. 

Table 1. Profiling of Average GPU Utilization (%) , GPU Memory (MB) for VGG Models 

Dataset GTX1080 RTX2070 Titan X Model 

ImageNet 

98.84%,7840.87  26.59%,5738.25 98.27%,11926.75 vgg11 

99.18%,7856.85 16.16%, 5622.33 98.74%,11929.67 vgg16  

89.95%,7712.80 - 98.88%,11930.06 vgg19 
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2.3. Evaluation of Resource Consumption 

In this work, similar output parameters were utilized. However, in the context of a scheduler, the 

amount of resources consumed by a job is of importance. Hence, the output parameters are proposed 

to be defined as follows: burst time is the upper half of the median for each resource type, while idle 

time is defined by the lower half of the median for each resource type. For example, for a workload 

having a GPU utilization between 0-60%, the burst time is 31-60%, while idle time is 0-30% 

utilization. For the peak consumption, it considers the maximum capacity of each resource type, 

which is > 90% of its maximum value. In terms of GPU utilization, it will be data that’s > 90% 

utilization and for memory, it will be > 90% of the total available memory in the GPU. These are 

represented by the black dotted line representing the median and red dotted lines representing the 

boundary for peak consumption data points on the right side, as seen on an example benchmark in 

Figure 2. By measuring GPU Memory Utilization%, GPU Utilization%, GPU Memory, and CPU 

Utilization% for each workload, they are converted into these three parameters using these criteria. 

These are then grouped together by their respective hardware setup to create a dataset, which will be 

used to train a model to produce the predicted resource consumption on a given GPU or hardware 

setup. These predicted values are then used for GPU allocation of succeeding deep learning 

workloads. 

For scheduling, the execution time of a workload also helps with decision-making for job 

allocation. Hence, in addition to the mentioned parameters, the execution time will also be included 

as part of the input and output parameters. The input execution time will be measured during the job 

profiling phase, and it will be normalized based on the maximum and minimum execution time 

values found on the dataset. The output execution time will be part of the prediction targets along 

with the three mentioned parameters, burst time, idle time, and average peak consumption. 

Therefore, this paper profiles five different resource consumption parameters, GPU Utilization%, 

GPU Memory Utilization%, GPU Memory, CPU Util%, and Wall-Clock Execution Time. Among 

the hardware resource consumption parameters, each will have four prediction output targets (burst 

time, idle time, average peak consumption, and execution time), having a total of 16 prediction 

output parameters, as shown in Table 2. 

Table 2. Resource Consumption Parameters for Profiling 

Proposed Parameters Prediction Targets 

GPU Utilization% Burst Time, Idle Time, Average Peak Consumption, Execution Time 

GPU Memory Utilization% Burst Time, Idle Time, Average Peak Consumption, Execution Time 

GPU Memory Burst Time, Idle Time, Average Peak Consumption, Execution Time  

CPU Utilization% Burst Time, Idle Time, Average Peak Consumption, Execution Time 

Wall Clock Execution Time -Part of the prediction targets above- 

.  
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Figure 2. Output Parameters’ boundary lines in a K-means Cluster 

2.4. Job Scheduling 

Previous works on job scheduling implemented a generalized wide range of scheduling policies 

[13], such as First-In-First-Out (FIFO) and Shortest Job First (SJF) policies, to measure the 

makespan, which is the amount of time it takes to complete all the jobs scheduled, and job 

completion time for deep learning training workloads. While Gavel focused on job allocation based 

on policies, and to improve makespan and JCT, they did not use a prediction model and they did not 

consider hardware resource consumption parameters. Another scheduler focused on a directed 

acyclic graph (DAG) [14], which involves adding idle time in between jobs to decrease the average 

job completion time of the workloads. While they used graphs as inputs, it did not involve deep 

learning workloads. The proposed model has additional input parameters and prediction targets 

compared to the previous work [8]. Specifically, the proposed model intends to profile jobs based on 

GPU, and CPU parameters, such as GPU Utilization%, GPU Memory Utilization%, GPU Memory, 

and CPU Utilization%, while also including Execution Time. This is different compared to the 

previous model which only uses GPU Resources such as, GPU Utilization%, and GPU Memory 

Utilization%, and network parameters. However, in this research, network parameters were not 

considered since deep learning workloads are allocated on a single machine after GPU Allocation 

and network parameters does not impact the performance of training. This research introduces 

computing efficiency that is derived from the resource consumption prediction to schedule jobs. The 

performance of computing efficiency is evaluated by measuring the makespan and average job 

completion time using FIFO and SJF policies. A similar approach is also applied to job allocation 

based on predicted execution time.  

 

 

3. Methodology 
3.1. Job Profiler 

The system workflow consisted of two major parts, namely the job profiler and the job scheduler. 

The job profiler is responsible for the creation of the proposed prediction model that will be utilized 

to help the schedule decide which GPU to allocate for a given job. First, the job profiler, as seen in 

Figure 3, takes in a training workload, which is represented by a given neural network model, the 

dataset to be used, and its hyperparameters such as batch size, epochs, and optimizer. The training 
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workload consists of all the combinations of these settings, as shown in Table 3, which totals up to 

384 training workloads for a given GPU.  

 

 

Figure 3. Job Profiler Workflow 

Table 3. Hyperparameter Settings 

Datasets Optimizer Batch Size Epoch Models 

ImageNet, 

Cifar10 
SGD,Adam 8,16,32,64 10,20 

vgg11, vgg16, vgg19, lenet, googlenet, densenet40-k12, 

densenet100-k12, inception3,inception4, resnet20, 

resnet50, resnet101 

 

When starting a training workload, the model being trained is converted into a graph, producing 

an adjacency matrix that describes the connectivity between nodes and edges, having a value of 1 if 

there is a connection and 0 if there is none, while the feature matrix consists of tensor size and node 

type. The node type is the operations found in each model, such as Conv2D, that is converted into a 

float number by implementing frequency encoding, which estimates the number of occurrences of a 

given operation found in a dataset. This implementation is similar to the one used in Driple [10]. At 

the same time, the resource consumption of the system was profiled based on four parameters: GPU 

Memory Utilization%, GPU Utilization%, GPU Memory, and CPU Utilization% at a rate of 1/6 per 

second, including the total Execution Time of a given workload. These parameters are segregated 

into Burst data points and Idle data points using Kmeans, shown previously in Figure 2, to label them 

into two clusters according to their resource consumption. These labeled data points are then used to 

obtain the data for average burst time, average idle time, and average peak consumption rate. Once 

the data for all parameters are converted, it is then combined with the adjacency matrix, feature 

matrix, and execution time to create a single entry into the dataset which also includes, the GPU 

type, the dataset used for training, and the hyperparameters used for the training. Given the settings 

in Table 3, a dataset will contain 384 training workloads for each GPU that will be used for training 

the proposed model. In this study, three GPUs were used for job profiling which means that there 

were three datasets that were created.  

Once the necessary datasets have been created, with the help of the Driple model [10], these 

datasets were trained and evaluated based on the loss function Mean Square Error (MSE) where N is 

the number of data, y is the ground truth and ŷ is the predicted value. 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑦𝑖 − ŷ𝑖)

2𝑁
𝑖=1     (1) 
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3.2. Job Scheduler 

Once the prediction model is trained, the best model will be used by the job scheduler, as shown 

in Figure 4. The job scheduler takes in a deep learning training workload as an input, containing the 

model architecture, and hyperparameter settings. Similarly, since the prediction model takes 

adjacency matrices and feature matrices as input, the input workload must be converted to a graph to 

obtain these matrices. After the conversion, the matrices will then be fed as an input to the prediction 

model, and the prediction model will produce 16 prediction targets, one for each resource 

consumption type, namely Average Burst Time, Average Idle Time, Average Peak Consumption, 

and Execution Time. Among these prediction targets, the scheduler will decide which GPU should a 

given job be allocated to by measuring the execution time for each dataset and measuring the 

computing efficiency (ŷ𝑒𝑓𝑓) by obtaining a summation of the quotient of the predicted average peak 

consumption rate (ŷ𝑝𝑒𝑎𝑘 ) divided by the predicted average burst time( ŷ𝑏𝑢𝑟𝑠𝑡 ) for all resource 

consumption parameters. 

ŷ𝑒𝑓𝑓 = ∑
ŷ𝑝𝑒𝑎𝑘

ŷ𝑏𝑢𝑟𝑠𝑡

𝑁
𝑖=1      (2) 

For the execution time, the lower the value, the better the performance of a given workload, 

hence, GPUs with the lowest predicted execution time will be preferred when scheduling this task. 

On the other hand, for computing efficiency, the higher the average peak consumption-average burst 

time ratio translates to the computing resources being fully utilized by the workload while having 

minimal idle time. Therefore, when considering computing efficiency, the GPU with the highest 

ratio will be preferred when scheduling a given task. This will be done for all available jobs in the 

scheduler until all the jobs are assigned.  

 

 

Algorithm 1. Pseudocode for scheduling based on execution time predictions. 
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Algorithm 2. Pseudocode for scheduling based on computing efficiency. 

The performance of the scheduler will be measured by calculating the average job completion 

time, and the makespan of the schedule. The scheduler workload that will be used for the 

experiments will be using the combinations of the hyperparameter settings in Table 4. Since the 

models trivial, alexnet, and resnet32 are not a part of the dataset in which the model was trained on, 

these models will be considered as unknown inputs. The scheduler workload will involve up to 96 

jobs for GPU allocation. 

Table 4. Scheduler Workload 

Datasets Optimizer Batch Size Epoch Models 

ImageNet, 

Cifar10 
SGD,Adam 8,16,32,64 10,20 trivial, alexnet, resnet32 

 

 

Figure 4. Scheduler Workflow 

4. Experiments and Results 

 

4.1. Experiment Setup 

The experiment was applied on three different servers, which are GTX 1080 8GB, RTX 2070 

8GB, and Titan X 12GB, as shown in Table 5. The operating system used was Ubuntu 18.04, while 

using Tensorflow 2.5, and CUDA 11.2 to train a workload on two datasets, which are ImageNet and 

Cifar10. Training setting is specified by using a combination of different optimizers, batch sizes, 

epochs, and models as shown in Table 3, with the help of TensorFlow benchmark library [15]. For 

training the prediction model, recommended setup by [8] was used and executed on PyTorch 1.8.1 
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Table 5. Machine Specifications 

GPU Type CPU Model 
GPU Memory 

Capacity 
Memory (RAM) 

GTX1080 Intel Core i7-4790K 8 GB 32GB 

RTX2070 AMD Ryzen 5 3600 8 GB 32GB 

TitanX Intel Core i7-6900k 12 GB 64GB 

 

4.2. Hyperparameter Analysis 

To better understand the effects of each hyperparameter to the execution time, along with the 

hardware specifications, Batch Size, Epochs, Optimizers, and GPU Execution times were analyzed 

as shown in Figures 5,6, and 7. It can be inferred from the epoch comparison that for the settings 

used in this experiment, when the number of epochs is doubled, the execution time is also doubled. 

On the other hand, as the batch size increases, the execution time decreases, and the improvement is 

approximately 20% from batch size 8 to batch size 16. However, as the batch size continues to 

increase, the difference in execution time becomes minimal as seen on batch size 32 and batch size 

64. 

 

 

Figure 5. Execution Times based on Epochs and Batch Sizes among the 3 GPU Machines 

For the optimizers, the difference in execution time is very minimal as shown in Figure 6. Hence, 

when considering the execution time of a model based on hyperparameters, epochs and batch size 

has a higher priority compared to optimizers. Lastly, in Figure 7, the execution time of these models 
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on three machines for these hyperparameter settings shows that GTX1080 has the highest average 

execution time, and TitanX has the lowest average execution time. For the graphs shown in Figures 

5,6, and 7, there are some points where the execution time is 0, this is due to the GPU Memory being 

insufficient, hence the training model cannot be loaded onto the machine and was unable to train the 

model. It can be observed in Figure 7, that for GTX1080, and RTX2070 it was unable to train the 

models, that were configured to be Adam optimizer and batch size 64, while TitanX, having a bigger 

memory capacity, was able to load and train the model. 

 
Figure 6. Execution Times based on Optimizers among the 3 GPU Machines 

 

Figure 7. Execution Time Comparison between 3 GPU Machines 
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4.3. Evaluating the proposed model 

To test the accuracy of the prediction model, the proposed model was trained on the three GPU 

datasets generated, to evaluate the validation loss, training time, and epochs. The original model is 

based on the previous work [8] which uses GPU Utilization%, and GPU Memory Utilization% as 

inputs. The proposed model changes the input parameters into GPU Utilization%, GPU Memory 

Utilization%, CPU Utilization% , and GPU Memory, with also the inclusion of Execution Time. 

Cases where the proposed model does not include Execution Time and removing one of the input 

parameters, such as GPU Memory, were also observed to compare the validation loss between these 

four setups. In Table 6, from the validation loss perspective, the original model has the best accuracy 

on the RTX2070 dataset, while the Proposed Model has the best accuracy on the other two datasets, 

the GTX1080 dataset and TitanX dataset. However, looking at the total loss across the three datasets, 

the proposed model w/o Execution Time performs the best among the four models tested. While the 

proposed model also has a higher loss compared to the original model, this is expected due to the 

increase in parameter inputs, with an increase in total loss of about 6.84%.  

Table 6. Validation Loss 

Model 

Validation Loss Evaluation 

GTX1080 RTX2070 TitanX Total Loss 
Total Loss vs Original 

Model 

Original Model 0.0217 0.0072 0.0281 0.057 0 

Proposed Model w/o 

Execution Time 
0.0187 0.0098 0.0268 0.0553 -2.98245614 

Proposed Model w/o 

GPU Memory 
0.0236 0.012 0.0319 0.0675 +18.42105263 

Proposed Model 0.0171 0.0239 0.0199 0.0609 +6.842105263 

 

    Considering the Validation Loss, it has been observed that the increase in input parameters 

increases the complexity of the model, while being advantageous on some datasets, are all seeing 

increases, among the sum of three different datasets in validation loss. Hence, in line with the 

previous work [8], Transfer Learning is also explored in this research to determine the effects of 

transfer learning on the validation loss and how it is constructed.  

 

4.4. Transfer Learning 

Transfer learning involves using a pre-trained model and using its features as a reference when 

starting to train a new model. Using these features as a starting point, the training time and epochs 

required to train a new model will be decreased while also maintaining a similar amount of 

validation loss. It is also advantageous for models trained on smaller datasets [16], since the datasets 

used in the experiments only consist of 320 samples for each GPU. To select which model to use as a 

pre-trained model for transfer learning, based on the validation loss in Table 6 for the proposed 

model, the GTX1080 dataset has the lowest validation loss, based on this, it has the best accuracy 

among the other two datasets. The original model, despite having the best accuracy between all test 

cases, was not considered because it uses a different set of inputs compared to the proposed model 

and it would be lacking the features that are necessary to be transferred to the new model that will be 

trained. Therefore, GTX1080 for the proposed model is selected to be the pre-trained model used for 

transfer learning. 

In Table 7, the validation loss is evaluated between the proposed model with Transfer Learning 

and the model without Transfer Learning. For the validation loss, there is a 5% improvement in the 
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accuracy when Transfer Learning is applied, as the total loss goes down to 0.0578. This is almost 

comparable to the previous model, Driple, which has a validation loss of 0.057. 
 

Table 7. Validation Loss 

Model 

Validation Loss Evaluation 

GTX1080 RTX2070 TitanX Total Loss 
Total Loss vs Proposed 

Model w/o TL 

Proposed Model w/o TL 0.0171 0.0239 0.0199 0.0609 0 

Proposed Model w/ TL 0.0174 0.0172 0.0232 0.0578 -5.090311987 

 

Due to the improvement in the validation loss, the proposed model with transfer learning was used 

as the prediction model that was used for scheduling jobs using FIFO and SJF. 

 

4.5. Evaluation of Execution Time and Computing Efficiency 

By utilizing the proposed model with transfer learning as the prediction model, the jobs in Table 4 

was loaded in as input to the prediction model to predict where each job should be allocated based on 

Execution Time and Computing Efficiency. For scheduling, execution time should be sufficient 

when trying to allocate jobs, but in the context of Deep Learning, it is also important to know how 

much resources would be needed for a job to perform optimally, hence computing efficiency (ŷ𝑒𝑓𝑓) 

which takes the ratio of average peak consumption and burst time of a resource consumption 

parameter, was also explored. A simulation running 12 jobs on each GPU with the same parameters 

for both Execution Time and Computing Efficiency was tested on SJF Scheduling in two scenarios. 

First, the prediction model will predict the execution time and computing efficiency, and then the 

jobs will be sorted before or after the jobs are allocated to each of the available GPUs. In Table 8, the 

Average JCT and Makespan of the simulation show that for execution time, the Average JCT is 

lower if the jobs are sorted after allocation. Despite the makespan being a few seconds higher 

compared to sorting jobs before allocation, the difference is minimal. On the other hand, for the 

simulation of SJF in terms of efficiency, as observed in Table 9, the results are similar to Execution 

Time, however the difference between the average JCT is minimal, but the difference in makespan is 

substantial compared to the simulation in terms of Execution Time. Based on the results from these 

two simulations, sorting the jobs after allocation is preferable due to it being consistently lower in 

average JCT and having a better makespan in this setup. 

Table 8. SJF Simulation for Execution Time Simulation (seconds) 

 GTX1080 RTX2070 TitanX 
Average 

JCT 
Makespan 

SJF sort job before allocation 6977.265 2282.544 2368.067 968.9897 2090.189 

SJF sort job after allocation 2021.589 1421.938 7475.873 909.95 2095.376 
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Table 9. SJF Simulation for Efficiency (seconds) 

 GTX1080 RTX2070 TitanX 
Average 

JCT 
Makespan 

SJF sort job before allocation 1165.553 3350.324 7358.036 989.4928 3400.582 

SJF sort job after allocation 4596.604 2503.162 4745.45 987.1014 2148.096 

 

4.6. Performance Comparison based on Computing Efficiency 

Since the previous work [8] uses different input parameters compared to the proposed model, 

which includes CPU Util%, GPU Memory, and Execution Time, the proposed model and the Driple 

model were compared based on scheduling based on FIFO and SJF (sorting after job allocation), 

with the average JCT and makespan as the evaluation parameters. Since the previous work does not 

have the Execution Time as its parameter, the comparison was based on the computing efficiency by 

using Equation 2 to calculate the computing efficiency for each prediction target and obtaining the 

maximum total value for each resource consumption parameter as basis for GPU allocation. The 

GPU allocation mostly ignored the GTX1080 GPU for this setup, having 0 jobs allocated on this 

machine, and the rest of the jobs distributed on the other two machines for both FIFO and SJF, as 

observed in Tables 10 and 11. Still, it can be observed that while Average JCT is higher on FIFO, it 

is about 4.2% lower than Driple for SJF. However, looking at the makespan for each scheduling 

algorithm, it can be considered that Driple is superior, even though the proposed model is marginally 

higher by approximately 1.2% on SJF.  

Table 10 FIFO based on Computing Efficiency (seconds) 

 GTX1080 RTX2070 TitanX 
Average 

JCT 
Makespan 

Driple 0 13814.65 14048.61 13970.62 30734.92 

Proposed Model 0 11135.98 19748.27 14903.86 35929.98 

Table 11. SJF based on Computing Efficiency (seconds) 

 GTX1080 RTX2070 TitanX 
Average 

JCT 
Makespan 

Driple 0 13182.03 5737.863 9459.945 29827.69 

Proposed Model 0 5957.097 14534.12 9060.584 30182.41 

 

4.7. GPU Allocation based on Execution Time 

 

This time, the proposed model based on execution time prediction was observed for FIFO and 

SJF algorithm, the predicted execution time with the minimum value was the basis for GPU 

allocation. As shown in Table 12, the scheduling based on the execution time prediction of the 

proposed model increases by approximately 19.8% when using SJF scheduling compared to FIFO. 

However, the makespan decreases by approximately 12.66% when using SJF scheduling. Comparing 

this with the prediction results based on computing efficiency, the makespan is reduced by up to 

18.9%. 
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Table 12. Scheduling based on Execution Time Prediction (seconds) 

 GTX1080 RTX2070 TitanX 
Average 

JCT 
Makespan 

Proposed Model (FIFO) 1137.847 10285.88 11487.41 9367.663 27694.29 

Proposed Model (SJF) 1170.366 12684.82 12580.51 11225.95 24190.34 

 

As seen in the GPU allocation based on Execution Time and Computing Efficiency, the scheduler 

performed better on makespan when based on Execution Time, and on average JCT, when based on 

computing efficiency. Regardless, GPU Allocation based on computing efficiency ignores one of the 

machines, so even if the JCT was ideal there is still room for improvement. While the GPU 

Allocation based on Execution Time improves the makespan and uses all the machines, the JCT 

higher compared to the allocation based on Execution Time. Hence, improvements in future works, 

such as combining both the efficiency and execution time to improve both JCT and Makespan are 

considered. 

5. Conclusion 
On multiple tests on the hyperparameter settings used in this research, it was found that epochs 

are the major factor when it comes to execution time, with the batch size also having a big impact if 

the batch size is smaller. With a growing batch size, the reduction in execution time becomes less 

apparent. For smaller datasets, it is concluded that transfer learning performs way better than models 

without transfer learning, improving the model accuracy by 5.09%. By simulating job sorting for SJF 

before allocation and after allocation, it was found that sorting jobs after allocation gives a 6.09% 

boost in average JCT, while makespan can be improved by up to 36.83%. Using this information, the 

scheduling mechanism was tested based on execution time and computing efficiency using FIFO and 

SJF (sorting after job allocation). The results show that GPU allocation based on computing 

efficiency, compared with the previous work, the average JCT is improved up to 4.2%. While on the 

case of GPU allocation based on execution time, the makespan was improved up to 18.9% compared 

to the previous work. However, there were still cases where the GPU allocation based on Execution 

Time increased the average JCT, and the allocation based on computing efficiency, did not distribute 

the jobs to all the available machines. Due to these observations, future work is considered which 

involves combining both the GPU allocation based on Computing Efficiency and GPU Allocation 

based on Execution Time, to seek improvements on both JCT and Makespan. This work is also 

limited by using only Convolutional Neural Networks. Including more models from different 

applications and having a bigger dataset available for this application would help create a more 

generalized model for scheduling in the future. 
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