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ABSTRACT:  
 

Ten derivatives of 3-(Substituted)Benzyl-7-but-2-ynyl-1-

methyl-8-(4-methylenepiperidin-1-yl)-3,4,5,7-

tetrahydro-purine-2,6-dione was efficiently synthesized 

from simple available starting materials using two-step. 8-

Bromo-7-but-2-ynyl-1-methyl3,4,5,7-tetrahydro-purine-

2,6-dione was reacted with 4-Methylene-piperidine using 

Buchwald-Hartwig approach to give intermediate 7-But-

2-ynyl-1-methyl-8-(4methylene-piperidin-1-yl)-3,4,5,7-

tetrahydro-purine-2,6-dione, formed intermediate was 

reacted with substituted benzyl bromides using potassium 

carbonate in microwave gives aimed compounds. 

Synthetic Buchwald-Hartwig methodology was found 

great importance for the synthesis of reported derivatives.  
 

Keywords: Synthesis, Buchwald-Hartwig, Purine, benzyl 

bromides, microwave.   
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1. INTRODUCTION 

 

A compound containing a heterocyclic core has immense importance in drug discovery 

programs and drug synthesis due to its bioactivities1,2. The various studied heterocyclic 

compounds, purines and purine derivatives are the most present nitrogen-containing moiety 

available in nature3. Purines consisting of fused six-member pyrimidine types of rings with 

five-member imidazole ring systems and found in many important bio-molecules like cyclic 

adenosine monophosphate, nicotinamide adenine dinucleotide hydrogen, guanosine 5-

triphosphate, adenosine triphosphate and coenzyme A4. 

Hydrogen bonding of purines makes it a more valuable scaffold to target a wide range of 

biosynthetic molecules and signal transduction proteins5. Purine rings containing drug 

molecules like theophylline, caffeine and methylxanthine are well known for their therapeutic 

uses as anti-asthmatic, analeptics, vasodilators, anti-HIV, antimicrobial, antihypertensive, 

diuretics, bronchodilators and anticancer agents6,7,8.   

Fused purines are considered the fundamental skeleton of the naturally occurring purine 

alkaloids9,10. Some substituted pyrimidine purine diones were reported as non-steroidal anti-

inflammatory agent11,12. Recently 1,8-disubstituted purine-2,6-diones was reported to possess 

potent analgesic and anti-inflammatory activity through adenosine receptor 

antagonism13,14,15,16. The fusing of the pyrimidine ring to the imidazole ring is used for the 

synthesis of purine derivatives was reported by Traube17. 

The combination of multiple biological active sites in the synthesized single molecules is one 

of the most important approaches for designing new bioactive molecules18,19,20. In the view of 

above importance of Purine derivatives and the continuation of our research work21,22,23,24 on 

the synthesis of heterocycles, we have decided to synthesize Purine derivatives. We mainly 

focus on the synthesis of Linagliptin kind of fused purine derivatives using simple synthetic 

strategies with good impact on the synthesis of this active pharmaceutical ingredient 25. 

Linagliptin is a xanthine derivative and a highly potent, selective, long-acting and orally 

bioavailable DPP-4 inhibitor used for the treatment of type 2-diabetes26.  

Metal-catalyzed C-C and C-N bond formation reactions are the overgrowing and vastly used 

for the synthesis of new organic molecules27,28. Pd-catalyzed amination reactions (C-N bond 

formation) in between substituted amines and aryl, vinyl and hetero-aryl halides are well 

known and used in the synthesis of novel molecules29,30. 

The two most important amination name reactions are Pd metal catalyzed BuchwaldHartwig 

and Cu metal catalyzed Ullmann-Goldberg reactions are mostly used in organic and medicinal 

chemistry31. The discovery of the Buchwald-Hartwig reaction is a facile and efficient name 

reaction for the synthesis of aryl amines by replacing the tedious nucleophilic aromatic 

substitution32. A deep literature study on Buchwal-Hartwig coupling reactions showed that 

such C-N bond forming carried out using bases like NaOtBu33, KOtBu34, K2CO3
35, KOH36, 

Na2CO3
37, Cs2CO3

38, various Pd metal complexes as catalyst and ligands like BINAP39, dppf40, 

XantPhos41, SPhos42, JosiPhos43, JohnPhos44,  tri-alkylphosphines45 etc.  

Reported literature on Buchwald-Hartwig amination showed that researchers used such 

conditions for the amination using primary amines and secondary amines using different Pd 

metal catalysts, ligands and bases46,47,48,49,50,51.  Modern methods like microwave irradiation, 

ultrasound sonication, and grinding techniques used for the synthesis of organic molecules have 

immense importance over the regular conventional methods due to their shorter time with a 

higher percent of isolated yields52,53,54. So we have used the microwave irradiation technique 

for the synthesis of 3(Substituted)Benzyl-7-but-2-ynyl-1-methyl-8-(4-methylene-piperidin-1-

yl)-3,4,5,7tetrahydro-purine-2,6-dione. 
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Experimental  

General 

All the starting materials were purchased from BLD India and used without further purification. 

Anton Paar Monowave 400 microwave synthesizer was used for the synthesis.  1H NMR 

spectra were recorded on a Bruker Avance (400 MHz) spectrometer in DMSO. The 13C NMR 

spectra were recorded on the same instrument and chemical shifts were reported in parts per 

million relatives to tetramethylsilane (TMS) as an internal standard.  Mass spectra were 

recorded on an Agilent spectrometer and reported as M-1. Melting points of compounds were 

determined on the Labstar melting point apparatus.  

 

Synthesis of 7-But-2-Ynyl-1-Methyl-8-(4-Methylene-Piperidin-1-Yl)-3, 4, 5, 7tetrahydro-

Purine-2, 6-Dione (3). 

Charged 300mg (1 mmole) of 8-Bromo-7-but-2-ynyl-3-methyl-3,4,5,7-tetrahydropurine-2,6-

dione 1 and 146mg 4-Methylene-piperidine 2 (1.5 mmol) in 5mL of solvent at room 

temperature in 30mL microwave tube under purging of nitrogen. After well purging and 

stirring of reaction mass were added 10-20 mol % of first, second or third generation Buchwald-

Hartwig catalyst and stirred reaction mass at room temperature with purging of nitrogen for the 

next 15 min. Then the tube was sealed placed in the microwave and irradiated it for 1-2 h at 

100-120 OC. Progress of the reaction was monitored by using pre-coated TLC with 20% ethyl 

acetate in hexane. After completion of the reaction, the reaction mass was cooled to room 

temperature, diluted with ethyl acetate and filtered through celite pad and filtrate was washed 

with water. The organic layer was separated and dried over sodium sulphate and concentrated. 

The obtained solid was purified by silica gel chromatography. While using first and second-

generation Buchwald-Hartwig catalysts potassium tert-butoxide (0.5 equiv.) and xantphos 

(0.05 equiv.) was used for this coupling reaction, scheme 1. Melting point: 190 - 191 OC. 

Reaction time: 1 h. Percent yield: 220 mg (70%). Mass: [ES]-: Calculated – 315.17, Found – 

314.57.  

 

General Procedure for the Synthesis of 3-(Substituted)Benzyl-7-But-2-Ynyl-1-Methyl8-

(4-Methylene-Piperidin-1-Yl)-3,4,5,7-Tetrahydro-Purine-2,6-Dione (5a-J). 

To a dried 30 mL microwave tube charged 1mmole of 7-But-2-ynyl-1-methyl-8-(4methylene-

piperidin-1-yl)-3,4,5,7-tetrahydro-purine-2,6-dione (3) in 10 volume of acetonitrile at room 

temperature then 1.2mmol of substituted benzyl bromide 4a-j was added under stirring. After 

10 min 1.5mmol of potassium carbonate was added at room temperature and a microwave vial 

was placed in microwave and irradiated for 1-2h at 80 OC. Progress of the reaction was 

monitored by using pre-coated TLC with 35% ethyl acetate in hexane. After completion of the 

reaction, the reaction mass was cooled to room temperature poured on ice-cold water and 

extracted with ethyl acetate. The organic layer was washed with 20mL water and dried over 

anhydrous sodium sulphate. Concentrate and purify by flash chromatography eluting with 20% 

ethyl acetate in hexane scheme 1. 

 

Spectral data 

2-[7-But-2-ynyl-1-methyl-8-(4-methylene-piperidin-1-yl)-2,6-dioxo 1,2,4,5,6,7hexahydro-

purin-3-ylmethyl]-benzonitrile (5a). 

Melting point: 242 OC. Reaction time: 0.5 h. Percent yield: 83%. Mass: [ES]-: Calculated – 

430.21, Found – 429.77. 1H NMR (400 MHz, DMSO, δ ppm): 1.79 (s, 3H, -CH3), 2.34 (d, 1H, 

-CH), 2.35 (t, 4H, -CH2), 3.38 (s, 3H, -CH3), 3.41 (d, 1H, CH2), 3.42 (t, 4H, -CH2), 4.81 (s, 2H, 

-CH2), 4.91 (d, 2H, =CH), 5.21 (s, 2H, -CH2), 7.25 (d, 1H, Ar-H), 7.44 (dd, 1H, Ar-H), 7.61 

(dd, 1H, Ar-H), 7.82 (d, 1H, Ar-H). 13C NMR (400 MHz, DMSO, δ ppm): 3.06, 29.54, 33.58, 
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35.61, 41.90, 50.71, 73.65, 81.32, 103.31, 109.56, 110.42, 117.26, 127.73, 132.80, 133.41, 

141.33, 144.34, 147.85, 150.81, 153.05, 155.74. 

 

7-But-2-ynyl-3-(3-methoxy-benzyl)-1-methyl-8-(4-methylene-piperidin-1-yl) 3,4,5,7 

tetrahydro-purine-2, 6-dione (5b). 

Melting point: 178 - 180 OC. Reaction time: 2.0 h. Percent yield: 75%. Mass: [ES]: Calculated 

– 435.23, Found – 434.70. 1H NMR (400 MHz, DMSO, δ ppm): 1.78 (s, 3H, -CH3), 2.35 (d, 

1H, -CH), 2.36 (t, 4H, -CH2), 3.37 (s, 3H, -CH3), 3.40 (d, 1H, CH2), 3.41 (t, 4H, -CH2), 3.71 

(s, 3H, -OCH3), 4.80 (s, 2H, -CH2), 4.91 (d, 2H, =CH), 5.00 (s, 2H, -CH2), 6.79 – 7.22 (m, 4H, 

Ar-H). 13C NMR (400 MHz, DMSO, δ ppm): 3.047, 29.49, 33.56, 35.53, 40.12, 50.77, 54.94, 

73.73, 81.19, 103.32, 109.54, 111.99, 113.43, 119.46, 129.30, 139.40, 144.39, 147.55, 150.81, 

153.21, 155.69, 159.59. 

 

3-Benzyl-7-but-2-ynyl-1-methyl-8-(4-methylene-piperidin-1-yl)-3,4,5,7 

tetrahydropurine-2,6-dione (5c). 

Melting point: 215 OC. Reaction time: 1.0 h. Percent yield: 78%. Mass: [ES]-: Calculated – 

405.22, Found – 404.77. 1H NMR (400 MHz, DMSO, δ ppm): 1.79 (s, 3H, -CH3), 2.34 (d, 1H, 

-CH), 2.36 (t, 4H, -CH2), 3.37 (s, 3H, -CH3), 3.38 (d, 1H, CH2), 3.41 (t, 4H, -CH2), 4.80 (s, 2H, 

-CH2), 4.91 (d, 2H, =CH), 5.03 (s, 2H, -CH2), 7.22 – 7.31 (m, 5H, Ar-H). 13C NMR (400 MHz, 

DMSO, δ ppm): 3.04, 29.45, 33.56, 35.52, 43.34, 50.76, 73.71, 81.19, 103.32, 109.50, 126.91, 

127.44, 128.19, 137.84, 144.37, 147.50, 150.79, 153.21, 155.64. 

 

7-But-2-ynyl-3-(3-chloro-benzyl)-1-methyl-8-(4-methylene-piperidin-1-yl)3,4,5,7 

tetrahydro-purine-2,6-dione (5d). 

Melting point: 282 - 283 OC. Reaction time: 1.0 h. Percent yield: 76%. Mass: [ES]: Calculated 

– 439.18, Found – 438.68. 1H NMR (400 MHz, DMSO, δ ppm): 1.79 (s, 3H, -CH3), 2.33 (d, 

1H, -CH), 2.36 (t, 4H, -CH2), 3.34 (s, 3H, -CH3), 3.39 (d, 1H, CH2), 3.42 (t, 4H, -CH2), 4.80 

(s, 2H, -CH2), 4.91 (d, 2H, =CH), 5.02 (s, 2H, -CH2), 7.24 – 7.35 (m, 4H, Ar-H). 13C NMR 

(400 MHz, DMSO, δ ppm): 3.06, 29.52, 33.57, 35.57, 40.12, 42.99, 50.77, 81.24, 103.34, 

109.55, 126.22, 127.00, 127.31, 130.15, 132.88, 140.39, 144.37, 147.69, 150.81, 153.56, 

155.72. 

 

7-But-2-ynyl-3-(4-chloro-benzyl)-1-methyl-8-(4-methylene-piperidin-1-yl)3,4,5,7 

tetrahydro-purine-2,6-dione (5e) 

Melting point: 238 - 240 OC. Reaction time: 1.5 h. Percent yield: 80%. Mass: [ES]: Calculated 

– 439.18, Found – 438.68. 1H NMR (400 MHz, DMSO, δ ppm): 1.70 (s, 3H, -CH3), 2.30 (d, 

1H, -CH), 2.32 (t, 4H, -CH2), 3.32 (s, 3H, -CH3), 3.38 (d, 1H, CH2), 3.40 (t, 4H, -CH2), 4.83 

(s, 2H, -CH2), 4.97 (d, 2H, =CH), 5.08 (s, 2H, -CH2), 7.20 – 7.39 (m, 4H, Ar-H). 13C NMR 

(400 MHz, DMSO, δ ppm): 3.06, 29.50, 33.57, 35.57, 40.10, 42.99, 50.74, 81.28, 103.34, 

109.55, 126.22, 127.05, 127.31, 130.13, 132.88, 140.39, 144.30, 147.69, 150.81, 153.56, 

155.75. 

 

7-But-2-ynyl-3-(2-chloro-benzyl)-1-methyl-8-(4-methylene-piperidin-1-yl)3,4,5,7 

tetrahydro-purine-2,6-dione (5f) 

Melting point: 231 - 232 OC. Reaction time: 1.5 h. Percent yield: 81%. Mass: [ES]: Calculated 

– 439.18, Found – 438.70. 1H NMR (400 MHz, DMSO, δ ppm): 1.76 (s, 3H, -CH3), 2.32 (d, 

1H, -CH), 2.38 (t, 4H, -CH2), 3.39 (s, 3H, -CH3), 3.43 (d, 1H, CH2), 3.46 (t, 4H, -CH2), 4.84 

(s, 2H, -CH2), 4.92 (d, 2H, =CH), 5.25 (s, 2H, -CH2), 7.28 (d, 1H, Ar-H), 7.42 (dd, 1H, Ar-H), 

7.61 (dd, 1H, Ar-H), 7.80 (d, 1H, Ar-H). 13C NMR (400 MHz, DMSO, δ ppm): 3.18, 29.51, 
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33.55, 35.61, 41.92, 50.78, 81.30, 103.32, 109.54, 110.45, 117.20, 127.70, 132.87, 133.45, 

141.34, 144.36, 147.81, 150.88, 153.02, 155.70. 

 

7-But-2-ynyl-3-(2,4-dichloro-benzyl)-1-methyl-8-(4-methylene-piperidin-1-yl)3,4,5,7-

tetrahydro-purine-2,6-dione (5g) 

Melting point: 260 - 261 OC. Reaction time: 2.0 h. Percent yield: 80%. Mass: [ES]: Calculated 

– 473.14, Found – 449.67.1H NMR (400 MHz, DMSO, δ ppm): 1.70 (s, 3H, -CH3), 2.34 (d, 

1H, -CH), 2.38 (t, 4H, -CH2), 3.37 (s, 3H, -CH3), 3.38 (d, 1H, CH2), 3.48 (t, 4H, -CH2), 4.83 

(s, 2H, -CH2), 4.98(d, 2H, =CH), 5.09 (s, 2H, -CH2), 7.21 – 7.39 (m, 3H, Ar-H). 13C NMR (400 

MHz, DMSO, δ ppm): 3.16, 29.53, 33.42, 35.52, 40.12, 42.99, 50.77, 81.24, 103.34, 109.55, 

126.22, 127.00, 127.31, 130.15, 132.46, 140.39, 144.14, 147.69, 150.81, 153.56, 155.46. 

 

7-But-2-ynyl-1-methyl-8-(4-methylene-piperidin-1-yl)-3-(3-nitro-benzyl)3,4,5,7 

tetrahydro purine-2,6-dione (5h). 

Melting point: 210 -211 OC. Reaction time: 1.0 h. Percent yield: 82%. Mass: [ES]-: Calculated 

– 450.20, Found – 449.67. 1H NMR (400 MHz, DMSO, δ ppm): 1.79 (s, 3H, -CH3), 2.33 (d, 

1H, -CH), 2.36 (t, 4H, -CH2), 3.38 (s, 3H, -CH3), 3.41 (d, 1H, CH2), 3.42 (t, 4H, -CH2), 4.80 

(s, 2H, -CH2), 4.91 (d, 2H, =CH), 5.14 (s, 2H, -CH2), 7.59 (d, 1H, Ar-H), 7.77 (d, 1H, Ar-H), 

8.13 (dd, 2H, Ar-H), 8.11 (d, 1H, Ar-H). 13C NMR (400 MHz, DMSO, δ ppm): 3.03, 29.52, 

33.55, 35.59, 40.12, 42.96, 50.73, 73.65, 81.28, 103.30, 109.54, 122.31, 129.84, 134.41, 

140.09, 144.34, 147.70, 147.76, 150.82, 153.13, 155.73. 

 

7-But-2-ynyl-1-methyl-8-(4-methylene-piperidin-1-yl)-3-(2-nitro-benzyl)-3,4,5,7 

tetrahydro-purine-2,6-dione (5i). 

Melting point: 224-226 OC. Reaction time: 0.5 h. Percent yield: 85%. Mass: [ES]-: Calculated 

– 450.20, Found – 449.60. 1H NMR (400 MHz, DMSO, δ ppm): 1.78 (s, 3H, -CH3), 2.30 (d, 

1H, -CH), 2.36 (t, 4H, -CH2), 3.39 (s, 3H, -CH3), 3.42 (d, 1H, CH2), 3.44 (t, 4H, -CH2), 4.82 

(s, 2H, -CH2), 4.90 (d, 2H, =CH), 5.23 (s, 2H, -CH2), 7.24 (d, 1H, Ar-H), 7.43 (dd, 1H, Ar-H), 

7.60 (dd, 1H, Ar-H), 7.83 (d, 1H, Ar-H). 13C NMR (400 MHz, DMSO, δ ppm): 3.16, 29.50, 

33.56, 35.60, 41.90, 50.75, 81.31, 103.30, 109.54, 110.40, 117.28, 127.71, 132.82, 133.40, 

141.32, 144.30, 147.84, 150.80, 153.05, 155.70. 

 

7-But-2-ynyl-1-methyl-8-(4-methylene-piperidin-1-yl)-3-(4-nitro-benzyl)-3,4,5,7 

tetrahydro-purine-2,6-dione (5j). 

Melting point: 2016-218 OC. Reaction time: 0.5 h. Percent yield: 85%. Mass: [ES]: Calculated 

– 450.20, Found – 449.62. 1H NMR (400 MHz, DMSO, δ ppm): 1.77 (s, 3H, -CH3), 2.35 (d, 

1H, -CH), 2.34 (t, 4H, -CH2), 3.32 (s, 3H, -CH3), 3.37 (d, 1H, CH2), 3.41 (t, 4H, -CH2), 4.83 

(s, 2H, -CH2), 4.95 (d, 2H, =CH), 5.03 (s, 2H, -CH2), 7.21 – 7.38 (m, 4H, Ar-H). 13C NMR 

(400 MHz, DMSO, δ ppm): 3.04, 29.50, 33.55, 35.57, 40.10, 42.97, 50.75, 81.22, 103.32, 

109.53, 126.20, 127.05, 127.30, 130.14, 132.89, 140.37, 144.34, 147.67, 150.82, 153.57, 

155.70. 

 

2. RESULT AND DISCUSSION  

 

Successful two-step synthesis of 3-(Substituted)Benzyl-7-but-2-ynyl-1-methyl-8-

(4methylene-piperidin-1-yl)-3,4,5,7-tetrahydro-purine-2,6-dione (5a-j) by reaction of 8Bromo-

7-but-2-ynyl-1-methyl-3,4,5,7-tetrahydro-purine-2,6-dione 1 was treated with 4-Methylene-

piperidine 2 by using Buchwald-Hartwig coupling to form intermediate 7-But-2-ynyl-1-

methyl-8-(4-methylene-piperidin-1-yl)-3,4,5,7-tetrahydro-purine-2,6dione 3, once formed 
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intermediate 3 was reacted with substituted benzyl bromides (4a-j) using potassium carbonate 

gives aimed derivatives under microwave condition (Scheme 1, table 2). 

For the synthesis of 7-But-2-ynyl-1-methyl-8-(4-methylene-piperidin-1-yl)-3,4,5,7tetrahydro-

purine-2,6-dione 3 using Buchwald-Hartwig coupling solvent and catalyst optimization was 

done and observed results was enlisted in table 1. 

During the optimization study, we found that first-generation, second-generation and third-

generation catalysts were useful for the present synthesis with fluctuations in time yields Table 

1. Mostly this study found that third third-generation catalyst for the amination reaction works 

better than other catalysts, so we have used the same for the synthesis of remaining derivatives. 

Also, during this study, we have found that electron-withdrawing substituent gives a good 

percent of yield within the short reaction time. 

 

N

HN

O

O

N

N

Br   +

H
N

    

Buchwale-hartwig

MW

N

HN

O

O

N

N

N

 
                           1                                    2                                                                             3 

                                                                                                                                

Br

R

ACN

K2CO3

MW, 80 0C, 1h  
4a-j 

                                                                                                                              

N

N

O

O N

N

N

R

                                                                                                                                                 
5a-j 

 

Scheme 1. Synthesis of 3-(Substituted)Benzyl-7-but-2-ynyl-1-methyl-8-(4methylene-

piperidin-1-yl)-3,4,5,7-tetrahydro-purine-2,6-dione (5a-j). 

 

Used synthetic strategy for the synthesis of 3-(Substituted)Benzyl-7-but-2-ynyl-1methyl-8-(4-

methylene-piperidin-1-yl)-3,4,5,7-tetrahydro-purine-2,6-dione (5a-j) was very useful to 

produce a Purine based compounds. During the synthesis, we observed that the substitution of 

benzyl bromides adversely affected the rate of reaction and percentage of product. If electron 

withdrawing groups like –CN and –NO2 present as substituents on benzyl bromide they make 

benzyl –CH2 more electrophilic due to resonance and help for SN2 type of substitution faster. 

While electron-releasing substituent does its opposite and retards the rate of reaction. This 
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substitution effect not only affects the reaction time but also affects the per cent isolated yields 

of the synthesized derivatives. We observed fluctuation in the reaction time and percent 

isolated yield and mentioned. 

 

Table 1. Catalyst and solvent optimization study for Buchwald-Hartwig coupling to synthesis 

of 3. 

Entry Catalyst Mol% Solvent Reaction time % Yield 

3 Pd G1 10 Toluene 1.5 30 

3 Pd G2 10 Toluene 2.0 32 

3 Pd G3 10 Toluene 0.5 25 

3 Pd G1 10 t-butanol 1.0 20 

3 Pd G2 10 t-butanol 0.5 43 

3 Pd G3 10 t-butanol 1.0 70 

3 Pd G1 10 DMF 3.0 45 

3 Pd G2 10 DMF 2.0 42 

3 Pd G3 10 DMF 2.5 38 

 

(Pd G1)      = (Pd [P (o-Tolyl) 3-2) – First-generation catalyst 

(Pd G2)      = Pd (dba) 2 - Second generation catalyst 

(Pd G3)      = BrettPhos - Third-generation catalyst. 

All the synthesized compounds were purified by flash column chromatography and confirmed 

by using spectral techniques Table 2. Mass spectral analysis of compound 5a at negative mode 

shows 429.77 as molecular ion peak and its calculated mass is 430.21. 1H NMR analysis of the 

same compound using DMSO solvent at 400 MHz, δ 1.79 (s, 3H, -CH3), 2.34 (d, 1H, -CH), 

2.35 (t, 4H, -CH2), 3.38 (s, 3H, -CH3), 3.41 (d, 1H, -CH2), 3.42 (t, 4H, -CH2), 4.81 (s, 2H, -

CH2), 4.91 (d, 2H, =CH), 5.21 (s, 2H, CH2), 7.25 (d, 1H, Ar-H), 7.44 (dd, 1H, Ar-H), 7.61 (dd, 

1H, Ar-H), 7.82 (d, 1H, ArH) number of protons and its splitting pattern also confirms the 

formation of compound. Carbon NMR of 5a at 400 MHz using DMSO solvent showing δ 

values at 3.06, 29.54, 33.58, 35.61, 41.90, 50.71, 73.65, 81.32, 103.31, 109.56, 110.42, 117.26, 

127.73, 132.80, 133.41, 141.33, 144.34, 147.85, 150.81, 153.05, 155.74 these 21 different sets 

of carbons also confirmed formation of aimed compound.  

 

Table 2. Substrate scope for the synthesis of 5a-j. 
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3. CONCLUSION 

 

In summary, by using simple and easily available material with strong two-step microwave 

irradiated synthetic pathway we have successfully synthesized ten derivatives of 3-

(Substituted)Benzyl-7-but-2-ynyl-1-methyl-8-(4-methylenepiperidin-1-yl)-3,4,5,7-tetrahydro-

purine-2,6-dione. We have found that BuchwaldHartwig in microwave irradiation for the 

amination reaction works potentially. The present synthetic route gives 75 to 85 percent of 

isolated yields.  
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