Dr. Shikha Singh / Afr.J.Bio.Sc. 6(9) (2024)

https://doi.org/10.33472/AFJBS.6.9.2024.5125-5145

THE ANALYSING ANTIMICROBIAL EFFICACY OF DIFFERENT ORAL PROPHYLACTIC METHODS PERFORMED AT HOME DURING FIXED ORTHODONTIC MECHANOTHERAPY

Dr. Shikha Singh, Dr Dleep Siyag

¹Professor & Head Of Department, Department of Orthodontics & Dentofacial orthopaedic, Rajasthan Dental College & Hospital, Jaipur Rajasthan
²In Service PG Student, Department of Orthodontics &Dentofacial orthopaedic, RDCH, Jaipur

Corresponding Author: Dr Dleep Siyag, In Service PG Student, Department of Orthodontics &Dentofacial orthopaedic, RDCH, Jaipur, Email:

Article History Volume 6,Issue 9, 2024 Received: 26-03-2024 Accepted : 29-05-2024 doi: 10.33472/AFJBS.6.9.2024.5125-5145

Introduction

Introduction
Nowadays orthodontic treatment is being admiring at superior
level as it improves the self-image of patients through the
provision of better esthetics and a more attractive smile and
fixed orthodontic treatment is the preferential as well as
familiar method for treating malocclusion. ^[1,2] .
Although various techniques and active components such as
arch wires, springs, elastics while passive components
comprise of bands, brackets, buccal tubes and ligature wires
are being used during the treatment modalities. ^[3,4,5] . But
orthodontics can in belief have enduring health recompense
for patients, since warped and crammed full teeth are tricky to
clean and sustain. ^[2,3]

Earlier stainless-steel ligatures for securing of the arch wires to the bracket slot were used and then during 1960s elastomeric ligature became accessible.^[6, 7] As the advancement are peaking into existence while during the 1990s; newer self ligation system were introduced. This ligation system was introduced to reduce the friction between arch wires and bracket slot and that drawing better torque control.^[6, 7,8] Even from the patient's perspective the self ligating system due to wing less design easy to clean facilitate better oral hygiene.^[9,10] Despite the post therapy health advantages of orthodontics, the treatment regimen itself creates obstacles for patients, because orthodontic brackets create plaque-retentive sites that impede tooth cleaning.^[2,4] Dental plaque is a causative factor for oral disease, and thus its removal and control are important aspects of oral health maintenance. This plaque can lead to enamel demineralization and gingivitis. ^[11, 12] Various studies have reported that rate of decalcification in orthodontic patients is superior than that of non- orthodontic treated patients . White spots have been reported in as many as 50% of teeth treated with brackets and in up to 50% of orthodontic patients.^[7,11,13]When fixed orthodontic appliances are placed intraorally, effective plaque removal becomes obstructed to a discernible degree. Since many

years a variety of plaque manageable techniques were advocated but fewer studies advocate scrupulous oral cleanliness, portentous the utilization of irrigators, electrical or ultrasonic brushes, cleaning or rinsing, varnish applications, antimicrobial agents, but mainly imperative necessity for oral health is the enthusiasm of the patient itself.^[14]Many of the mouthwashes are recommended and Chlorhexidine is one such that diminish oral bacterial load and it is used in different forms with bacteriostatic effects. Even it is valuable in diminishing plaque by restrictive adhesion between bacteria and enamel that further affects the formation of enamel film.^[15]

It has been reported that use of fluoridated mouthwashes on a daily basis with sodium fluoride causing momentous dwindle in the progress of carious lesion in and around and beneath the bands. Benson through his systematic review recommends the daily use of 0.05% NaF mouthwash in order to prevent or arrest the enamel demineralization during fixed orthodontic treatment.^[15,16]But benefit for improved and better oral hygiene depends upon the oral state of the individual, physical agility, standard of living, enthusiasm, acquaintance, oral hygiene education, or aids. But the most frequent and widely acceptable mechanical method of plaque control at home is tooth brushing. There is sizeable confirmation that illustrate with tooth brushing plaque and gingivitis can be proscribed consistently, provided cleaning should be adequately thorough and execute at suitable intervals. Hence, this study was conducted with an aim to analyze the efficacy of different oral prophylactic methods performed at home during fixed orthodontic mechanotherapy.

Methodology

The study was conducted in Department of Orthodontic and Dentofacial Orthopaedics of Dental College of Rajasthan to analyze the antimicrobial efficacy of different oral prophylactic methods performed at home during fixed orthodontic mechanotherapy.

Sample selection: - Ninety orthodontic patients, who were undergoing fixed orthodontic mechanotherapy with 0.022" MBT; who agreed to be the part of the study were randomly selected after taking the informed consent. Patient selection was done based upon the following inclusion and exclusion criteria:

Inclusion criteria:-

- Patients undergoing fixed orthodontic mechanotherapy with 0.022"MBT
- Conventional metal brackets.
- Patients with age group 18-40 years.
- No inflammation of gingiva
- Patients with maloccluded teeth
- Patients of crowding(Little Irregularity Index)from 0mm(perfect alignment) to 7-9mm(severe irregularity)

Exclusion criteria:-

- Patients with very severe crowding 10 mm or more (Little Irregularity Index)
- History of previous orthodontic treatment
- Patients with systemic disorders
- Tobacco chewers
- Pregnant patients and lactating women
- Users of systemic medication for chronic disease
- Patient who have undergone periodontal treatment

Selected patients weremainly divided into 2 groups;

Group I those Patients who were undergoing the treatment through elastic modules for ligating the arch wire to bracket of the patients

Group II where Stainless Steel ligature wire was used for ligating the arch wire to brackets of patients.

They were further divided into three subgroups who were using different oral prophylactic methods performed at home as follows:

Subgroup A:-Brushing the teeth with orthodontic brush two times a day followed by mouth rinse once at night with alcohol free mouthwash (Listerine) for 30 days.

Subgroup B:-Brushing the teeth with normal brush followed by using orthodontic floss two times a day and mouth rinse once at night with alcohol free mouthwash (Listerine) for 30 days.

Subgroup C (**Control**):-Brushing the teeth with normal brush two times a day followed by mouth rinse with normal water for 30 days.

Clinical procedure:The patients were called on the first day (T0) and a two-tone dye solution was applied to the labial surface of all teeth and left for 20 seconds and then rinsed and the tooth surface was dried and isolation was also maintained. Quigely Hein Plaque Index (William Quigely 1962) was being recorded using WHO Probe. The disclosing agent was removed from the tooth surface. Bonding was done and initial arch wire was placing into the bracket slot. Standard oral hygiene instructions were provided to all of the patients and samples of the modules were collected and checked for the following :

- a. 1st day (T0) Quigely Hein Plaque Index was performed before bonding procedure.
- b. 2nd day (T1) Bracket Bond Plaque Index was performed after one day of bracket bonding procedure.
- c. 30th day (T2) Quigely Hein Plaque Index and Bracket Bond Plaque Index was performed after 30th days of bonding procedure.

Statistical analysis:-The data was coded and entered into Microsoft Excel spreadsheet and analysis was done using SPSS version 20 where descriptive statistics included computation of means and standard deviations and Wilcoxon and Krushkal Wallis tests were used at 5% significance level.

RESULTS:-

The present study was conducted for analyzing the antimicrobial efficacy of different oral prophylactic methods performed at home during fixed orthodontic mechanotherapy in both elastomeric modules and stainless steel ligature groups. The sample size consisted of 90 patients which were then divided into 3 subgroups on the basis of different oral hygiene prophylactic methods groups consisting of -

- 1) Orthodontic brushes followed by rinses with Listerine mouthwash,
- 2) Normal brush followed by orthodontic floss and rinses with Listerine mouthwash and
- 3) Prophylaxis with help of normal brushes rinses with normal water.

The efficacy of oral prophylactic aids was analyzed from baseline i.e 1st day to 2nd day and after 30 days for streptococcus mutans and lactobacillus bacterial count using stuart media laboratory procedures.

1: Mean comparison of microbial count among both of the Stainless Steel and Elastic module groups at different time interval in subgroup A (orthodontic brush + mouth rinse with Listerine mouthwash) The results revealed a comparative analysis of microbial counts between two groups, the Elastic module group and the Stainless Steel group, over different time intervals within Subgroup A, where participants followed an orthodontic brush and mouth rinse regimen with Listerine mouthwash. The microbial counts were measured for Streptococcus Mutans and Lactobacillus bacteria.

In summary, the results suggest that the Elastic module group consistently exhibited higher microbial counts for both Streptococcus Mutans and Lactobacillus compared to the Stainless Steel group, with statistically significant differences observed at various time points post-intervention. These findings indicate a potential impact of the orthodontic brush and mouth rinse with Listerine mouthwash regimen on microbial proliferation, with the Elastic module group showing a more pronounced effect.

2: Mean comparison of microbial count among both of the Stainless Steel and Elastic module groups at different time interval in subgroup B (normal brush + orthodontic floss + mouth rinse with Listerine mouthwash)

The results revealed a comparison of microbial counts between two groups, the Elastic module group and the Stainless Steel group, over different time intervals within Subgroup B, where participants followed a regimen involving normal brushing, orthodontic flossing, and mouth rinse with mouthwash. The microbial counts were measured for Streptococcus Mutans and Lactobacillus bacteria.

In summary, the results suggest that the Elastic module group consistently exhibited higher microbial counts for both Streptococcus Mutans and Lactobacillus compared to the Stainless Steel group, with statistically significant differences observed at various time points post-intervention. These findings indicate a potential impact of the normal brushing, orthodontic flossing, and mouth rinse with Listerine mouthwash regimen on microbial proliferation, with the Elastic module group showing a more pronounced effect.

3: Mean comparison of microbial count among both of the Stainless Steel and Elastic module groups at different time interval in subgroup C (normal brush + mouth rinse with normal water)

The results revealed a comparison of microbial counts between two groups, the Elastic module group and the Stainless Steel group, over different time intervals within Subgroup C, where participants followed a regimen involving normal brushing and mouth rinse with normal water. The microbial counts were measured for Streptococcus Mutans and Lactobacillus bacteria.

In summary, the results indicate that the Elastic module group consistently exhibited higher microbial counts for both Streptococcus Mutans and Lactobacillus compared to the Stainless Steel group, with statistically significant differences observed at various time points post-intervention. These findings suggest a potential influence of the normal brushing and mouth rinse with normal water regimen on microbial proliferation, with the Elastic module group showing a more pronounced effect.

4: Intersubgroup AntimicrobialEfficacyofOrthodonticBrushes and orthodontic flossinpatientswithElastomericRingsandStainlessSteelLigatureWires-Streptococcus Mutans andLactobacillus

The results and efficacy for orthodontic brushes and orthodontic flossfor streptococcus mutans & lactobacillus in both theorthodontic ligation technique were found to be statistically significant (p< .05) from baseline (T0) to 1^{ST} day (T1) as well as on 30th day (T2), but Orthodontic brush is more effective than normal brush along with Orthodontic floss in reducing Streptococcus mutans and lactobacillus count.

Table 01: Mean comparison of microbial count among both of the Stainless Steel and Elastic module groups at different time interval in subgroup A (orthodontic brush + mouth rinse with Listerine mouthwash)

Group	Time interval	Mean	Std. Deviation	Std Error Mean	Mean Diff	t value	p value
Streptococc	cus Mutans				·		
Elastic module	ТО	40.17	17.889	3.266	0.400	0.100	0.05**
Stainless steel	_	30.57	12.811	2.339	_ 0.400		
Elastic module	T1	64.63	22.940	4.188	22.533	4.508	0.03*
Stainless steel	_	42.10	14.942	2.728	_ 22.333		
Elastic module	T2	67.83	17.511	3.197		3.792	0.000*
Stainless steel	-	47.10	12.095	2.208	20.73	5.792	
Lactobacill	us				-		
Elastic module	TO	54.93	30.144	5.504	22.933	4.009	0.07**
Stainless steel	_	22.00	8.554	1.562	_ 22.755		
Elastic module	T1	72.40	22.710	4.146	40.667	9.093	0.02*
Stainless steel		31.73	9.184	1.677	- +0.007		
Elastic module	T2	87.03	39.937	7.291	44.733	5.202	0.001*
Stainless steel		67.30	68.264	61.509	_ 44.733	5.202	

*statistically significant

**statistically non- significant

Table 2: Mean comparison of microbial count among both of the Stainless Steel and Elastic module groups at different time interval in subgroup B (normal brush + orthodontic floss + mouth rinse with Listerine mouthwash)

Group	Time interval	Mean	Std. Deviation	Std Error Mean	Mean Diff	t value	p value
Streptococc	us Mutans				-	-	
Elastic module	ТО	46.87	16.990	3.102	15.800	4.351	0.07**
Stainless steel		11.07	10.342	1.888	_ 15.800		
Elastic module	T1	50.07	17.043	3.112	19.500	5.700	0.002*
Stainless steel		19.57	7.785	1.421			
Elastic module	T2	56.73	14.941	2.728	_ 30.467	6.380	0.001*
Stainless steel		26.27	9.244	1.688	_ 50.407	0.200	
Lactobacill	us						
Elastic module	ТО	65.63	15.332	2.799	25.200	8.186	0.05**
Stainless steel		19.43	7.016	1.281	_ 23.200		
Elastic module	T1	66.17	14.037	2.563	_ 25.300	9.278	0.04*
Stainless steel		20.87	5.104	.932	_ 23.300		
Elastic module	T2	74.30	14.157	2.585	36.933	9.479	0.000*
Stainless steel		37.37	6.462	1.180	_ 50.955	7.4/7	

*statistically significant

**statistically non- significant

Table 3: Mean comparison of microbial count among both of the Stainless Steel and Elastic module groups at different time interval in subgroup C (normal brush + mouth rinse with normal water)

Group	Time interval	Mean	Std. Deviation	Std Error Mean	Mean Diff	t value	p value
Streptococc	us Mutans	1					I
Elastic module	ТО	67.73	11.383	2.078	9.233	2.577	.005**
Stainless steel		48.50	15.987	2.919			.005
Elastic module	T1	70.73	10.920	1.994	12 633	3.534	.003*
Stainless steel	_	58.10	16.251	2.967	_ 12.633		.005*
Elastic module	T2	77.20	10.614	1.938	16.900	3.235	.001*
Stainless steel		60.30	15.100	2.757	10.900	5.255	.001
Lactobacill	us						1
Elastic module	ТО	69.97	13.523	2.469	10.267	3.773	.08**
Stainless steel		56.70	6.271	1.145	10.207		.08**
Elastic module	T1	71.53	13.093	2.390	15.133	5.657	.003*
Stainless steel		59.40	6.579	1.201	_ 15.155		.005
Elastic module	T2	87.73	11.855	2.164	23.233	5.404	.002*
Stainless steel		69.50	6.274	1.145	_ 23.233	J.404	.002*

*statistically significant

**statistically non- significant

Table4:Intergroupcomparisonofvariousparametersamongbothofthegroups

	GP	N	Mean	Std. Deviation	Std.Err or Mean	T value	P value	Mean Difference	Std.Erro r Difference	95%Confiden oftheDifferenc	
T0Streptococus	Elastomeric Module	45	40.17	17.889	3.266	100	009*	400	4.017	Lower	Upper
OrthoBrush	Stainless Steel	45	40.57	12.811	2.339		.009*	400	4.017	-8.441	7.641
T1Streptococus	Elastomeric Module	45	64.63	22.940	4.188	4.508	*000	22.533	4.998	-8.459	7.659
OrthoBrush	Stainless Steel	45	42.10	14.942	2.728		.000*		4.998	12.528	32.539
T2Streptococus	Elastomeric Module	45	37.83	17.511	3.197	3.792	000*	14.722	3.886	12.493	32.574
OrthoBrush	Stainless Steel	45	23.10	12.095	2.208		.000*	14.733		6.956	22.511
T0Lactobacilus	Elastomeric Module	45	54.93	30.144	5.504	4.009	000*	22.933	5.721	6.935	22.532
OrthoBrush	Stainless Steel	45	32.00	8.554	1.562		.000*	22.955	5.721	11.482	34.385
T1Lactobacilus	Elastomeric Module	45	72.40	22.710	4.146	9.093	000*	40.667	4 472	11.303	34.564
OrthoBrush	Stainless Steel	45	31.73	9.184	1.677		.000*	40.667	4.473	31.714	49.619
T2 Lactobacilus OrthoBrush	Elastomeric Module	45	57.03	39.937	7.291	5.202	.000*	38.733	7.446	31.614	49.719

	GP	N	Mean	Std. Deviation	Std.Err or Mean	T value	P value	Mean Difference	Std.Erro r Difference	95%Confiden oftheDifferenc	
	Stainless Steel	45	18.30	8.264	1.509					23.829	53.638
T0Streptococus NormalBrush	Elastomeric Module	45	67.73	11.383	2.078	2.577	.003*	9.233	3.583 -	23.557	53.910
+ NormalWater	Stainless Steel	45	58.50	15.987	2.919		.003*	9.255	5.385	2.061	16.406
T1Streptococus NormalBrush	Elastomeric Module	45	70.73	10.920	1.994	3.534	001*	10 622	2 575	2.045	16.422
+ NormalWater	Stainless Steel	45	58.10	16.251	2.967		.001*	12.633	3.575	5.478	19.789
T2Streptococus NormalBrush	Elastomeric Module	45	67.20	10.614	1.938	3.235	.002*	10.900	3.370 -	5.456	19.810
+ NormalWater	Stainless Steel	45	56.30	15.100	2.757		.002**	10.900	5.570	4.155	17.645
T0Lactobacillus NormalBrush	Elastomeric Module	45	69.97	13.523	2.469	3.773	001*	10.267	2.721 -	4.138	17.662
+ NormalWater	Stainless Steel	45	59.70	6.271	1.145		.001*	10.207	2.721	4.819	15.714
T1 Lactobacillus NormalBrush	Elastomeric Module	45	71.53	13.093	2.390	5.657	001*	15 122	2.675 -	4.770	15.763
+ NormalWater	Stainless Steel	45	56.40	6.579	1.201		.001*	15.133	2.075	9.778	20.488
T2Lactobacillus NormalBrush	Elastomeric Module	45	69.73	11.855	2.164	5.404				9.737	20.529
+ NormalWater	Stainless Steel	45	56.50	6.274	1.145		.000*	13.233	2.449	8.331	18.135

	GP	N	Mean	Std. Deviation	Std.Err or Mean	T value	P value	Mean Difference	Std.Erro r Difference	95%Confider oftheDifferen	
T0Streptococus NormalBrush	Elastomeric Module	45	56.87	16.990	3.102	4.351	000*	15.800	3.631 -	8.298	18.169
+OrthoFloss	Stainless Steel	45	41.07	10.342	1.888		.000*	13.800	5.051	8.531	23.069
T1Streptococus NormalBrush	Elastomeric Module	45	59.07	17.043	3.112	5.700		19.500	3.421 -	8.498	23.102
+OrthoFloss	Stainless Steel	45	39.57	7.785	1.421		.000*		5.421	12.652	26.348
T2Streptococus	Elastomeric Module	45	56.73	14.941	2.728	6.380	000*	20.467	3.208 -	12.589	26.411
NormalBrush +OrthoFloss	Stainless Steel	45	36.27	9.244	1.688		*000.	20.467	5.208	14.046	26.888
T0lactobacilus	Elastomeric Module	45	65.63	15.332	2.799	8.186	000*	25 200	2.079	14.018	26.915
NormalBrush +OrthoFloss	Stainless Steel	45	40.43	7.016	1.281		*000.	25.200	3.078	19.038	31.362
T1lactobacilus	Elastomeric Module	45	66.17	14.037	2.563	9.278				18.981	31.419
NormalBrush +OrthoFloss	Stainless Steel	45	40.87	5.104	.932		.000*	.000* 25.300	2.727	19.841	30.759
T2lactobacilus	Elastomeric Module	45	64.30	14.157	2.585	9.479				19.772	30.828
NormalBrush +OrthoFloss	Stainless Steel		37.37	6.462	1.180		.000*	26.933	2.841	21.246	32.621

	GP	N	Mean	Std.Deviatio	Std.ErrorMea
				n	n
T0Streptococcu s	OrthoBrush	15	40.17	17.889	3.266
	NormalBrush	15	67.73	11.383	2.078
	NormalBrushf loss	15	56.87	16.990	3.102
T1Streptococcu s	OrthoBrush	15	64.63	22.940	4.188
	NormalBrush	15	70.73	10.920	1.994
	NormalBrushf loss	15	59.07	17.043	3.112
T2Streptococcu s	OrthoBrush	15	37.83	17.511	3.197
	NormalBrush	15	67.20	10.614	1.938
	NormalBrushf loss	15	56.73	14.941	2.728
T0Lactobacillu s	OrthoBrush	15	54.93	30.144	5.504
	NormalBrush	15	69.97	13.523	2.469
	NormalBrushf loss	15	65.63	15.332	2.799
T1Lactobacillu s	OrthoBrush	15	72.40	22.710	4.146
	NormalBrush	15	71.53	13.093	2.390
	NormalBrushf loss	15	66.17	14.037	2.563
T2Lactobacillu s	OrthoBrush	15	57.03	39.937	7.291
	NormalBrush	15	69.73	11.855	2.164
	NormalBrushf loss	15	64.30	14.157	2.585

Table5:Descriptivestatisticsofvariousparameters in the group **ElastomericModules group**

*statisticallysignificant

**statisticallynon-significant

Group		Sum of Squares	df	Mean Square	F	P value
T0Streptococc us	BetweenGroups	11568.956	2	5784.478	23.5 06	.000*
	WithinGroups	21409.500	87	246.086		
	Total	32978.456	89			
T1Streptococc us	BetweenGroups	2043.089	2	1021.544	3.27 4	.04*
	WithinGroups	27142.700	87	311.985		
	Total	29185.789	89			
T2Streptococc us	BetweenGroups	13291.622	2	6645.811	31.0 30	.000*
	WithinGroups	18632.833	87	214.170		
	Total	31924.456	89			
T0lactobacill us	BetweenGroups	3592.689	2	1796.344	4.06 2	.021*
	WithinGroups	38471.800	87	442.205		
	Total	42064.489	89			
T1lactobacill us	BetweenGroups	684.067	2	342.033	1.16 0	.318**
	WithinGroups	25642.833	87	294.745		
	Total	26326.900	89			
T2lactobacill us	BetweenGroups	2436.156	2	1218.078	1.88 8	.158**
	WithinGroups	56141.133	87	645.300		
	Total	58577.289	89			

Table6:Intergroupcomparison of various parameters in the **ElastomericModules group**

Dependent Variable	(I)GP	(J)GP	Mean Differen	Std.E rror	p value	95%Con Interval	
			-ce(I-J)			Lower Bound	Upper Bound
T0 Strepto	Ortho Brush	Normal Brush	-27.567	4.050	.000*	-37.45	-17.68
Coccus		Normal Brusfloss	-16.700	4.050	.000*	-26.59	-6.81
	Normal	Ortho Brush	27.567	4.050	.000*	17.68	37.45
	Brush	Normal Brushfloss	10.867	4.050	.026*	.98	20.75
	NormalB	Ortho Brush	16.700	4.050	.000*	6.81	26.59
	rush floss	Normal Brush	-10.867	4.050	.026*	-20.75	98
T1 Strepto	Ortho Brush	Normal Brush	-6.100	4.561	.554**	-17.23	5.03
Coccus		Normal Brusfloss	5.567	4.561	.677**	-5.57	16.70
	Normal	Ortho Brush	6.100	4.561	.554**	-5.03	17.23
	Brush	Normal Brushfloss	11.667	4.561	.037*	.53	22.80
	NormalB	Ortho Brush	-5.567	4.561	.677**	-16.70	5.57
	rush floss	Normal Brush	-11.667	4.561	.037*	-22.80	53
T2 Strepto	Ortho Brush	Normal Brush	-29.367	3.779	.000*	-38.59	-20.14
Coccus		Normal Brush Floss	-18.900	3.779	.000*	-28.12	-9.68
	Normal	Ortho Brush	29.367	3.779	.000*	20.14	38.59
	Brush	Normal Brush Floss	10.467	3.779	.021*	1.24	19.69
	Normal	Ortho Brush	18.900	3.779	.000*	9.68	28.12
	Brush floss	Normal Brush	-10.467	3.779	.021*	-19.69	-1.24
T0Lacto bacillus	Ortho Brush	Normal Brush	-15.033	5.430	.021*	-28.29	-1.78
		Normal Brush Floss	-10.700	5.430	.156**	-23.95	2.55
	Normal	Ortho Brush	15.033	5.430	.021*	1.78	28.29

Table7:Multiplegroupcomparison of various parameters in the Elastomeric Modules group

Dependent	(I)GP	(J)GP	Mean	Std.E	p value	95%Coi	nfidence
Variable		~ /	Differen	rror	-	Interval	
			-ce(I-J)			Lower	Upper
						Bound	Bound
	Brush	Normal	4.333	5.430	1.000**	-8.92	17.59
		Brush Floss					
	Normal	Ortho Brush	10.700	5.430	.156**	-2.55	23.95
	Brush	Normal	-4.333	5.430	1.000**	-17.59	8.92
	floss	Brush					
T1Lacto	Ortho	Normal	.867	4.433	1.000**	-9.95	11.69
bacillus	Brush	Brush					
		Normal	6.233	4.433	.490**	-4.59	17.05
		Brush Floss					
	Normal Brush	Ortho Brush	867	4.433	1.000**	-11.69	9.95
		Normal	5.367	4.433	.688**	-5.45	16.19
		Brush Floss					
	Normal Brush	Ortho Brush	-6.233	4.433	.490**	-17.05	4.59
	floss	Normal Brush	-5.367	4.433	.688**	-16.19	5.45
T2Lacto bacillus	Ortho Brush	Normal Brush	-12.700	6.559	.168**	-28.71	3.31
		Normal Brush Floss	-7.267	6.559	.813**	-23.28	8.74
	Normal Brush	Ortho Brush	12.700	6.559	.168**	-3.31	28.71
		Normal Brush Floss	5.433	6.559	1.000**	-10.58	21.44
	Normal Brush	Ortho Brush	7.267	6.559	.813**	-8.74	23.28
	floss	Normal Brush	-5.433	6.559	1.000**	-21.44	10.58

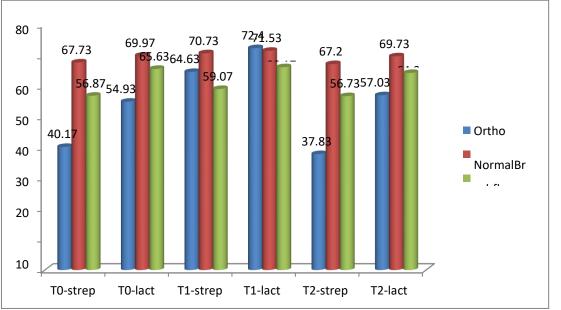
*statisticallysignificant **statisticallynon-significant

	GP	N	Mean	Std. Deviation	Std.Error Mean
T0 Streptococcus	Ortho Brush	15	40.57	12.811	2.339
	Normal Brush	15	58.50	15.987	2.919
	NormalBrush floss	15	41.07	10.342	1.888
T1 Streptococcus	Ortho Brush	15	42.10	14.942	2.728
	Normal Brush	15	58.10	16.251	2.967
	Normal Brushfloss	15	39.57	7.785	1.421
T2 Streptococcus	Ortho Brush	15	23.10	12.095	2.208
	Normal Brush	15	56.30	15.100	2.757
	Normal Brushfloss	15	36.27	9.244	1.688
T0 Lactobacillus	Ortho Brush	15	32.00	8.554	1.562
	Normal Brush	15	59.70	6.271	1.145
	Normal Brushfloss	15	40.43	7.016	1.281
T1 Lactobacillus	Ortho Brush	15	31.73	9.184	1.677
	Normal Brush	15	56.40	6.579	1.201
	Normal Brushfloss	15	40.87	5.104	.932
T2 Lactobacillus	Ortho Brush	15	18.30	8.264	1.509
	Normal Brush	15	56.50	6.274	1.145
	Normal Brushfloss	15	37.37	6.462	1.180

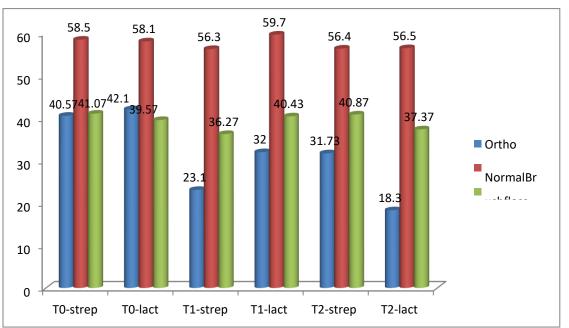
$Table 8: Descriptive statistics of various parameters in \ the Stain Less Steel Ligature Wire\ group$

		Sum of Squares	df	Mean Square	F	p value
T0 Streptococcus	BetweenGr oups	6257.756	2	3128.878	17.823	.000*
-	WithinGro ups	15272.733	87	175.549		
	Total	21530.489	89			
T1 Streptococcus	BetweenGr oups	6059.022	2	3029.511	16.586	.000*
	WithinGro ups	15890.767	87	182.652		
	Total	21949.789	89			
T2 Streptococcus	BetweenGr oups	16769.356	2	8384.678	54.712	.000*
	WithinGro ups	13332.867	87	153.251		
	Total	30102.222	89			
T0Lactobacil lus	BetweenGr oups	12096.156	2	6048.078	112.200	.000*
	WithinGro ups	4689.667	87	53.904		
	Total	16785.822	89			
T1 Lactobacillu	BetweenGr oups	9331.467	2	4665.733	91.084	.000*
S	WithinGro ups	4456.533	87	51.225		
	Total	13788.000	89			
T2 Lactobacillu s	BetweenGr oups	21888.622	2	10944.311	219.757	.000*
	WithinGro ups	4332.767	87	49.802		
	Total	26221.389	89			

Table9:Intergroupcomparison of various parameters in the Stain Less Steel Ligature Wire group


*statisticallysignificant **statisticallynon-significant

$Table 10: Multiple group comparison\ of various parameters in\ the Stain Less Steel Ligature Wire\ group$


Depende -	(I)GP	(J)GP	Mean Differen	Std. Error	p value	95%Confidence Interval	
ntVariab le			-ce(I-J)			Lower Bound	Upper Bound
T0 Streptococ cus	Ortho Brush	Normal Brush	-17.933	3.421	.000*	-26.28	-9.58
		Normal Brusflo	500	3.421	1.000**	-8.85	7.85
	Normal Brush	Ortho Brush	17.933	3.421	.000*	9.58	26.28
		Normal Brushflo	17.433	3.421	.000*	9.08	25.78
	Normal Brush floss	Ortho Brush	.500	3.421	1.000**	-7.85	8.85
		Normal Brush	-17.433	3.421	.000*	-25.78	-9.08
T1 Streptococ cus	Ortho Brush	Normal Brush	-16.000	3.490	.000*	-24.52	-7.48
		Normal Brusflo	2.533	3.490	1.000**	-5.99	11.05
	Normal Brush	Ortho Brush	16.000	3.490	.000*	7.48	24.52
		Normal Brushflo	18.533	3.490	.000*	10.01	27.05
	Normal Brush floss	Ortho Brush	-2.533	3.490	1.000**	-11.05	5.99
		Normal Brush	-18.533	3.490	.000*	-27.05	-10.01
T2 Streptococ cus	Ortho Brush	Normal Brush	-33.200	3.196	.000*	-41.00	-25.40
		Normal Brusflo	-13.167	3.196	.000*	-20.97	-5.36
	Normal Brush	Ortho Brush	33.200	3.196	.000*	25.40	41.00
		Normal Brushflo	20.033	3.196	.000*	12.23	27.84
	Normal Brushfloss	Ortho Brush	13.167	3.196	.000*	5.36	20.97
		Normal Brush	-20.033	3.196	.000*	-27.84	-12.23

Depende	(I)GP	(J)GP	Mean	Std.	p value	95%Confidence	
-			Differen	Error	P · ·····	Interval	
ntVariab			-ce(I-J)			Lower	Upper
le						Bound	Bound
T0	Ortho	Normal	-27.700	1.896	.000*	-32.33	-23.07
Lactobacil	Brush	Brush					
lus		Normal Brusflo	-8.433	1.896	.000*	-13.06	-3.81
	Normal	Ortho	27.700	1.896	.000*	23.07	32.33
	Brush	Brush		1.070		20101	02100
		Normal Brushflo	19.267	1.896	.000*	14.64	23.89
	Normal Brushfloss	Ortho Brush	8.433	1.896	.000*	3.81	13.06
		Normal Brush	-19.267	1.896	.000*	-23.89	-14.64
T1 Lactobacil	Ortho Brush	Normal Brush	-24.667	1.848	.000*	-29.18	-20.16
lus		Normal Brusflo	-9.133	1.848	.000*	-13.64	-4.62
	Normal Brush	Ortho Brush	24.667	1.848	.000*	20.16	29.18
		Normal Brushflo	15.533	1.848	.000*	11.02	20.04
	Normal Brushfloss	Ortho Brush	9.133	1.848	.000*	4.62	13.64
		Normal Brush	-15.533	1.848	.000*	-20.04	-11.02
T2 Lactobacil	Ortho Brush	Normal Brush	-38.200	1.822	.000*	-42.65	-33.75
lus		Normal Brusflo	-19.067	1.822	.000*	-23.51	-14.62
	Normal Brush	Ortho Brush	38.200	1.822	.000*	33.75	42.65
		Normal Brushflo	19.133	1.822	.000*	14.69	23.58
	Normal Brushfloss	Ortho Brush	19.067	1.822	.000*	14.62	23.51
		Normal Brush	-19.133	1.822	.000*	-23.58	-14.69

*statisticallysignificant **statisticallynon-significant

Graph1:IntergroupcomparisonofvariousparametersinthegroupElastomeric Modules Group

Graph2:IntergroupcomparisonofvariousparametersinthegroupStainLessSteel Ligature Wire group

Discussion

Orthodontic ligation techniques are used to secure the arch wire to the brackets and they comprise of stainless-steel ligatures wires, elastic modules and new system introduce that is self-ligation system. Even various molar bands, brackets, arch wires, elastics, springs or other

attachments are being used while during the Orthodontic treatment and they all have a bigger tendency for accumulation of dental plaque, as they block exposure to good oral hygiene and create microbial nests that result in plaque accumulation. Henceforth there is requirement of enhanced oral hygiene care. This present study was conducted for analyzing theefficacy of different oral prophylactic methods at home during fixed orthodontic mechanotherapy among 60 studied populations of 18-40 years of aged. The patients were treated using elastomeric modules and stainless steel ligature rings with both the groups were advised various prophylactic methods.

The present study revealed that difference was found to be significant for normal brush followed by orthodontic floss at baseline (T0) and T2 (30th Day) when compared between various prophylactic methods. But the study conducted by Quesha L et al revealed that the dental plaque can be effectively controlled through the electric toothbrush and the chlorhexidine mouth rinse together than manual teeth brushing alone^[11,16,17]. Even they have also showed that the electric toothbrush beside the chlorhexidine mouth rinse appears to power dental plaque additionally and effectively than manual teeth brushing alone among the patients who were receiving multibracket treatment.

The study by Caccianiga P^[21]et al also resonate that usage of an oral irrigator along with the sonic toothbrush seems to reinstate good oral hygiene in contrast to pathogenic flora, which further reducing the jeopardy of caries and gingivitis in orthodontic patients Mavami M et al^[22]where they have done the examination of elastomeric modules over a scheduled period of time and seen the normal brushes were also successful module for oral hygiene aid while during fixed mechanotherapy. Irregular alignment of teeth may make plaque control even more difficult. Nonetheless, effective plaque control is the prime consideration for good oral hygiene. Daily oral hygiene can become challenging for some patients in the presence of orthodontic appliances. Accordingly orthodontic toothbrush has been recommended for patients with orthodontic treatment. Also some patients need to be reminded to concentrate on cleaning the cervical area of their teeth below the brackets. A continuous increase in oral hygiene awareness not only will reduce the prevalence and severity of iatrogenic tissue damage but also will extend the long-term benefits of orthodontic therapy.

Conclusion

Oral home care aids are the effective methods for improvement of thepatient's compliancein order to achieve the optimal oral hygiene results and the current study revealed that orthodontic brushes were more effective over normal brushes. There is a need for careful monitoring of orthodontic patients and taking specific preventive interventions against the risk of development of various plaque associated diseases especially during third month and sixth month of treatment. But education and motivation should also be done to thepatients who are undergoing fixed orthodontic treatment.

References

1. Singh V, Sharma P, Kumar P, Bagga D, Sharma R, Kumar P. Evaluation of anteroposterior relationship of maxillary central incisors to a soft tissue plane in profile analysis. J Indian Orthod Soc 2014;48:180-3.

- 2. Shibly O, Rifai S, Zambon JJ. Supragingival dental plaque in the etiology of oral diseases. Periodontol 2000 1995;8:42-59.
- 3. Klukowska M et al. Plaque levels of patients with fixed orthodontic appliances measured by digital plaque image analysis. American Journal of Orthodontics and Dentofacial Orthopedics.2011;139(5):e463-e470
- 4. Fejerskov O, Kidd EAM. Dental caries: the disease and its clinical management. Oxford: Blackwell Munksgaard; 2003
- 5. Sachin

Rai, TriptiTikku, RohitKhanna, RanaPartapMorya, SnehlataVerma, KamnaSrivastavaVarios methods of ligation ties. 10.18231/j. ijodr. 2019.002

- 6. Moradinejad M, Moradi M, Tashakor F. The effect of an antimicrobial mouthwash on the modulus of elasticity of different elastomeric ligatures an in vivo study. Int J Curr Res Chem Pharma Sci. 2015;2:28–32.
- 7. Saloom HF, Salih HSM, Shaymaa FR. The influence of different types of fixed orthodontic appliance on the growth and adherence of microorganisms. J Clin Exp Dent 2013;5(1):36-41.
- 8. Ankit Kumar Shahi,Piush,Kumar,DivyaShetty,AnshiJain,Payal Sharma and MonisRaza.Effect of antimicrobial agents on the oral microflora in patientsundergoing fixed orthodontic therapy-An ex vivo comparative analysis.J of Orthodontic science 2021;46(20)
- 9. Sunil PC, M Tony, Raju SA. Evaluation of Micro-organism in Ligated Metal and Selfligating Brackets using Scanning Electron Microscopy An In Vivo Study. J Int Oral Health 2015; 7(7):58-62.
- 10. Wang SY, Yang YH, Chang HP. The effect of an oral hygiene instruction intervention on plaque control by orthodontic patients. J dent sci 2007;2:445-51.
- 11. Gorelick L, Geiger AM, Gwinnett AJ. Incidence of white spot formation after bonding and banding. Am J Orthod 1982;81: 93-8.
- 12. Artun J, Brobakken BO. Prevelance of carious white spots after orthodontic treatment with multibanded appliances. Eur J Orthod 1986;8:229-34
- 13. Ogaard B. Prevalence of white spot lesions in 19-year-olds: a study on untreated and orthodontically treated persons 5 years after treatment. Am J Orthod Dentofacial Orthop 1989;96:423-7
- 14. Van Der Weijden GA, Hioe KP. A systematic review of the effectiveness of selfperformed mechanical plaque removal in adults with gingivitis using a manual toothbrush. J Clin Periodontol. 2005;32(6):214–28
- 15. Fiorillo L. Chlorhexidine gel use in the oral district: A systematic review. Gels 2019;5:31
- Benson PE, Pender N, Higham SM. Quantifying enamel demineralization from teeth with orthodontic brackets – A comparison of two methods. Part 2: Validity. Eur J Orthod 2003;25:159–65