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Introduction: 

Understanding fuzzy logic involves grasping the fundamental concepts that distinguish it from 

classical binary logic. Fuzzy logic is a form of many-valued logic derived from fuzzy set theory 

to handle reasoning that is approximate rather than fixed and exact [1]. Here's a breakdown of 

the key components and principles of fuzzy logic: Fuzzy Sets - Classical Set:  An element 

either belongs or does not belong to a set (binary membership: 0 or 1). A fuzzy Set is an element 

that can partially belong to a set with a degree of membership ranging between 0 and 1[2]. For 

example, the degree of membership for an element (x) in a fuzzy set (A) might be denoted as ( 

mu_A(x) ). Membership Functions: These functions define how each point in the input space 

is mapped to a membership value between 0 and 1. Common shapes of membership functions 

include triangular, trapezoidal, and Gaussian. Linguistic Variables [3]: These are variables 

described in terms of words or sentences from natural language rather than numerical values. 

For example, temperature might be described as "cold," "warm," or "hot." Fuzzy Rules 

Fuzzy logic systems often use "if-then" rules to derive conclusions from fuzzy input. Example: 

"If temperature is high, then fan speed should be fast [4]." These rules are defined using 

linguistic variables and can be derived from expert knowledge. Fuzzy Inference System (FIS) 

This is the process of formulating the mapping from a given input to an output using fuzzy 

logic [5]. It involves Fuzzification: Converting crisp inputs into degrees of membership for 

fuzzy sets. Rule Evaluation: Applying fuzzy rules to the fuzzified inputs to produce a fuzzy 

output [6]. Aggregation of Outputs: Combining the outputs of all rules. Defuzzification: 

Converting the fuzzy output back into a crisp value. Types of Fuzzy Inference Systems 

Mamdani FIS: Uses fuzzy sets for both the input and output and requires defuzzification. 

Sugeno FIS: Uses fuzzy sets for inputs but outputs are typically linear functions of the inputs 

Abstract: Fuzzy logic provides a method to transform subjective risk assessments into a 

structured and quantifiable decision-making process. This process includes fuzzifying inputs, 

applying fuzzy rules, aggregating results, and defuzzifying the output to yield a crisp risk score. 

By managing uncertainty and imprecision, fuzzy logic proves to be a powerful tool in risk 

assessment. The Mamdani inference method, in particular, offers a systematic approach to 

combining fuzzy rules and generating a fuzzy output, which is then defuzzified into a precise 

risk value. This approach effectively addresses the complexities and uncertainties in risk 

assessment, enhancing decision-making capabilities. Fuzzy logic, distinct from classical binary 

logic, offers a framework for reasoning that accommodates approximation rather than fixed, 

exact values. An FIS involves fuzzification, rule evaluation, aggregation of outputs, and 
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or constant values, simplifying defuzzification [7]. Practical Example: Fuzzy Logic in Control 

Systems Consider a simple fuzzy logic controller for a room heating system: Define Input and 

Output Variables: 

 Input: Temperature (cold, warm, hot), Output: Heater Power (low, medium, high) 

Define and create Membership Functions 

Temperature: "cold" (0-15°C), "warm" (10-25°C), "hot" (20-35°C), Heater Power: "low" (0-

50%), "medium" (30-70%), "high" (60-100%).temperature is cold, then the heater power is 

high. temperature is warm, then the heater power is medium. temperature is hot, then the heater 

power is low. Applying the rules to determine the fuzzy output for a given input temperature. 

Convert the fuzzy output to a crisp heater power setting [8]. The advantages of Fuzzy Logic 

are as follows: Flexibility: Can handle imprecise information. Simplicity: Easy to understand 

and implement. Robustness: Tolerant of uncertain or approximate data [9]. 

Applications of Fuzzy Logic Control Systems: HVAC systems, washing machines, automotive 

systems. Decision Making: Risk assessment, financial systems. Pattern Recognition: Image 

processing, speech recognition [10]. Understanding and implementing fuzzy logic requires 

familiarity with fuzzy set theory, the ability to define membership functions and the skills to 

create and apply fuzzy rules. By modelling complex systems with approximate reasoning, 

fuzzy logic provides a powerful tool for dealing with uncertainty and imprecision in various 

real-world applications. Fuzzy logic provides a way to handle the uncertainty and imprecision 

often present in risk assessment. It can be used effectively to calculate decision-making in risk 

assessment by evaluating various risk factors and their associated uncertainties [11]. Here’s a 

step-by-step guide to how you can calculate decision-making for risk assessment using fuzzy 

logic: Define Risk Factors and Their Linguistic Variables by Identifying the key risk factors 

involved in the assessment. These could be things like Likelihood of a threat (e.g., Low, 

Medium, High) 

Impact of the threat (e.g., Low, Medium, High), Vulnerability (e.g., Low, Medium, High) 

Control effectiveness (e.g., Poor, Average, Good) 

Membership Functions for each linguistic variable, define membership functions. Membership 

functions map the crisp values (actual measurements) to fuzzy values (degree of belonging to 

a linguistic variable). Common types of membership functions include triangular, trapezoidal, 

and Gaussian. 
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For example, for the risk factor "Likelihood of a threat": 

Low: Triangular membership function with a peak at 0.2 and spread from 0 to 0.4. 

Medium: Triangular membership function with a peak at 0.5 and spread from 0.3 to 0.7. 

High: Triangular membership function with a peak at 0.8 and spread from 0.6 to 1.0. 

Fuzzification - Convert the crisp values of risk factors into fuzzy values using the defined 

membership functions. This process is called fuzzification. 

For instance, if the likelihood of a threat is measured at 0.6: 

Low: μLow(0.6) = 0, Medium: μMedium(0.6) = 0.67, High: μHigh(0.6) = 0.33 

Fuzzy Rules - Establish a set of fuzzy rules that relate the input variables to the output variable. 

These rules are often based on expert knowledge. 

IF Likelihood is High AND Impact is High THEN Risk is High 

IF Likelihood is Medium AND Impact is Medium THEN Risk is Medium 

IF Likelihood is Low AND Impact is Low THEN Risk is Low 

Inference - To generate fuzzy outputs, apply the fuzzy rules to the fuzzified inputs. Use 

methods like the Mamdani inference method to combine the rules and obtain the fuzzy output. 

The Mamdani inference method is one of the most widely used fuzzy inference techniques. It 

involves several steps: fuzzification, rule evaluation, aggregation, and defuzzification. Here’s 

a detailed process on how to apply the Mamdani inference method to combine the rules and 

obtain the fuzzy output:  

1. Fuzzification: Convert the crisp input values into fuzzy values using the membership 

functions defined for each input variable. For example, if we take sample data as 

Likelihood (L) = 0.6 

Impact (I) = 0.8 

Membership functions for Likelihood: 

Low: μL(x)mu_{L}(x)μL(x) 
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Medium: μM(x)mu_{M}(x)μM(x) 

High: μH(x)mu_{H}(x)μH(x) 

Membership functions for Impact: 

Low: μL(x)mu_{L}(x)μL(x) 

Medium: μM(x)mu_{M}(x)μM(x) 

High: μH(x)mu_{H}(x)μH(x) 

Fuzzification results: 

μL,Low(0.6)=0mu_{L,text{Low}}(0.6) = 0μL,Low(0.6)=0 

μL,Medium(0.6)=0.67mu_{L,text{Medium}}(0.6) = 0.67μL,Medium(0.6)=0.67 

μL,High(0.6)=0.33mu_{L,text{High}}(0.6) = 0.33μL,High(0.6)=0.33 

μI,Low(0.8)=0mu_{I,text{Low}}(0.8) = 0μI,Low(0.8)=0 

μI,Medium(0.8)=0.33mu_{I,text{Medium}}(0.8) = 0.33μI,Medium(0.8)=0.33 

μI,High(0.8)=0.67mu_{I,text{High}}(0.8) = 0.67μI,High(0.8)=0.67 

2. Rule Evaluation 

Evaluate the rules using the fuzzified inputs. The rules are in the form of IF-THEN 

statements. 

Example rules: 

IF Likelihood is High AND Impact is High THEN Risk is High 

IF Likelihood is Medium AND Impact is Medium THEN Risk is Medium 

IF Likelihood is Low AND Impact is Low THEN Risk is Low 
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For each rule, compute the degree of fulfilment (DOF) by taking the minimum of the 

antecedent memberships (AND operator). 

Rule 1: DOF=min(μL,High(0.6),μI,High(0.8))=min(0.33,0.67)=0.33text{DOF} = 

min(mu_{L,text{High}}(0.6), mu_{I,text{High}}(0.8)) = min(0.33, 0.67) = 

0.33DOF=min(μL,High(0.6),μI,High(0.8))=min(0.33,0.67)=0.33 

Rule 2: DOF=min(μL,Medium(0.6),μI,Medium(0.8))=min(0.67,0.33)=0.33text{DOF} 

=min(mu_{L,text{Medium}}(0.6), mu_{I,text{Medium}}(0.8)) = min(0.67, 0.33) = 

0.33DOF=min(μL,Medium(0.6),μI,Medium(0.8))=min(0.67,0.33)=0.33 

Rule 3: Not applicable as both inputs do not fuzzify to Low. 

3. Aggregation of Rule Outputs: Combine the outputs of all rules to form a single fuzzy set. 

This involves taking the maximum of the fuzzy outputs from each rule. 

Membership functions for Risk: 

Low: μRisk,Low(x)mu_{text{Risk,Low}}(x)μRisk,Low(x) 

Medium: μRisk,Medium(x)mu_{text{Risk,Medium}}(x)μRisk,Medium(x) 

High: μRisk,High(x)mu_{text{Risk,High}}(x)μRisk,High(x) 

Rule outputs: 

Rule 1 contributes to μRisk,Highmu_{text{Risk,High}}μRisk,High 

Rule 2 contributes to μRisk,Mediummu_{text{Risk,Medium}}μRisk,Medium 

Aggregate the contributions: μRisk, Aggregate(x)=max(μRisk,High(x)∩0.33, 

μRisk,Medium(x)∩0.33)mu_{text{Risk,Aggregate}}(x) = max(mu_{text{Risk,High}}(x) 

cap 0.33, mu_{text{Risk,Medium}}(x) cap 0.33)μRisk,Aggregate(x)=max(μRisk,High

(x)∩0.33,μRisk,Medium(x)∩0.33) 

4. Defuzzification 
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Convert the aggregated fuzzy set into a crisp value. The centroid (centre of gravity) method is 

commonly used for this purpose. 

Risk=∫x⋅μRisk,Aggregate(x) dx∫μRisk,Aggregate(x) dxtext{Risk} = frac{int x cdot 

mu_{text{Risk,Aggregate}}(x) , dx}{int mu_{text{Risk,Aggregate}}(x), 

dx}Risk=∫μRisk,Aggregate(x)dx∫x⋅μRisk,Aggregate(x)dx 

Implementation of Triangular membership function: A simplified example using 

triangular membership functions for illustration. 

Membership Functions: 

μRisk,Low(x)mu_{text{Risk,Low}}(x)μRisk,Low(x) = Triangular(0, 0, 0.5) 

μRisk,Medium(x)mu_{text{Risk,Medium}}(x)μRisk,Medium(x) = Triangular(0.3, 0.5, 0.7) 

μRisk,High(x)mu_{text{Risk,High}}(x)μRisk,High(x) = Triangular(0.5, 1, 1) 

Rule Contributions: 

Rule 1: μRisk,High(x)∩0.33mu_{text{Risk,High}}(x) cap 0.33μRisk,High(x)∩0.33 

Rule 2: μRisk,Medium(x)∩0.33mu_{text{Risk,Medium}}(x) cap 0.33μRisk,Medium

(x)∩0.33 

Aggregated Membership Function:  

μRisk, 

Aggregate(x)=max(min(μRisk,High(x),0.33),min(μRisk,Medium(x),0.33))mu_{text{

Risk,Aggregate}}(x) = max(min(mu_{text{Risk,High}}(x), 0.33), 

min(mu_{text{Risk,Medium}}(x), 0.33))μRisk,Aggregate(x)=max(min(μRisk,High

(x),0.33),min(μRisk,Medium(x),0.33)) 

Defuzzification: Calculate the centroid of the aggregated membership function: 
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This will provide a crisp value representing the risk assessment. The Mamdani inference 

method offers a structured way to combine fuzzy rules and obtain a fuzzy output, which is then 

defuzzified to get a crisp risk value. This process handles the uncertainties and complexities 

inherent in risk assessment, making it a powerful tool for decision-making. Aggregation - 

Combine the fuzzy outputs from all the rules to form a single fuzzy set. This step typically 

involves taking the union (maximum) of all fuzzy sets representing the rule outputs. 

Defuzzification - Convert the aggregated fuzzy output back into a crisp value. Common 

defuzzification methods include the Centroid method (centre of gravity) and the Max 

membership principle. Example: Assume we have two risk factors: Likelihood (L) and Impact 

(I). Let’s use triangular membership functions for simplicity. 

Membership Functions 

Likelihood: 

Low: ( mu_L(x) = max(0, min((0.4-x)0.4, 1)) ), 

Medium: ( mu_M(x) = max(0, min((x-0.3)/0.2, (0.7-x)/0.2)) ) 

High: ( mu_H(x) = max(0, min((x-0.6)0.4, 1)) ) 

Impact: 

Low: Similar functions as Likelihood 

Medium: Similar functions as Likelihood 

High: Similar functions as Likelihood 

Fuzzification 

The example value assigned for Fuzzification is L:0.6 and I:0.8 as follows 

L = 0.6 

I = 0.8 

Fuzzified values: 

(mu_L(0.6) = 0 ), ( mu_M(0.6) = 0.67 ), ( mu_H(0.6) = 0.33) 

(mu_L(0.8) = 0 ),( mu_M(0.8) = 0.33 ), (mu_H(0.8) = 0.67 ) 

Rules 
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IF L is High AND I is High THEN Risk is High  

IF L is Medium AND I is Medium THEN Risk is Medium 

IF L is Low AND I is Low THEN Risk is Low 

Inference and Aggregation 

Rule 1: ( min(mu_H(0.6), mu_H(0.8)) = min(0.33, 0.67) = 0.33 ) 

Rule 2: ( min(mu_M(0.6), mu_M(0.8)) = min(0.67, 0.33) = 0.33 ) 

Rule 3: Not applicable as both inputs do not fuzzify to Low. 

Defuzzification 

Assume the output risk membership functions: 

 Low: ( mu_{Low}(x)) 

 Medium: ( mu_{Med}(x)) 

 High: ( mu_{High}(x) ) 

Using the Centroid method: 

[ text{Risk} = frac{int x cdot mu(x) , dx}{int mu(x) , dx} ] 

Where ( mu(x) ) is the aggregated membership function combining the outputs of all rules. 

The centroid method would involve calculating the centre of the area under the curve defined 

by ( mu_{Risk}(x) ). 

The Mamdani inference method is explained in a table format with some example data  

Input variables: Likelihood (L) and Impact (I) 

Output variable: Risk 

Membership functions for each variable In fuzzy logic, membership functions (MFs) are 

mathematical functions that define how each point in the input space is mapped to a degree of 

membership between 0 and 1. These functions represent fuzzy sets and are used to transform 

crisp inputs into fuzzy values during the fuzzification process. The shape of the membership 

function can significantly affect the performance of a fuzzy system. 
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Fuzzy rules -Membership Functions 

Table 1: Likelihood (L), Impact (I), and Risk: 

Value Low Medium High 

0 1 0 0 

0.2 0.8 0.2 0 

0.4 0.4 0.6 0 

0.6 0 0.67 0.33 

0.8 0 0.33 0.67 

1 0 0 1 

    

 

Figure 1: The membership values Chart 

Table 1 and Figure 1 represent the membership values of different fuzzy sets (Low, Medium, 

High) for the variable Likelihood (L). Each row corresponds to a specific value of Likelihood 

(ranging from 0.0 to 1.0), and the columns indicate the degree to which that value belongs to 

each fuzzy set.  

The table indicates how the likelihood values transition between the fuzzy sets Low, Medium, 

and High. At each step (from 0.0 to 1.0), the degrees of membership in each fuzzy set change, 

reflecting how the concept of Likelihood gradually shifts from being Low to Medium to High. 

This is a typical representation in fuzzy logic systems, allowing for gradual transitions rather 

than abrupt changes, capturing the inherent uncertainty and vagueness in real-world scenarios. 

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5 6 7

Likelihood (L)

Value Low Medium High
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Fuzzification: Assume 

Likelihood (L) = 0.6  , Impact (I) = 0.8 

Table 2: Fuzzification: 

Table: Membership Values for Inputs L and I 

Input Low Medium High 

L = 0.6 0 0.67 0.33 

I = 0.8 0 0.33 0.67 

 

Figure 2: The degrees of membership 

This table 2and Fig 2 shows how the inputs L and I, each with a value of 0.6 and 0.8 

respectively, map to the degrees of membership in the fuzzy sets "Low," "Medium," and 

"High.". Input L (Likelihood) at 0.6 : Low: 0.00 (No membership in the Low fuzzy set), 

Medium: 0.67 (Moderate to high membership in the Medium fuzzy set) ,High: 0.33 (Moderate 

membership in the High fuzzy set). At L = 0.6, the value is predominantly in the Medium fuzzy 

set with a significant presence in the High fuzzy set but no presence in the Low fuzzy set. Input 

I (Intensity) at 0.8: Low: 0.00 (No membership in the Low fuzzy set), Medium: 0.33 (Low 

membership in the Medium fuzzy set), High: 0.67 (High membership in the High fuzzy set). 

0

0.2

0.4

0.6

0.8

1

1.2

L O W M E D I U M H I G H

MEMBERSHIP VALUES FOR 
INPUTS L AND I

L = 0.6 I = 0.8
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At I = 0.8, the value is mostly in the High fuzzy set with some presence in the Medium fuzzy 

set but no presence in the Low fuzzy set. The table above provides a clear view of how the 

inputs L and I, with values of 0.6 and 0.8 respectively, distribute their memberships across the 

fuzzy sets "Low," "Medium," and "High." This representation helps in understanding the fuzzy 

logic process where inputs are not just true or false but have degrees of belonging to multiple 

categories simultaneously. 

Rule Evaluation 

1. IF Likelihood is High AND Impact is High THEN Risk is High 

2. IF Likelihood is Medium AND Impact is Medium THEN Risk is Medium 

3. IF Likelihood is Low AND Impact is Low THEN Risk is Low 

Table 3: Rule Evaluation: 

Rule Likelihood (L) Impact (I) 
Min 

(AND) 
Resultant Risk 

1 0.33 (High) 0.67 (High) 0.33 0.33 (High) 

2 0.67 (Medium) 0.33 (Medium) 0.33 0.33 (Medium) 

3 0 (Low) 0 (Low) 0 N/A 

This table 3 illustrates how fuzzy logic rules can be applied to determine the resultant risk 

based on the given values of Likelihood and Impact. The resultant risk is derived using the 

minimum value of the memberships of Likelihood and Impact for each rule.  

This process highlights how fuzzy logic manages uncertainty by allowing partial memberships 

across different fuzzy sets. 

Step 3: Aggregation of Rule Outputs Combine the results of all rules: 

Table 4: variable's values 
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Value Low Medium High 

0 0 0 0 

0.2 0 0.2 0 

0.4 0 0.33 0 

0.6 0 0.33 0.33 

0.8 0 0.33 0.33 

1 0 0 0.33 

This table 4 illustrates how a variable's values from 0.0 to 1.0 have different degrees of 

membership in the fuzzy sets "Low," "Medium," and "High."  

The membership values indicate the extent to which each value belongs to these fuzzy sets, 

capturing the gradual transitions and overlapping nature typical of fuzzy logic systems. 

Step 4: Defuzzification - Using the Centroid method to defuzzify: 

 

Table 5: Approximate the defuzzification process 

Table: Aggregate Membership Values 

Value Membership (Aggregate) 

0 0 

0.2 0.2 

0.4 0.33 

0.6 0.33 

0.8 0.33 

1 0.33 



 Anuma Thakuri/ Afr.J.Bio.Sc. 6(12) (2024)  Page 1739 of 16 
 

Approximated Centroid calculation: To calculate the approximate centroid (or centre of 

gravity) for the given Risk values using the provided formula, follow these steps: 

Formula: The centroid calculation formula for the Risk is: 

Risk=∑Membership / ∑(Value×Membership) 

Given Values: 

Values: 0.2, 0.4, 0.6, 0.8, 1.0 

Memberships: 0.2, 0.33, 0.33, 0.33, 0.33 

Numerator Calculation: 0.2×0.2+0.4×0.33+0.6×0.33+0.8×0.33+1.0×0.33 

Breaking it down: 

0.2×0.2=0.4 

0.4×0.33=0.132 

0.6×0.33=0.198 

0.8×0.33=0.264 

1.0×0.33=0.33 

Adding these products: 

0.04+0.132+0.198+0.264+0.33=0.9640.04 

Denominator Calculation: 

0.2+0.33+0.33+0.33+0.33=1.520.2  

Centroid Calculation: 

Risk=0.964/1.52≈0.634 

Final Result: The approximate centroid for the given Risk values is:  
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 Risk≈0.634 

This calculation shows that the fuzzy risk assessment's centre of gravity (or centroid) is 

approximately 0.634. The calculated Risk value is approximately 0.634. The above table 

format example provides a clear and structured way to illustrate the Mamdani inference 

method in fuzzy logic for risk assessment. 

Conclusion: 

In conclusion, fuzzy logic provides a robust framework for converting subjective risk 

assessments into a structured and quantifiable decision-making process. By fuzzifying inputs, 

applying fuzzy rules, aggregating results, and defuzzifying outputs, it effectively manages 

uncertainty and imprecision. The Mamdani inference method, in particular, enhances this 

process by offering a systematic way to combine fuzzy rules and generate precise risk values. 

Overall, the ability of fuzzy logic to handle the complexities and uncertainties inherent in risk 

assessment makes it an invaluable tool for informed and reliable decision-making. 
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