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1. INTRODUCTION 

Optimization is the process of finding the best solution, often involving minimizing or 

maximizing the value of the objective. Optimization problems revolve around maximizing or 

minimizing a function within a given set, typically representing a range of available choices in 

a specific situation. This function allows for the comparison of different choices to determine 

the best option. The fuzzy concept addresses issues related to ambiguous, subjective, and 

imprecise judgments. It quantifies the linguistic aspect of available data and preferences for 

individual or group decision-making.  

The concept of solving fuzzy optimization, particularly fuzzy linear programming 

problems, has garnered attention in the academic community since the first works in fuzzy 

optimization were published in 1974.  Fuzzy Linear Programming model was introduced by 
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Zimmermann, who proposed a method to solve Linear Programming problems with fuzzy 

linear constraints. His contributions have influenced many other works and opened the door to 

involve fuzzy reasoning in optimization. Therefore, it is important to refer to related fuzzy 

mathematical models and methods. Numerous related works, extensions, and applications have 

been published after Zimmermann's seminal works in 1977. Various scholars, including 

mathematicians, economists, and engineers, have contributed to the development of fuzzy 

mathematical programming based on the principles given by Bellman and Zadeh, who provided 

a unified framework for fuzzy decision-making. More specific reviews were published by 

Ebrahimnejad and Verdegay [1], [2] who reviewed several solution methods for FLPs 

according to the classification proposed by Shams et al. [3], who published a brief review on 

several FLP models and suggested three classes only; Ghanbari et al. [4], who recently 

published an extensive review of methods for solving FLPs and classified them into five 

categories depending on fuzzy parameters; and Sotoudeh-Anvari [5], who has made an 

interesting criticism about some drawbacks and mathematical incorrect assumptions in fuzzy 

OR methods, including fuzzy linear programming problems from 2010 to 2020. 

2. MATERIALS  

 In this section, first, some basic concepts will be discussed. 

Definition 2.1 

A fuzzy number 𝐴�̃� = (𝑝, 𝑞, 𝑟, 𝑠) is said to be a trapezoidal fuzzy number [6] if its 

membership function is given by: 𝜇𝐴�̃�(𝑥) =

{
 
 

 
 
𝑥−𝑝

𝑞−𝑝
, 𝑝 ≤ 𝑥 ≤ 𝑞

1,       𝑞 ≤ 𝑥 ≤ 𝑟
𝑥−𝑠

𝑟−𝑠
,   𝑟 ≤ 𝑥 ≤ 𝑠

0,            𝑒𝑙𝑠𝑒

 

Definition 2.2 

A trapezoidal fuzzy number 𝐴�̃� = (𝑝𝑇
𝐿 , 𝑝𝑇

𝑈, 𝑝1, 𝑝2) can be shown by support and core as in 

the Figure -1.  

                       Its support is [𝑝𝑇
𝐿 − 𝑝1, 𝑝𝑇

𝑈 + 𝑝2] and core is [𝑝𝑇
𝐿 , 𝑝𝑇

𝑈]. 

 

                 1 

 

 

                                     

                      𝑝𝑇
𝐿 − 𝑝1      𝑝1                       𝑝2       𝑝𝑇 

𝑈 + 𝑝2 

                                                   Figure-1       
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Definition 2.3 

A fuzzy linear programming problem in which it contains all the parameters are fuzzy 

is called a fully fuzzy linear programming problem. 

 

 It can be defined as follows [6]: 

 

Maximize (or Minimize) �̃�  =  ∑ 𝑐�̃�𝑥�̃�
𝑛
𝑗=1   

 

Subject to the constraints 

  ∑ 𝑎ij̃𝑥�̃�
𝑛
𝑗=1 ≤,≥, =  𝑏�̃�,       i = 1, 2, 3, …, m 

  

𝑥�̃� ≥ 0, for all j, where 𝑎ij̃, 𝑥�̃�, 𝑐�̃�, 𝑏�̃� are trapezoidal fuzzy numbers. 

 

Definition 2.4 

Yager’s ranking function [7] of a trapezoidal fuzzy number 𝐴�̃� = (𝑝𝑇
𝐿 , 𝑝𝑇

𝑈, 𝑝1, 𝑝2) 

 is defined as ℜ(𝐴�̃�) = 
1

2
(𝑝𝑇

𝐿 + 𝑝𝑇
𝑈 −

4

5
𝑝1 +

2

3
𝑝2)  

Definition 2.5 

𝜈𝑅– ranking function of a trapezoidal fuzzy number 𝐴�̃� = (𝑝𝑇 , 𝑞𝑇 , 𝑟𝑇 , 𝑠𝑇) is defined as   

𝜗ℛ(𝐴�̃�) = 
𝑝𝑇+2𝑞𝑇+2𝑟𝑇+𝑠𝑇

6
 , which is being computed by Mary George and Savitha M.T [8] using 

the idea of Adrian.I Ban and Lucian Coroianu [9]. 

Proposition 2.5.1 

For any trapezoidal fuzzy numbers 𝐴�̃� and 𝐵�̃�,  𝝑𝓡(𝑨�̃� + 𝑩�̃�) = 𝝑𝓡(𝑨�̃�) + 𝝑𝓡(𝑩�̃�) 

Proof 

Let 𝐴�̃� = (𝑝𝑇 , 𝑞𝑇 , 𝑟𝑇 , 𝑠𝑇)  and  𝐵�̃� = (𝑢𝑇 , 𝑤𝑇 , 𝑥𝑇 , 𝑦𝑇) 

𝐴�̃� + 𝐵�̃� = (𝑝𝑇 , 𝑞𝑇 , 𝑟𝑇 , 𝑠𝑇) + (𝑢𝑇 , 𝑤𝑇 , 𝑥𝑇 , 𝑦𝑇) 

               = (𝑝𝑇 + 𝑢𝑇 , 𝑞𝑇 + 𝑤𝑇 , 𝑟𝑇 + 𝑥𝑇 , 𝑠𝑇 + 𝑦𝑇) 

 By definition, 𝝑𝓡(𝐴�̃�) = 
𝑝𝑇+2𝑞𝑇+2𝑟𝑇+𝑠𝑇

6
 

                   𝝑𝓡(𝐴�̃� + 𝐵�̃�)    = 𝝑𝓡(𝑝𝑇 + 𝑢𝑇 , 𝑞𝑇 + 𝑤𝑇 , 𝑟𝑇 + 𝑥𝑇 , 𝑠𝑇 + 𝑦𝑇)     

        =
(𝑝𝑇 + 𝑢𝑇) + 2(𝑞𝑇 + 𝑤𝑇) + 2(𝑟𝑇 + 𝑥𝑇) + (𝑠𝑇 + 𝑦𝑇)

6
 

                                  =
(𝑝𝑇+2𝑞𝑇+2𝑟𝑇+𝑠𝑇)+(𝑢𝑇+2𝑤𝑇+2𝑥𝑇+𝑦𝑇)

6
 

=
𝑝𝑇 + 2𝑞𝑇 + 2𝑟𝑇 + 𝑠𝑇

6
+
𝑢𝑇 + 2𝑤𝑇 + 2𝑥𝑇 + 𝑦𝑇

6
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                                    = 𝝑𝓡(𝐴�̃�)+ 𝝑𝓡(𝐵�̃�) 

 

Proposition 2.5.2 

For any finite trapezoidal fuzzy numbers 𝐴𝑇1̃, 𝐴𝑇2̃…,  𝝑𝓡(𝑨𝑻�̃� + 𝑨𝑻�̃� +⋯) = 𝝑𝓡(𝑨𝑻�̃�) +

𝝑𝓡(𝑨𝑻�̃�) + ⋯ 

Proof is consequence of proposition 2.5.1. 

 

Proposition 2.5.3 

For any trapezoidal fuzzy number 𝐴�̃�,  𝝑𝓡(𝛼𝑨�̃�) = 𝛼 𝝑𝓡(𝑨�̃�), where 𝛼 is a scalar. 

Proof 

Let 𝐴�̃� = (𝑝𝑇 , 𝑞𝑇 , 𝑟𝑇 , 𝑠𝑇)   

 

   By definition, 𝝑𝓡(𝐴�̃�) = 
𝑝𝑇+2𝑞𝑇+2𝑟𝑇+𝑠𝑇

6
 

𝝑𝓡(𝛼𝑨�̃�) =  𝝑𝓡(α(𝑝𝑇 , 𝑞𝑇 , 𝑟𝑇 , 𝑠𝑇)) 

                                                    = 𝝑𝓡(α𝑝𝑇 , 𝛼𝑞𝑇 , α𝑟𝑇 , 𝛼𝑠𝑇)) 

                                                    =
𝛼𝑝𝑇+2α𝑞𝑇+2α𝑟𝑇+α𝑠𝑇

6
 

                                                    = 𝛼 (
𝑝𝑇+2𝑞𝑇+2𝑟𝑇+𝑠𝑇

6
) 

= 𝛼 𝝑𝓡(𝑨�̃�) 

3. OVERVIEW OF LINGO AND R PROGRAMMING 

The LINGO software [10] is a powerful tool specifically designed to effectively handle 

a wide range of optimization problems. It is capable of addressing linear, non-linear, mixed 

integer linear, and non-linear programming challenges. Within LINGO, the Solver command 

is utilized to find solutions to these optimization problems, employing three distinct algorithms: 

Simplex, Dual Simplex, and Barrier. 

It is crucial to understand that LINGO is adept at solving crisp linear programming 

problems but does not offer direct support for solving fuzzy linear programming problems. 

However, it is possible to leverage LINGO to obtain optimal solutions for fuzzy linear 

programming problems by first converting them into crisp linear programming problems. 

R is a programming language [11] primarily used for statistical computation, graphical 

representation, visualization, and data analysis. It runs on multiple platforms, such as Windows, 
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Mac, Linux, etc. Additionally, R is an open-source software and it has an extensive R archive 

network that contains more than 100000 packages.  

The techniques used to solve fully fuzzy linear programming problems vary depending 

on the specific nature of the problem. The fuzzy algebraic method and fuzzy simplex method 

are two prominent approaches employed in certain cases. However, it is important to 

acknowledge that no single method can comprehensively address all types of fully fuzzy linear 

programming problems. In addition to these two methods, there are various other specialized 

techniques available for addressing specific scenarios. Currently, R programming is 

increasingly being used to solve most types of fully fuzzy linear programming problems. 

3.1 R COMMANDS FOR FUZZY LINEAR PROGRAMMING 

 The following are the R commands [12] for applying fuzzy linear programming 

problems. 

FuzzyLP 

It is a package to solve fuzzy linear programming problems in R. 

FCLP.classicObjective  

      It is used to find the solution of the linear programming problem which contains fuzzy 

constraints and crisp objective.  

FCLP.fixedBeta  

       It solves a fuzzy linear programming problem with fuzzy constraints. 

FOLP.multiObj  

       It solves a fuzzy objective linear programming problem using the Representation Theorem 

through a multiobjective approach. 

FOLP.posib  

       It solves a fuzzy objective linear programming problem using the Representation Theorem 

through a possibilistic approach. 

FOLP.ordFun  

       It solves a fuzzy objective linear programming problem using ordering functions 
 

GFLP 

        It is used to solve fully fuzzy linear programming problems that have fuzzy coefficients in 

the constraints, the objective function and the technological matrix. 

 

FuzzyNumbers 

It is an open source (LGPL 3) package for R. It provides S4 classes and methods to deal with 

fuzzy numbers.  

TrapezoidalFuzzyNumber() 

   It represents trapezoidal fuzzy numbers in R. 
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4. PROBLEM STATEMENTS AND SOLUTIONS 

Problem Statement 4.1 

A software company produces two types of system-level solutions. It has been 

estimated that the production of a system-level solution of type 1 needs around 3 working 

months (w.m.) for the construction of the knowledge base, about 3.5 w.m. for the selection of 

the suitable reasoning and inference methodology, and nearly 1 w.m. for the choice of the 

proper intelligent authoring shells. Also, the production of a system-level solution of type 2 

needs around 1, 3, and 2 w.m. respectively, for each of the above procedures. According to the 

company’s existing number of specialized staff, at most 20 w.m. per year can be spent for the 

construction of the knowledge base, at most 30 w.m. for the selection of the reasoning and 

inference methodology, and at most 18 w.m. for the selection of the intelligent authoring shells. 

If the net profit from the sale of a system-level solution of type 1 nears 300 thousand euros and 

of a system-level solution of type 2 nears 400 thousand euros, find how many system-level 

solutions of type 1 and type 2 should be produced per year to maximize the company’s total 

profit.  

Solution  

This problem is having uncertainty at various parameters. So, using trapezoidal fuzzy 

numbers, it can be formulated into a fully fuzzy linear programming problem. 

Let q1 and q2 represent the quantities of system-level solutions of type 1 and type 2 

respectively to be produced per year.  

Then, the problem is mathematically formulated as follows: 

Max Z = (2.6, 2.8, 3.0, 3.2) q1 + (3.6, 3.8, 4.0, 4.2) q2 

(2.6, 2.8, 3.0, 3.2) q1 + (0.6, 0.8, 1.0, 1.2) q2 ≤ (19.6, 19.8, 20.0, 20.2) 

(3.1, 3.3, 3.5, 3.7) q1 + (2.6, 2.8, 3.0, 3.2) q2 ≤ (29.6, 29.8, 30.0, 30.2) 

(0.6, 0.8, 1.0, 1.2) q1 + (1.6, 1.8, 2.0, 2.2) q2 ≤ (17.6, 17.8, 18.0, 18.2) 

q1, q2 ≥ 0 

 

To use LINGO software for this problem, first convert it into a crisp linear 

programming problem by using 𝜈𝑅– ranking function 𝝑𝓡 (𝐴�̃�) = 
𝑝+2𝑞+2𝑟+𝑠

6
. 

Corresponding Crisp LPP is 

Max Z = 2.9 q1 + 3.9 q2 

Subject to the constraints 

2.9 q1 + 0.9 q2 ≤ 19.9 

3.4 q1 + 2.9 q2 ≤ 29.9 

0.9 q1 + 1.9 q2 ≤ 17.9 

q1, q2 ≥ 0 
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Applying Lingo software, the output will be as follows: 

Global optimal solution found. 

  Objective value:                              38.08182 

  Infeasibilities:                              0.000000 

  Total solver iterations:                             2 

  Elapsed runtime seconds:                          0.71 

 

  Model Class:                                        LP 

 

  Total variables:                      2 

  Nonlinear variables:                  0 

  Integer variables:                    0 

 

  Total constraints:                    4 

  Nonlinear constraints:                0 

 

  Total nonzeros:                       8 

  Nonlinear nonzeros:                   0 

 

 

 

   Variable           Value        Reduced Cost 

          Q1        1.272727            0.000000 

          Q2        8.818182            0.000000 

 

                                     

 

 

 Row     Slack or Surplus      Dual Price 

  1        38.08182            1.000000 

  2        8.272727            0.000000 

  3        0.000000            0.5194805 

  4        0.000000            1.259740 

 

Hence the optimal solution has been achieved with quantities of system-level solution type 1 

at 1.272727 and type 2 at 8.818182 to maximize company profit of 38%. 

 

Next, the same problem will be solved by using the R program. 

For this, the following are the R commands to enter into the software: 

 

> obj=c(FuzzyNumbers::TrapezoidalFuzzyNumber(2.6,2.8,3,3.2),FuzzyNumbers::
TrapezoidalFuzzyNumber(3.6,3.8,4,4.2)) 
> a11=FuzzyNumbers::TrapezoidalFuzzyNumber(2.6,2.8,3,3.2) 
> a12=FuzzyNumbers::TrapezoidalFuzzyNumber(0.6,0.8,1,1.2) 
> a21=FuzzyNumbers::TrapezoidalFuzzyNumber(3.1,3.3,3.5,3.7) 
> a22=FuzzyNumbers::TrapezoidalFuzzyNumber(2.6,2.8,3,3.2) 
> a31=FuzzyNumbers::TrapezoidalFuzzyNumber(0.6,0.8,1,1.2) 
> a32=FuzzyNumbers::TrapezoidalFuzzyNumber(1.6,1.8,2,2.2) 
> A=matrix(c(a11,a21,a31,a12,a22,a32),nrow = 3) 
> dir=c("<=","<=","<=") 
> b=c(FuzzyNumbers::TrapezoidalFuzzyNumber(19.6,19.8,20,20.2),FuzzyNumbers
::TrapezoidalFuzzyNumber(29.6,29.8,30,30.2),FuzzyNumbers::TrapezoidalFuzzy
Number(17.6,17.8,18,18.2)) 
> t=c(FuzzyNumbers::TrapezoidalFuzzyNumber(1,1,1,1),FuzzyNumbers::Trapezoi
dalFuzzyNumber(1,1,1,1),FuzzyNumbers::TrapezoidalFuzzyNumber(1,1,1,1)) 
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> sol=FuzzyLP::GFLP(obj,A,dir,b,t,maximum = TRUE,ordf_obj = "Yager1",ordf_
res = "Yager3") 
> sol 
 
Press the enter key to obtain the following output. 

 
     beta x1       x2       
[1,] 0    1.012987 9.467532 
[2,] 0.25 1.077922 9.305195 
[3,] 0.5  1.142857 9.142857 
[4,] 0.75 1.207792 8.980519 
[5,] 1    1.272727 8.818182 
 
 
 
sol[,"objective"] 
 
[[1]] 
Trapezoidal fuzzy number with: 
   support=[36.7169,43.0052], 
      core=[38.813,40.9091]. 
 
[[2]] 
Trapezoidal fuzzy number with: 
   support=[36.3013,42.5312], 
      core=[38.3779,40.4545]. 
 
[[3]] 
Trapezoidal fuzzy number with: 
   support=[35.8857,42.0571], 
      core=[37.9429,40]. 
 
[[4]] 
Trapezoidal fuzzy number with: 
   support=[35.4701,41.5831], 
      core=[37.5078,39.5455]. 
 
[[5]] 
Trapezoidal fuzzy number with: 
   support=[35.0545,41.1091], 
      core=[37.0727,39.0909]. 
 
 
 

Optimum solution 
 
z = (37.0727, 39.0909, 2.0812, 2.0812) 
 
 

For defuzzification, use the following Yager’s  ranking function 

 

ℜ(𝐴�̃�) = 
1

2
(𝑝𝑇

𝐿 + 𝑝𝑇
𝑈 −

4

5
𝑝1 +

2

3
𝑝2)  

Therefore, Z = 37.9431. 

From the R program, the output is Z = 37.9469 when q1 = 1.272727 and q2 = 8.818182. 

Similar optimal solutions have been obtained using Lingo software with the same 

quantities of system-level solution type 1 at 1.272727 and type 2 at 8.818182 in order to 

maximize the company's profit by 38%. 
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Problem Statement 4.2 

A social network under construction is planning to use three types of hardware, denoted 

as F1, F2, and F3. The cost of each unit varies between 3800 - 4200 euros for F1, 1700 - 2300 

euros for F2, and 5500 - 6500 euros for F3. It has been estimated that each unit of F1 has the 

capacity to satisfy the needs of about 150 - 250 male visitors and 400 - 600 female visitors per 

day. Each unit of F2 can accommodate about 320 - 480 male visitors and 60 – 140 female 

visitors, while each unit of F3 can cater to about 170 - 230 male visitors and 80 - 120 female 

visitors per day. The network is expected to have at least 2400 male and 800 female visitors 

per day. Determine the number of units of each type that should be ordered to minimize the 

cost of the hardware. 

Solution 

In this problem, each unit cost varies. Types of hardware and network capacities are 

uncertain. 

So, using trapezoidal fuzzy numbers, it can be formulated into a fully fuzzy linear 

programming problem as follows: 

Let h1, h2  and h3 respectively be the units of the hardware F1, F2 and F3 that should be 

ordered. 

Then  

Min z = (36, 38, 40, 42) h1 + (17, 19, 21, 23) h2 + (56, 59, 62, 65) h3 

Subject to the constraints 

(1.5, 1.8, 2.1, 2.4) h1 + (3.2, 3.7, 4.2, 4.7) h2 + (1.7, 1.9, 2.1, 2.3) h3 ≥ (23.0, 23.5, 24.0, 24.5) 

(4.0, 4.7, 5.4, 6.1) h1 + (0.6, 0.9, 1.2, 1.5) h2 + (0.8, 1.0, 1.2, 1.4) h3 ≥ (7.0, 7.5, 8.0, 8.5) 

h1, h2, h3 ≥ 0 

 

To use LINGO software, first convert this problem into a crisp linear programming 

problem by using 𝜈𝑅– ranking function 𝝑𝓡 (𝐴�̃�) = 
𝑝+2𝑞+2𝑟+𝑠

6
. 

 

Min z= 39 h1 + 20 h2 + 60.5 h3 

Subject to the constraints 

1.95 h1 + 3.95 h2 + 2 h3 ≥ 23.75 

5.05 h1 + 1.05 h2 + 1.1 h3 ≥ 7.75 

h1, h2, h3 ≥ 0 

 

When using Lingo software, the output will be as follows: 

Global optimal solution found. 

  Objective value:                              129.4874 
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  Infeasibilities:                              0.000000 

  Total solver iterations:                             2 

  Elapsed runtime seconds:                          0.04 

 

  Model Class:                                        LP 

 

  Total variables:                      3 

  Nonlinear variables:                  0 

  Integer variables:                    0 

 

  Total constraints:                    3 

  Nonlinear constraints:                0 

 

  Total nonzeros:                       9 

  Nonlinear nonzeros:                   0 

 

 

 

 Variable      Value             Reduced Cost 

      H1        0.3170391           0.000000 

      H2        5.856145            0.000000 

      H3        0.000000            46.72039 

 

  Row    Slack or Surplus      Dual Price 

   1        129.4874           -1.000000 

   2        0.000000           -3.354749 

   3        0.000000           -6.427374 

 

 

Thus, the optimum solution is h1 = 0.3170391, h2 = 5.856145, h3 = 0 in order to minimize the 

cost of hardware by 129.4874. 

  

Next, this problem will be solved by using the R program. 

The following R commands are to be used for finding the optimum solution. 

 

> obj=c(FuzzyNumbers::TrapezoidalFuzzyNumber(36,38,40,42),FuzzyNumbers::Tr
apezoidalFuzzyNumber(17,19,21,23),FuzzyNumbers::TrapezoidalFuzzyNumber(56,
59,62,65)) 
> a11=FuzzyNumbers::TrapezoidalFuzzyNumber(1.5,1.8,2.1,2.4) 
> a12=FuzzyNumbers::TrapezoidalFuzzyNumber(3.2,3.7,4.2,4.7) 
> a13=FuzzyNumbers::TrapezoidalFuzzyNumber(1.7,1.9,2.1,2.3) 
> a21=FuzzyNumbers::TrapezoidalFuzzyNumber(4,4.7,5.4,6.1) 
> a22=FuzzyNumbers::TrapezoidalFuzzyNumber(0.6,0.9,1.2,1.5) 
> a23=FuzzyNumbers::TrapezoidalFuzzyNumber(0.8,1,1.2,1.4) 
> A=matrix(c(a11,a21,a12,a22,a13,a23),nrow = 2) 
> dir=c(">=",">=") 
> b=c(FuzzyNumbers::TrapezoidalFuzzyNumber(23,23.5,24,24.5),FuzzyNumbers::
TrapezoidalFuzzyNumber(7,7.5,8,8.5)) 
> t=c(FuzzyNumbers::TrapezoidalFuzzyNumber(0,0,0,0),FuzzyNumbers::Trapezoi
dalFuzzyNumber(0,0,0,0)) 
> sol=FuzzyLP::GFLP(obj,A,dir,b,t,maximum = FALSE,ordf_obj = "Yager1",ordf
_res = "Yager3") 
> sol 
 
 

Press the enter key to obtain the following output. 
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     beta x1        x2       x3 
 
[1,] 0    0.1550279 5.682961 0  
[2,] 0.25 0.1955307 5.726257 0  
[3,] 0.5  0.2360335 5.769553 0  
[4,] 0.75 0.2765363 5.812849 0  
[5,] 1    0.3170391 5.856145 0  

 

> sol[,"objective"] 
[[1]] 
Trapezoidal fuzzy number with: 
   support=[102.191,137.219], 
      core=[113.867,125.543]. 
 
[[2]] 
Trapezoidal fuzzy number with: 
   support=[104.385,139.916], 
      core=[116.229,128.073]. 
 
[[3]] 
Trapezoidal fuzzy number with: 
   support=[106.58,142.613], 
      core=[118.591,130.602]. 
 
[[4]] 
Trapezoidal fuzzy number with: 
   support=[108.774,145.31], 
      core=[120.953,133.131]. 
 
[[5]] 
Trapezoidal fuzzy number with: 
   support=[110.968,148.007], 
      core=[123.314,135.661]. 

 

 

Optimum solution is 
 
 z = (123.314, 135.661, 12.346, 12.346) 
 
 For defuzzification, use the following Yager’s ranking function 

 ℜ(𝐴�̃�) = 
1

2
(𝑝𝑇

𝐿 + 𝑝𝑇
𝑈 −

4

5
𝑝1 +

2

3
𝑝2)  

 

Hence, Z = 128.6644 

Thus, the hardware cost reduction of 128.6644 will occur when ordering F1 is 

0.3170391, F2 is 5.856145 and F3 is 0.  

 

5. DISCUSSION 

In comparison, the R programming language can be directly used to solve fully fuzzy 

linear programming problems, while the Lingo software requires these problems to be 

converted into crisp linear programming problems before they can be solved. In both models 

(problems 4.1 and 4.2), it has been observed that the optimal solutions obtained using Lingo 

software and R programming are approximately similar. 

 



Mohamed Salih Mukthar M/Afr.J.Bio.Sc.6(7) (2024)                                                Page 6512 of 13 

 

6. CONCLUSION 

 In the initial sections of the paper, the discussion centered around the significance of 

fuzzy optimization concepts and their practical applications. This involved a detailed 

exploration of two distinct ranking functions, along with a comprehensive explanation of their 

respective properties. Furthermore, the paper delved into an in-depth analysis of the features 

associated with Lingo software and R programming. 

Following this, the Lingo software was leveraged to identify the optimal solutions for 

sample models of fully fuzzy linear programming problems. This process involved the 

conversion of these models into crisp linear programming problems, culminating in the 

successful determination of optimal solutions. Similarly, the R programming language was 

employed to derive optimal solutions for the same models. 

Subsequently, a comparative analysis was conducted to juxtapose the outcomes 

obtained through both methodologies, thereby providing a comprehensive assessment of their 

respective efficacy and applicability. 
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