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Abstract 

The spread of Zika virus infection in India has become a serious public 

health concern due to its associationwith birth defects and neurological 

disorders.The development of an effective vaccine to prevent viral 

infection is urgently needed.In this study, epitope-based peptide vaccine 

components based on the Zika virus envelope protein were developed 

using the reverse vaccinology method.The envelope protein was 

examined for cytotoxic T lymphocyte (CTL) epitopes using 

immunoinformaticstools.Common epitopes predicted by variousmethods 

were chosen and evaluated for immunogenicity score, toxicity,

 antigenicity,and allergenicityassessment as well as human 

homology.Four potent CTL epitopes were identified as DTAWDFGSV, 

SIQPENLEY, GTVTVEVQY, and MMLELDPPF.These predicted 

epitopes were identified to cover the maximum number of populations in 

India and worldwide as well as conserved across different stains 

sequences. Further, thePepstrMod server was used to build the 3D 

structure of predicted epitopes. The sequence of theHLA-A*68:02allele 

was downloaded from IPD-IMGT/HLA database and model structure 

with the SWISS-MODELserver.HLA-A*01:01, HLA-A*03:01and HLA-

B*35:01alleles had known crystal structures, whichwere retrieved from 

Protein Data Bank.Epitope SIQPENLEY and GTVTVEVQY were 

docked with allele HLA-A*01:01using the HPEPDOCK 

server.DTAWDFGSV and MMLELDPPF epitopes were docked with 

alleles HLA-A*68:02 and HLA-B*35:01, respectively.Docked epitopes 

exhibited a good docking score with alleles. After that,the docked 

epitope-allele complex was subjected to molecular structure dynamics 

simulation to determine the stability of the complex. GROMACS 5.1.4 

package was used to study the structural properties and interaction 

between epitope and allele at the atomic level. Molecular dynamics 

simulation confirmed the stable nature of the docked complexes.These 

discovered epitopes were expected to have a high potential for eliciting 

an immune response in the development of a Zika virus vaccine.While 

additional experimental validation is needed for definitive confirmation. 
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Introduction 

The Flaviviridae virus family includes the vector-borne Zika virus (ZIKV), which is spread by the 

bite of infected Aedes mosquitoes, primarily Aedesaegypti and Aedesalbopictus(Hamel et al., 

2015).During yellow fever (YF) monitoring, ZIKV was initially discovered in 1947 in the Zika 

forest of Africa in rhesus monkey serum(Dick, 1952). The Zika virus disease (ZVD) has symptoms 

that are comparable to those of other flavivirus diseases like Dengue, West Nile, Yellow Fever, 

and Japanese Encephalitis (Pielnaa et al., 2020). Blood transfusions, sexual contact, and vertical 

contact can also spread the virus (Rothan et al., 2018). In 1952, the first human ZIKV case was 

reported, and over the next several decades, sporadic mild cases from Asia and Africa were 

reported. The current outbreaks of the Zika virus in India are extremely worrying. 159 Zika virus 

infections were reported in Rajasthan at the end of 2018 (Yadav et al., 2019), 127 Madhya Pradesh 

cases (Saxena et al., 2019). It was confirmed that a citizen of Kerala state in southwest India had 

contracted the Zika virus on July 8, 2021 (WHO, 2021). The first laboratory-confirmed Zika 

infection in Maharashtra was reported on July 31, 2021, from Belsar, a village in the Pune district 

(WHO, 2021).Initially, ZVD causes moderate sickness such as fever, myalgia, headache, rash, 

arthritis, and conjunctival congestion, with up to 4/5th of infected people being asymptomatic 

(Duffy et al., 2009; Calvet et al., 2016).  ZVD has also been implicated in the development of 

Guillain-Barre Syndrome (GBS)(Cao-Lormeau et al., 2016).On February 1, 2016, the World 

Health Organization declared a Public Health Emergency of International Concern, at which time 

autochthonous ZIKV transmissions were reported in 22 countries and territories in Latin America 

and the Caribbean(Yakob and Walker, 2016). 

There are no effective antivirals or vaccines available for Zika virus infection at the moment (Saiz 

and Martín-Acebes, 2017).Identifying CTL epitopes has become a vital part of epitope-based 

vaccine design. The wet experiment for epitope identification is time-consuming, labor-intensive, 

and expensive. With the growing availability of experimentally produced epitopes, it is now 

possible to develop computer algorithms for epitope prediction that are both faster and less 

expensive (Flower, 2007). We utilized immunoinformatics tools to examine the envelope protein 

of the Zika virus and discovered CTL epitopes that were antigenic and consensus in several 

epitope–allele binding algorithms.Epitope-based vaccines outperform conventional vaccines and 

potentially address safety and adverse effect problems (Srivastava et al., 2021; Krishnan et al., 
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2020). This study established a theoretical background for Zika virus vaccine development and 

prevention.  

 

2. Materials and methods 

An immunoinformatics and reverse vaccinology technique was used to develop potential vaccine 

componentsagainst the envelope protein of the Zika virus.  

 

2.1. Retrieval of the envelopeprotein sequence 

The ZIKV envelope protein amino acid sequence was extracted from a polyprotein sequence 

(GenBank ID: AZS35409.1) that was deposited in the NCBI protein database. The Vaxign version 

2.0 beta server (Xiang and He, 2009) was used to investigate envelope protein as a potential 

vaccine target for the development of vaccine components. 

 

2.2.Instability and allergenicityprediction of the envelope protein 

The Protparam software was used to predict the physicochemical properties of the envelope 

protein, such as the instability index, grand average of hydropathicity (GRAVY), theoretical pI, 

and molecular weight (Walker, 2005; Wilkins et al., 1999). The allergenicity of the protein was 

evaluated using AllerTOP v.2.0 (Dimitrov et al., 2014). 

 

2.3 Prediction of CTL epitopes 

To identify CTL epitopes of the envelope protein, two separate servers, the IEDB MHC-I 

prediction tool (Kim et al., 2012) and NetCTLpan1.1 (Stranzl et al., 2010), were employed. The 

IEDB MHC-I prediction approach identifies epitopes that may interact with MHC-I genes. The 

NetCTLpan1.1 tool predicts epitopes of MHC class I using the weight matrix, the efficiency of 

TAP transport, and ANN.  

 

2.4 Immunogenicity,toxicity, antigenicity andallergenicity analysis of the epitopes 

The epitopes identified by two servers were subjected to the IEDB class I immunogenicity tool 

using default parameters (Calis et al., 2013). The antigenicity of the epitopes was calculated using 

the VaxiJen v2.0 server, with a 0.4 threshold used to determine the accuracy of the prediction 

(Doytchinova and Flower, 2007). The server AllerTOP v.2.0 was used to compute the allergenicity 
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of epitopes.AllerTOP v.2.0 is an alignment-independent online allergenicity prediction tool that 

yields reliable results (Dimitrov et al., 2014). Furthermore, ToxinPred was utilized to predict 

toxicity using an SVM-based algorithm with default parameters (Gupta et al., 2013).  

 

2.5 Conservancy analysis of epitopes 

Conserved epitopes are expected to provide greater cross-species protection than epitopes from 

highly diverse genomic regions. Using the BLASTP software, similar sequences were discovered 

by comparing the amino acid sequence of the envelope to the nr sequence database (Altschul et 

al., 1997). To determine the conservancy of CTL epitopes used in candidate vaccine design among 

screened homologs, the IEDB's conservancy analysis tool (Bui et al., 2007) was used.  

 

2.6 Population coverage analysis 

A vaccine molecule must give broad-spectrum disease protection in distinct world populations in 

order to be effective. The IEDB population coverage tool (http://tools.iedb.org/population/) was 

used to analyze epitope population coverage. 

 

2.7Peptide modeling 

After multiple bioinformatics investigations, only the specified epitopes were chosen for the 

peptides and HLAs interaction pattern analysis. The PEPstrMOD was used to construct a three-

dimensional model of chosen CTL epitopes(Singh et al., 2015).The technique is predicated on the 

concept that, in addition to regular structures, the β-turn is a necessary and consistent attribute of 

short peptides.The structure is refined using energy minimization and molecular dynamic 

simulations.  

 

2.8Allele modeling 

Protein Data Bank was used to retrieve HLA alleles with known crystal structures. The sequence 

of HLA alleles with unknown structures was obtained from the IPD-IMGT/HLA database 

(Robinson et al. 2015). The SWISS-MODEL server was used to model the 3D structures of these 

HLA alleles (Waterhouse et al., 2018). 

2.8.1 Tertiary structure validation 
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The Swiss-Model Structure Assessment page (https://swissmodel.expasy.org/assess) was used to 

validate the refined model's structure. For confirming the protein structures, another tool, ProSA-

web was utilized (Wiederstein and Sippl, 2007). ProSA takes a protein structure (PDB file) as 

input and generates a plot of the overall model quality score (z-score). If the z-score falls outside 

of the normal range for natural proteins, the structure most likely contains errors.  

 

2.9Molecular docking  

An online HPEPDOCK server was used to perform molecular docking of epitopes with their 

corresponding HLA binding alleles (Zhou et al., 2018).HPEPDOCK is a server that performs blind 

peptide-protein docking using a hierarchical approach.  

 

2.10 Molecular Dynamics simulation 

The effective method for the molecular analysis of biological systems is known to be molecular 

dynamics simulation (Hospital et al., 2015; Lazim and others, 2020; Sinha et al., 2022). It was 

utilized in previous research to examine the stability of various protein complexes 

(Hajighahramani et al., 2017; Nezafat and other, 2016; Narula and other, 2018).After performing 

the epitope-allele docking study, the docked complex was subjected to molecular structure 

dynamics simulation to determine the stability of the epitope-allele complex. The GROMACS 

5.1.4 package was used to study the structural properties and interaction between epitope and allele 

at the atomic level. All molecular dynamic simulation was performed using the CHARMM27 force 

field (Abraham et al., 2015; Vanommeslaeghe et al., 2010). To guarantee that the geometry of the 

system is adequate and no steric clashes are occurring using the steepest descent algorithm 

approach energy, minimization was performed prior to simulation. During the equilibration phase 

(100 ps), the temperature was increased up to 300K and the pressure up to 1 bar. Finally, the 

trajectories generated from the simulation (20000 Ps) were analyzed for the stability of the 

complex in terms of the root mean square deviation (RMSD), root mean square fluctuation 

(RMSF), and Rg (Radius of Gyration) of the epitope-allelecomplex.The RMSD, RMSF, and Rg 

can be used to obtain information about our bio systems. The RMSD includes the calculation 

concerning the reference structure (backbone) of the average atom location in a molecule. This 

method is used to calculate the average changes in atom displacement for evaluating 

conformational shifts and bio systems stability. The average deviation of a particle (for example, 
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a protein residue) from the reference location (usually the average particle location) over time is 

calculated with root-mean-square fluctuation (RMSF). RMSF, therefore, analyzes the structural 

portions which fluctuate more (or less) from their mean structure. The gyration radius (Rg) 

represents the compactness of the structure. The lower degree of fluctuation with its simulation 

stability indicates the higher compactness and rigidity of the device. 

 

3. Results  

3.1 Vaccine target 

Using the Vaxign version 2.0 beta server, the envelope protein was explored as a potential vaccine 

target (Xiang and He, 2009).In envelope protein, two transmembrane helixes were predicted. The 

predicted adhesion probability for this protein is 0.713. The protein is an adhesion if the probability 

of adhesion is greater than 0.51. The predicted protein bears no similarity to proteins found in 

humans. 

 

3.2Envelope protein sequence analysis 

The protein antigenicity score of 0.6268 shows that the vaccine antigenic characteristic is good. 

The protein was non-allergenic and had a molecular weight of 54410.22 Da.The protein exhibits 

a negative GRAVY value (-0.087), indicating that it was hydrophilic and interacted extensively 

with water molecules. The envelope protein has a value of 22.77 for instability, indicating that it 

is a stable protein. The calculated pI of the protein is 6.51, indicating that it is acidic.  

 

3.3 CTL epitopes analysis  

To predict epitopes with a length of 9 mers, we used the recommended IEDB 2020.09 

(NetMHCpan EL 4.1) prediction method and HLA allele reference set, which cover the 

largestnumber of people in the world.  The set of predicted binders was made for IEDB MHC 

class I epitope based on the percentile range < 0.5 to cover the top most immune responses. The 

threshold value for the NetCTLpan1.1 server was set to 1.0 in our calculations. To improve 

accuracy, we selected those epitopes, which are commonly predicted by these two servers. 

Antigenic protein was used to pick 42 commonly predicted epitopes (Table 1) from these two 

servers. 

Table 1: Identification of MHC-I epitopes bytwo servers 
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S.No Start  End  Epitope IEDB MHC I 

Binding  (percentile rank ) 

NetCTLpanb(% rank) 

1 454 462 KSLFGGMSW HLA-B*57:01(0.01),HLA-B*58:01(0.01), 
HLA-A*32:01(0.02) 

HLA-A*32:01(0.40), HLA-B*57:01 (0.05), 
HLA-B*58:01(0.05) 

2 392 400 GEKKITHHW HLA-B*44:02(0.01),HLA-B*44:03(0.01) HLA-B*44:02(0.05),HLA-B*44:03(0.15) 

3 320 328 ETLHGTVTV HLA-A*68:02(0.01),HLA-A*26:01(0.29) HLA-A*68:02(0.05) 

4 261 269 QEGAVHTAL HLA-B*40:01(0.02),HLA-B*44:03(0.18) HLA-B*40:01(0.15),HLA-B*44:02(0.80), 
HLA-B*44:03(0.80) 

5 244 252 EFKDAHAKR HLA-A*33:01(0.01) HLA-A*33:01(0.05) 

6 195 203 GLDFSDLYY HLA-A*01:01(0.02),HLA-A*30:02(0.3) HLA-A*01:01(0.05),HLA-A*30:02(0.80) 

 

7 297 305 KLRLKGVSY HLA-B*15:01(0.01),HLA-A*03:01(0.27), 
HLA-A*30:02(0.12),HLA-A*30:01(0.1), 

HLA-A*32:01(0.18) 

HLA-A*03:01(0.80),HLA-A*30:01(0.80), 
HLA-A*30:02 (0.80),HLA-B*15:01( 0.80) 

8 106 114 GLFGKGSLV HLA-A*02:03(0.03),HLA-A*02:01(0.12), 
HLA-A*02:06(0.38) 

HLA-A*02:03(0.15) 
 

9 48 56 TTVSNMAEV HLA-A*68:02(0.02),HLA-A*02:06(0.29), 

HLA-A*26:01(0.35) 

HLA-A*26:01(0.80),HLA-A*68:02(0.05) 

10 421 429 MAVLGDTAW HLA-B*58:01(0.06),HLA-B*53:01(0.03), 

HLA-B*35:01(0.18) 

HLA-B*35:01(0.15),HLA-B*53:01(0.05), 

HLA-B*57:01(0.20),HLA-B*58:01(0.05) 

11 228 236 GADTGTPHW HLA-B*58:01(0.06),HLA-B*57:01(0.21), 
HLA-B*53:01(0.16) 

HLA-B*58:01(0.80) 
 

12 215 223 KEWFHDIPL HLA-B*40:01(0.07) HLA-B*40:01(0.01),HLA-B*44:02(0.30), 

HLA-B*44:03(0.15) 

13 49 57 TVSNMAEVR HLA-A*68:01(0.11) HLA-A*68:01(0.40) 

 

14 426 434 DTAWDFGSV HLA-A*68:02(0.05) HLA-A*26:01(0.20),HLA-A*68:02(0.05) 

15 129 137 SIQPENLEY HLA-A*01:01(0.06),HLA-B*15:01(0.08), 

HLA-B*35:01(0.13),HLA-A*11:01(0.35), 

HLA-A*26:01(0.22) 

HLA-A*01:01 (0.30),HLA-A*30:02 (0.30) 

 

16 466 474 ILIGTLLMW HLA-B*57:01(0.2),HLA-B*58:01(0.14), 

HLA-A*32:01(0.09),HLA-A*23:01(0.38), 

HLA-B*53:01(0.44) 

HLA-B*58:01 (0.80) 

 

17 299 307 RLKGVSYSL HLA-A*32:01(0.02),HLA-A*02:01(0.19), 
HLA-B*15:01(0.24),HLA-B*08:01(0.14), 

HLA-A*30:01(0.14),HLA-A*02:06(0.43) 

HLA-A*02:03(0.80),HLA-A*30:01 (0.80), 
HLA-A*32:01(0.10),HLA-B*08:01(0.40) 

 

18 341 349 VPAQMAVDM HLA-B*35:01(0.08),HLA-B*07:02(0.24), 
HLA-B*53:01(0.28) 

HLA-B*07:02(0.80),HLA-B*35:01(0.40), 
HLA-B*53:01(0.80) 

 

19 308 316 CTAAFTFTK HLA-A*11:01(0.08),HLA-A*68:01(0.26), 
HLA-A*03:01(0.39) 

HLA-A*03:01(0.30),HLA-A*11:01(0.05), 
HLA-A*68:01(0.05) 

 

20 490 498 ALGGVLIFL HLA-A*02:01(0.1),HLA-A*02:06(0.26) HLA-A*02:01(0.80) 

 

21 159 167 ETDENRAKV HLA-A*68:02(0.07) HLA-A*68:02(0.30) 
 

22 53 61 MAEVRSYCY HLA-A*01:01(0.09),HLA-B*35:01(0.2) HLA-A*01:01(0.10),HLA-B*35:01 (0.80), 

HLA-B*53:01(0.80) 

 

23 309 317 TAAFTFTKI HLA-B*51:01(0.07),HLA-A*68:02(0.19) HLA-A*68:02(0.30),HLA-B*51:01(0.80) 

24 304 312 SYSLCTAAF HLA-A*24:02(0.11),HLA-A*23:01(0.17) HLA-A*23:01(0.15),HLA-A*24:02(0.10) 

 

25 324 332 GTVTVEVQY HLA-A*30:02(0.08),HLA-A*01:01(0.2), 

HLA-B*15:01(0.33),HLA-B*58:01(0.38), 

HLA-A*26:01(0.21) 

HLA-A*01:01(0.80) 
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3.4 Immunogenicity, toxicity, antigenicity, allergenicity and human homology of epitopes 

Immunogenicity analysis of selected 42CTL epitopes reported a positive immunogenicity value 

for 24 epitopes (table 2). A high score of immunogenicity results in high potency for the 

stimulation of naive T cells. Toxicity, antigenicity, and allergenicity predictions were carried out 

for allthe epitopes. The BLASTP program was used to predict the homology of the epitopes with 

Homo sapiens(Altschul et al., 1997). After the assessment, the four best MHC class-I epitopes,such 

as DTAWDFGSV, SIQPENLEY, GTVTVEVQY, and MMLELDPPF, wereselected for vaccine 

componentsand shown as bold text in table 2.  

26 412 420 EATVRGAKR HLA-A*68:01(0.44),HLA-A*33:01(0.18) HLA-A*33:01(0.80) 
 

27 249 257 HAKRQTVVV HLA-B*08:01(0.09),HLA-B*51:01(0.31) HLA-B*08:01 (0.80) 

 

28 489 497 LALGGVLIF HLA-B*53:01(0.25),HLA-B*58:01(0.24), 
HLA-B*35:01(0.16),HLA-B*57:01(0.44) 

HLA-B*35:01(0.40),HLA-B*51:01(0.80), 
HLA-B*53:01 (0.30), HLA-B*57:01(0.80), 

HLA-B*58:01 (0.40) 

 

29 366 374 TESTENSKM HLA-B*40:01(0.2),HLA-B*44:02(0.25) HLA-B*44:02(0.80) 
 

30 205 213 TMNNKHWLV HLA-A*02:01(0.23),HLA-B*08:01(0.28), 

HLA-A*02:03(0.22) 

HLA-A*02:01(0.40,HLA-A*02:03 (0.30), 

HLA-A*02:06 (0.80) 
 

31 455 463 SLFGGMSWF HLA-B*15:01(0.24),HLA-A*32:01(0.22), 

HLA-A*26:01(0.28) 

HLA-A*26:01(0.40),HLA-A*32:01 (0.20), 

 HLA-B*15:01( 0.40) 

 

32 217 225 WFHDIPLPW HLA-A*23:01(0.15),HLA-B*53:01(0.41), 
HLA-A*32:01(0.42) 

HLA-A*23:01(0.40),HLA-A*24:02 (0.40) 
 

33 394 402 KKITHHWHR HLA-A*31:01(0.33) HLA-A*31:01 (0.80) 

34 198 206 FSDLYYLTM HLA-A*01:01(0.19) HLA-A*01:01(0.10) 
 

35 25 33 LEHGGCVTV HLA-B*40:01(0.28) 

 

  HLA-B*40:01 (0.30) 

 

36 494 502 VLIFLSTAV HLA-A*02:03(0.25), HLA-A*02:01(0.36) HLA-A*02:03 (0.10),HLA-A*02:06 (0.80), 
HLA-A*02:01 (0.30) 

 

37 472 480 LMWLGLNTK HLA-A*03:01(0.4) HLA-A*03:01(0.80) 

 

38 306 314 SLCTAAFTF HLA-A*32:01(0.16) HLA-A*32:01 (0.80) 

 

39 357 365 RLITANPVI HLA-A*32:01(0.21) HLA-A*32:01(0.80) 

 

40 374 382 MMLELDPPF HLA-B*35:01(0.42) HLA-A*02:06 (0.80), HLA-A*32:01( .80), 

HLA-B*15:01(0.80),HLA-B*35:01(0.15), 

HLA-B*53:01(0.80) 
 

41 221 229 IPLPWHAGA HLA-B*51:01(0.48) HLA-B*51:01(0.80) 

 

42 135 143 LEYRIMLSV HLA-B*40:01(0.49) HLA-B*40:01 (0.30),HLA-B*44:02 (0.80), 
HLA-B*44:03(0.80) 
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Table 2: Predicted epitope immunogenicity, toxicity, antigenicity, allergenicity and human 

homology 

 

 

Sl. 

No 

Epitopes Immunogenic

-ity score 

Toxicity Antigenici-

ty  score 

Antigenicity Allergenicity Human homology 

1 KSLFGGMSW -0.06576 Non-toxin 0.7431  Antigen Non-allergen Non-homologous 

2 GEKKITHHW -0.07466 Non-toxin 0.2060  Non-antigen Allergen Non-homologous 

3 ETLHGTVTV 0.15601 Non-toxin 0.5422  Antigen Allergen Non-homologous 

4 QEGAVHTAL 0.17664 Non-toxin 0.0330  Non-antigen Non-allergen Non-homologous 

5 EFKDAHAKR -0.07211 Non-toxin 0.6898  Antigen Non-allergen Non-homologous 

6 GLDFSDLYY -0.02674 Non-toxin 1.7878  Antigen Non-allergen Non-homologous 

7 KLRLKGVSY -0.23428 Non-toxin 1.8471  Antigen Allergen Non-homologous 

8 GLFGKGSLV -0.2521 Non-toxin 0.8202  Antigen Allergen Non-homologous 

9 TTVSNMAEV -0.23315 Non-toxin 0.6972  Antigen Allergen Non-homologous 

10 MAVLGDTAW 0.11174 Non-toxin 0.8599  Antigen Allergen Non-homologous 

11 GADTGTPHW 0.12534 Non-toxin 0.3712  Non-antigen Non-allergen Non-homologous 

12 KEWFHDIPL 0.34792 Non-toxin 0.0523  Non-antigen Allergen Non-homologous 

13 TVSNMAEVR -0.08576 Non-toxin 0.7175  Antigen Allergen Non-homologous 

14 DTAWDFGSV 0.29933 Non-toxin 1.9031  Antigen Non-allergen Non-homologous 

15 SIQPENLEY 0.09179 Non-toxin 2.1083  Antigen Non-allergen Non-homologous 

16 ILIGTLLMW -0.0073 Non-toxin 0.4446  Antigen Non-allergen Non-homologous 

17 RLKGVSYSL -0.25121 Non-toxin 1.1682  Antigen Allergen Non-homologous 

18 VPAQMAVDM -0.19023 Non-toxin 0.4764  Antigen Non-allergen Non-homologous 

19 CTAAFTFTK 0.32409 Non-toxin 0.3747  Non-antigen Non-allergen Non-homologous 

20 ALGGVLIFL 0.25558 Non-toxin 0.2254  Non-antigen Non-allergen Non-homologous 

21 ETDENRAKV 0.05739 Non-toxin 0.0354  Non-antigen Allergen Non-homologous 

22 MAEVRSYCY -0.06591 Non-toxin 1.2831  Antigen Non-allergen Non-homologous 

23 TAAFTFTKI 0.18526 Non-toxin 0.8551  Antigen Non-allergen Non-homologous 

24 SYSLCTAAF -0.02494 Non-toxin -0.1391 Non-antigen Non-allergen Non-homologous 

25 GTVTVEVQY 0.15407 Non-toxin 1.4859  Antigen Non-allergen Non-homologous 

26 EATVRGAKR 0.04346 Non-toxin 0.6828  Antigen Allergen Non-homologous 

27 HAKRQTVVV -0.03522 Non-toxin 0.7216 Antigen Non-allergen Non-homologous 

28 LALGGVLIF 0.17076 Non-toxin 0.6495  Antigen Non-allergen Non-homologous 

29 TESTENSKM -0.18885 Non-toxin 0.8013 Antigen Allergen Non-homologous 

30 TMNNKHWLV -0.0077 Non-toxin 1.0538 Antigen Allergen Non-homologous 

31 SLFGGMSWF -0.0704 Non-toxin 0.3681 Non-antigen Non-allergen Non-homologous 

32 WFHDIPLPW 0.13614 Non-toxin 0.7204 Antigen Non-allergen Non-homologous 

33 KKITHHWHR 0.35005 Non-toxin -0.3415 Non-antigen Non-allergen Non-homologous 

34 FSDLYYLTM 0.00228 Non-toxin 0.7397  Antigen Allergen Non-homologous 

35 LEHGGCVTV 0.08437 Non-toxin 0.5027  Antigen Allergen Non-homologous 

36 VLIFLSTAV 0.05009 Non-toxin 0.2934  Non-antigen Non-allergen Non-homologous 

37 LMWLGLNTK 0.10052 Non-toxin 1.8391  Antigen Allergen Non-homologous 

38 SLCTAAFTF 0.21797 Non-toxin 0.1343  Non-antigen Non-allergen Non-homologous 

39 RLITANPVI 0.12903 Non-toxin -0.2339 Non-antigen Allergen Non-homologous 

40 MMLELDPPF 0.09139 Non-toxin 1.0318  Antigen Non-allergen Non-homologous 

41 IPLPWHAGA 0.28421 Non-toxin 0.8344  Antigen Non-allergen Non-homologous 

42 LEYRIMLSV -0.09084 Non-toxin 0.8181  Antigen Allergen Non-homologous 
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3.5. Conservancy across the sequences 

The envelope protein produced 98 homologous sequences when searched against the nr database 

using a similarity search tool (BLASTP) (Altschul et al., 1997).Protein sequences with greater than 99 

percent sequence identity and 100 percent query coverage were considered homologous in our study.The 

conservation value of chosen CTL epitopes among examined Envelope protein homologous sequences is 

shown in Table 3. In this analysis, we discovered that DTAWDFGSV, SIQPENLEY, GTVTVEVQY, and 

MMLELDPPF have 100% conservancy. 

 

Table 3:The potential CTL epitopes conservancy 

Protein Name Epitope sequence 

 

Epitope conservancy 

Envelope protein DTAWDFGSV 100% 

SIQPENLEY 100% 

GTVTVEVQY 100% 

MMLELDPPF 100% 

 

 

3.6. Worldwide population coverage analysis 

To analyze global population coverage, the selected MHC class-I epitopes used for vaccine 

production were collected, as well as their associated HLA binding alleles, as anticipated in table1. 

MHC class-I epitopes covered a large portion of the global population (figures1 to 4). This research 

reveals that the suggested vaccine could be an effective option for the majority of the world's 

population. 

 

 

Figure 1:Population coverage analysis predicted based on epitope DTAWDFGSV along with their respective alleles 
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Figure 2:Population coverage analysis predicted based on epitope SIQPENLEY along with their respective alleles. 

 

 

Figure 3:Population coverage analysis predicted based on epitope GTVTVEVQY along with their respective alleles. 

 

 

 

Figure 4:Population coverage analysis predicted based on epitope MMLELDPPF along with their respective alleles. 

 

3.7 Structure of the alleles 
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Crystal structure of HLA-A*01:01(6MPP), and HLA-B*35:01 (PDB ID: 4LNR) were retrieved 

from PDB database.The HLA-A*68:02 allele sequence was obtained from the IPD-IMGT/HLA 

database (Robinson et al. 2015) and used as the target protein sequence for homology 

modeling.The modeling of the target protein structure was done in a phased manner, beginning 

with a template structure search, sequence alignment,and model building by the Swiss-Model 

server. From a substantial number of results, a suitable template structure with PDB-Id: 7RTD was 

picked as the basis for model building.The query coverage for the target sequence is 100%, and 

the sequence identity with the template sequence is 96.71%. Swiss-Model server generated a 

homology model of the target sequence based on the template and target alignment. 

   

3.7.1 Tertiary structure validation 

The Swiss model/Structure evaluation server was utilized to validate the refinement results with 

Ramachandran plot analysis. Figure 5a shows a Ramachandran plot of the predicted model with 

98.53 percent of the residues in the favored region and 0.74 percent in the outlier region. The 

ProSA-web server computes and displays the total quality score for a specific input structure in 

the context of all known protein structures.  The Z score of the model protein was -9.49by using 

the ProSA web server as shown in figure 5b, in the broad blackdot. 

 

 
Figure 5:The Ramachandran plot and the ProSA-web server were used to validate the tertiary structure.(A) 

Ramachandran plot shows that the amount of amino acid residues in favorable region is 98.53%.(B) The ProSA-web 

result provides a Z score of -9.49. 

 

 

 

3.8. Docking analysis 
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The HPEPDOCK server generated 10 conformations and the one with the lowest binding 

energy score was picked. The lower the binding energy, the greater will be the binding 

interaction between the HLA allele and the epitope. The docking scores of peptide-allele 

complexes are shown in Table 4.  

 

Table4: Docking results of epitopes with HLA alleles 

Epitope sequence Allele Docking score 

DTAWDFGSV HLA-A*68:02 -242.951 

SIQPENLEY HLA-A*01:01 -210.425 

GTVTVEVQY HLA-A*01:01 -216.146 

MMLELDPPF HLA-B*35:01 -212.653 
 

 

Interactions between the epitopesand their respective allele were shown figure 6a, b, c& d. 

 

 

 

 

 

 
 

 

 

 

Figure 6:The interactions between epitopes and alleles are depicted in this diagram. Here, (a)is the interaction between 

epitope DTAWDFGSV and HLA class I alleleHLA-A*68:02, (b) is the interaction between SIQPENLEY and HLA-

A*01:01 allele, (c)the interaction between GTVTVEVQY and HLA-A*01:01 allele, and (d) is the interaction between 

MMLELDPPF and HLA-B*35:01allele. 

 

 

3.9 Molecular Dynamics simulation 

a b 

c d 
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To confirm the proper engagement of the peptide sequence and with the HLA alleles, MD 

simulation was conducted. Subsequently, the final trajectory was used to analyze some essential 

parameters; the first one was the RMSD. This parameter measures the stability between the allele 

and the epitope where mild fluctuations point to a stable interaction. Figure 7 shows stable RMSD 

of all the complexes throughout the 20000ps, which is considerable stability of the complexes.  

 

Figure 7: Root Mean Square Deviation (RMSD) plots for all four docked complexesversus the MD 

simulation time. 

The second parameter, RMSF, represents amino acids side chains fluctuations. RMSF-Root Mean 

Square Fluctuation plot of docked complexes remained fairly flat reflecting the flexibility of the 

side chain of docked protein complexes (Figure 8). 
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Figure 8: RMSF-Root Mean Square Fluctuation plots for all four docked complexes.  

 

The radius of gyration can explain the compactness of the protein structure and stability of the 

protein. The Rg plot showed less deviation throughout the simulation process and the relatively 

flat curve suggests the compactness and stability of the complexes (Figure 9). 

 

 

Figure 9: Radius of gyration (Rg) plots of the four docked complexes generated over 20000 ps using 

GROMACS. 
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4. Discussion 

Immunoinformatics techniques are progressively becoming regarded as the first line of vaccine 

development in the development of effective vaccines against viruses. Immunoinformatics 

methods have recently been applied in the development of an epitope-based vaccine for C.auris 

(Akhtar et al, 2021), Dengue virus (Krishnan G et al., 2020),Orthohantavirus (Joshi et al, 2022) 

andSARS-CoV-2 (Sarkar et al, 2020; Rahman et al, 2020).  Zika virus infection is a leading cause 

of morbidity and mortality worldwide.Unfortunately, the lack of effective ZIKV vaccines has 

resulted in the deaths of many innocent people around the world.As a result, preventive steps to 

address the global threat of a ZIKV outbreak are urgently needed.Many countries' researchers have 

quickly employed immunoinformaticsapproaches to predict potential antigenic epitopes on the 

ZIKV envelope protein for peptide vaccine production (Srivastava and Srivastava, 2023;Ashfaq 

and Ahmed,2016; Dikhit et al.,2016; Dar et al., 2016; Weltman,2016; Gupta,2014; Badawi et 

al.,2016). The goal of this work was to develop epitope-based peptide vaccine componentsagainst 

the Zikavirus using immunoinformatics techniques.Epitope-based vaccines have a positive effect 

when compared to traditional vaccine design (Reginald et al., 2018).Several 

immunoinformaticstools were utilized to screen CTL epitopes in the envelope protein 

sequence.Regions of protein antigens that bind to immunologic receptors are known as 

immunodominant epitopes (Ayub et al., 2016). As a result, they were frequently utilized as 

therapeutic compounds and vaccines. (Ninomiya et al., 2002; Adame-Gallegos et al., 2012; 

McComb et al., 2015).42CTL epitopes predicted by two servers were chosen and additionally 

picked out on the grounds of their immunogenicity, toxicity, antigenicity, allergenicity, and human 

homologyassessment.Using a 0.4 threshold, the VaxiJen tool was used to classify viral components 

as antigens or non-antigens.According to the immunogenicity analysis results, 24 epitopes 

exhibited a positive immunogenicity value.A high immunogenicity score suggests a strong ability 

to stimulate naive T cells. Four potent CTL epitopes such as DTAWDFGSV, SIQPENLEY, 

GTVTVEVQY,and MMLELDPPFhad antigenicity scores greater than one, and non-toxic and 

non-allergenic were screened.Peptide–protein docking is widely used to test the stability of 

vaccines by examining their binding energies.The best predicted epitopes against MHC class I 

alleles (HLA-A*68:02, HLA-A*01:01, HLA-B*35:01) were examined using this method.The 

docked complex was also examined for molecular dynamics simulation research, and it was 

discovered that, according to the RMSD and RMSF plots, they exhibit a stable interaction 
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pattern.Immunoinformatics approaches are very useful for in-silico studies and can direct 

laboratory experiments, saving time and money. Nonetheless, the next step is to conduct in vitro 

immunological tests to validate the predicted epitopes. 

 

Conclusion 

Four potent CTL epitopes DTAWDFGSV, SIQPENLEY, GTVTVEVQY and MMLELDPPF in 

the envelope protein of Zika virus were identified as having highimmunogenicity and antigenicity 

scores as well as non-toxic, non-allergen andnon-homologous with the human protein. These 

epitopes had the lowest docking score with their associated MHC class I alleles. The stable nature 

of the docked complexes was confirmed by Molecular Dynamics simulation studies. The projected 

epitopes cover the maximum number of national and international populations. These predicted 

epitopes may have strong ability to stimulate naive T cells. 
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