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Introduction  

In order to accommodate 

the growing global population, it is predicted that global food demand would increase from 80% to 

100% over the next few decades (Grafton et al., 2015; Rhodes, 2017). Farmers use a huge number 

of agrochemicals (over 2 million per year) to meet this need, including organophosphate insecticides 

(Ali et al., 2021). They are being used to boost productivity by preventing 40% of the crop losses 

brought on by pest infestation (Sharma et al., 2019; Ali et al., 2021). However, only a small portion 

(roughly 1.0%) of pesticides are effective at killing the intended pests, and the remaining pesticide 

residues are left in agricultural soil, where they cause serious harm to both terrestrial and aquatic 
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ecosystems through leaching and hydrolysis (Sharma et al., 2019; Ali et al., 2021). One of the most 

widely used broad spectrum synthetic organophosphate insecticides is chlorpyrifos (Jaiswal et al., 

2017; Priyadarshini and Dangar, 2017). Food crops, cash crops, oil crops, garden plants, and 

landscaping plants often use chlorpyrifos to control several kinds of pests.(Rathod and Garg, 2017; 

Santoiemma et al., 2021 It is a non-systemic pesticide penetrating the intestinal tract, skin and 

pulmonary membranes after coming into contact with or consuming an insect.(Rathod and Garg, 

2017; Santoiemma et al., 2021).  

Chlorpyrifos' insecticidal effects are brought on by the suppression of the enzyme 

acetylcholinesterase (AChE) (Rathod and Garg, 2017; Santoiemma et al., 2021), which causes the 

nervous system to be overstimulated, resulting in paralysis, convulsions, and ultimately death. Many 

strategies for the detoxification of chlorpyrifos have been developed recently, including titanium 

dioxide photocatalysis, biochar adsorption, ultrasonic treatment, and synthetic nanocomposites. 

(Soltani-Nezhad et al., 2020).These procedures, however expensive and technically difficult, are also 

likely to result in secondary pollutants with increased toxicity (Huang et al., 2019; Bhatt et al., 2020). 

According to Birolli et al. (2018), using indigenous microbes to remove chlorpyrifos from 

environmental substrates has been increasing in popularity as a study topic because of its high 

efficiency, cost effective, and sustainability. Restoration is the process of using microbes to break 

complex organic substances into small inorganic molecules that are less hazardous or destructive. 

Alizadeh et al. (2017) claim that microbial biodegradation is a very appealing method for eliminating 

hazardous substances from the environment. Bioremediation is a low-cost, environmentally benign, 

and easy method for removing the chemical from the environment. (Rayu et al., 2017). According to 

a recent study, Azotobacter sp. decomposed chlorpyrifos at high concentrations without having any 

negative effects on PGPR (Conde-Avila et al. 2021). Additionally, various chlorpyrifos degradations 

based on bacterial consortia were also described (Elshikh et al. 2022). Feng et al. (2017) isolated five 

endophytic bacterial species from a chlorpyrifos-contaminated agricultural area and created a 

consortium that included Pseudomonas sp., Bacillus sp., Sphingobacterium sp., Stenotrophomonas 

sp., and Curtobacterium sp. These bacteria decomposed chlorpyrifos (90%). The ecological 

remediation of chemical organophosphates such as chlorpyrifos utilizing the microbes lacks much 

attention yet, but it needs more. Consequently, in this investigation, organophosphate pesticide-

degrading bacteria and fungi were isolated from agricultural areas and characterised for their ability 

to break down the pesticide chlorpyrifos. 

 

Materials and Methods  

Collection of soil sample  

The agricultural region of Oonamancherri, Kancheepuram District, Tamil Nadu (12.8603° N, 80.1045° 

E), served as the source for the soil samples. A soil auger was used to collect the soil at a depth of 

10 cm, and it was then transferred in sterile, airtight plastic bags. The samples were air-dried and 

crushed prior passing through 2 mm sieves for further analysis.  

 

Identification of Chlorpyrifos from soil sample  

For this study, Gas Chromatograph method (GC-7890A/MS-5975C, In order to identify the 

chlorpyrifos in a soil sample. High energy electron ionisation at 70 eV is employed for mass 

spectrometry determination. The 99.95% of pure helium gas and initial temperature (50 to 150 °C) 

and final temperature (300 °C) with increasing rate 3 °C per min to 10 °C per min are used, 

respectively. Using the appropriate solvent (ethanol), 1 mL of crude extract was diluted before being 
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injected. In the GC chromatogram, the different concentrations of the chemicals found in soil 

extracts were expressed as proportion peaks. The retention period was used to determine the 

chemicals from NIST databases. After the constituents were determined, the data were tallied and 

compared to those found in the computer database (NIST and Willey) associated to the GC-MS 

equipment. 

 

Isolation of Chlorpyrifos degrading microbes   

Chlorpyrifos-degrading microorganisms were isolated from soil samples by using the enrichment 

culture technique on a medium consisting of mineral salt yeast extract medium with chlorpyrifos as 

the sole source of carbon. Chlorpyrifos was added at a concentration of 10 mg/L to a volume of 100 

ml of the mineral salt yeast extract medium. This was autoclaved at 121°C for 15 minutes before 5g 

of the soil sample was added. The flasks had been placed in a rotary shaker for 7 days at 30 degrees 

Celsius and 120 revolutions per minute (rpm). Following two days of incubating at thirty degrees 

Celsius. 1 ml of the culture was inoculated onto Chlorpyrifos mineral salt yeast extract agar. The 

Chlorpyrifos mineral salt agar contained 0.5% methanol (a pesticide solvent carrier), 1.5% agar-agar, 

1% sodium citrate, and 10 mg/L chlorpyrifos. The fungus was also isolated using Potato Dextrose 

Agar. Until pure cultures were obtained, the morphologically comparable bacterial and fungal 

growths on the agar were chosen and subcultured repeatedly. For additional research, the pure 

cultures were kept on potato dextrose agar slant and chlorpyrifos mineral salt, respectively, 4° 

Celsius.  

 

Molecular identification of bacterial and fungal isolate 

A bacterial and fungal culture containing 100 to 150 ml was centrifuged at 16,000 rpm for one 

minute. The pellet was treated to DNA extraction using a DNA extraction kit to identify the bacterial 

and fungal culture after the supernatant was discarded. The primer sequences for amplifying the 

16S rRNA ribosomal subunit were as universal primers 27 5’-GGTTACCTTGTTACGACTT-3’ and 

1492R 5’-GAGTTTGATCCTGGCTCAG-3’´. The amplified products performed further sequencing. 

BioEdit 7.2.5.0 was used to construct the sequences, and ClustalX 2.1 was used to align them. The 

phylogenetic analysis tree was produced using the Maximum Likelihood technique in MEGA 6.06 

applying the Kimura 2-parameter model. The phylogram was statistically analyzed by bootstrapping 

1000 sub-replicates. The bacterial specie sequence and the 16S rRNA phylogenetic trees agreed with 

each other. The study's sequences were retrieved from NCBI 

(https://www.ncbi.nlm.nih.gov/nucleotide/) and carefully checked before being oriented by Clustal 

X's presets.  

 

Biodegradation of Chlorpyrifos in Liquid Culture 

The bacterial and fungal isolates were grown with 50 ml of mineral salt yeast extract medium (MSM) 

for a period of 24 hours by shaker that rotated at 37 degrees Celsius and 120 rpm. As an inoculum, 

1 ml of the 24-hour culture containing roughly 1.1 × 104 CFU/ml (as determined by the viable count 

method) was employed. This was used to inoculate triplicate 250 ml flasks with 100 ml MSM and 20 

ml/L of chlorpyrifos. The control flask was left uninoculated. For 14 days, the flasks were incubated 

in a rotating shaker at 120 rpm and 30 degrees Celsius. Five millilitres of the culture were removed 

from each flask after 14 days of incubation and put in centrifuge tubes. Centrifuging this portion of 

the culture twice for 20 minutes at 150 rpm while using an equivalent volume of ethyl acetate as the 

extraction reagent. The filter paper of Whatman No. 1 served to remove residual chlorpyrifos present 
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in ethyl acetate. A tandem reverse-phase cartridge column (C-18) was used in HPLC to measure the 

amount of Chlorpyrifos that was still present in the culture. A Tanden reverse phase cartridge column 

was fitted using a temperature programmed for 170 °C for 30 seconds at an average flow rate of 0.8 

ml/min at 25 °C. The detection limit for chlorpyrifos in aqueous phase was 20 g/L, and the retention 

period was 15 seconds. By taking 1 ml of the filtrate, transferring it into a 15 ml high performance 

liquid chromatography vial that contained 60% methanol and 40% water (3:2), and the amount of the 

insecticide chlorpyrifos was estimated after HPLC analysis of the outcomes. For the chlorpyrifos, 

calibration curves from 0 to 100mg/L were created. With the aid of a pre-standardized curve, the 

extract peaks visible in the chromatogram were recognised, and the concentration of pesticide 

residue was calculated.  

 

Results: 

Identification of Chlorpyrifos from soil sample  

In the current investigation, GC-MS technique was performed to determine the presence of the 

chlorpyrifos in the soil sample. The research confirmed the presence of chlorpyrifos based on peak 

retention times. The metabolic profile of chlorpyrifos was validated by both mass spectra and by 

National Institute Standard and Technology's (NIST) library identification programme. Chlorpyrifos 

was identified in the soil sample dependent on its distinctive component ionization peaks and 

chemical particle (m/z), which displayed a m/z value of 197 with a retention time of 19.259 (Figure 

-1).   

 

Molecular identification of bacterial and fungal isolate 

As a result, the locations' soils are suitable ecological niches for isolating microorganisms that can 

break down the pesticides. In this research, we identified and genetically analysed 2 varieties of 

bacteria as well as 2 fungus species. The specific type of microorganism is P aeruginosa and B. 

huaxiensis and the fugal species is A. niger and F. incarnatum species is sequenced by 16 S rRNA 

gene and submitted in the GenBank of NCBI and were assigned suitable accession numbers 

(OQ927055, OQ826467, OQ924355 and OQ919248, respectively). The phylogenetic tree 

constructed using 4 sequences of closely related to same species. The sequence is compared to 

homologous sequences and found to be similar with their respective sequence in GenBank and 

identification ranged from 91% to 100%. Hence, the present gene sequencing technique is 

established based on the 18S rRNA sequence data for precise species level identification of soil 

bacteria. 

 

Biodegradation of Chlorpyrifos in Liquid Culture 

In the current investigation, HPLC was utilised to track the deterioration of chlorpyrifos. The HPLC 

technique was used to evaluate the rate of Chlorpyrifos breakdown in the purified bacterial and 

fungal isolates, which were then cultured in a medium enriched with mineral salts (Figures 6 to 9). 

In this present study, the isolates are able to degrade the Chlorpyrifos. The isolates were able to 

degrade the Chlorpyrifos and the percentage of degradation is 47% in P. aeruginosa, 71% in B. 

huaxiensis, 65.3% in A. niger and 40.4% in F. incarnatum.  Based on our study, all the microbes are 

showed good Chlorpyrifos degradation properties. Among these, the B. huaxiensis bacteria showed 

highest degradation against Chlorpyrifos.  

Serratia marcescens and Pseudomonas aeruginosa are among the bacteria that have been isolated, 

those have been demonstrated that these bacterial colonies catabolize and co-metabolize 
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chlorpyrifos. Arthrobacter sp. and Flavobacterium sp. were shown to co-metabolize the drug 

chlorpyrifos.  

 

DISCUSSION: 

Since many years, pesticides, a crucial component of pest control, have protected agriculture from 

the destructive impacts of pest damage (Furlan & Kreutzweiser, 2015). Due to their toxicity and 

perseverance, they are essential for managing crop disease and pests, but they also harm living 

creatures, ecological systems, and agricultural ecosystems. (Maurya and Malik, 2016). Broad-

spectrum insecticides known as organophosphates make up about 38% of all pesticides used in 

agriculture to combat various pests (John et al., 2018). Due to the frequent use of such chemical 

compounds, there are serious environmental problems such as airborne contaminants and 

waterborne residue in the soil (Özkara et al., 2016). Chlorpyrifos serves as a typical wide-range 

synthetic organophosphate insect-control agent used to eradicate phytopathogens in numerous 

agricultural systems. (Kumar et al., 2021) Due to the fact that current methods of removing 

chlorpyrifos residues are impractical, expensive, or environmentally hazardous, the microbial 

detoxification of chlorpyrifos has garnered a lot of research interest. Chlorpyrifos is a toxic 

substance that has the potential to harm human health because some pesticide residue seeps 

through water and soil. According to Tale and Ingole (2015), the kind of soil and its physicochemical 

properties affect how quickly a pesticide degrades. Therefore, it's possible that the soil-isolated 

organisms won't be able to biodegrade chlorpyrifos in other soils. Several microbial species have 

been identified from soil that has been polluted with chlorpyrifos, and researchers have examined 

how well they are able to degrade the substance. However, a variety of microbial communities with 

various functions degrade chlorpyrifos in natural ecosystems.  

The aims of this research were to determine, characterize, and evaluate the ability of microorganisms 

to metabolize chlorpyrifos. Pesticides have a propensity to flow more slowly through soil (Vymazal 

and Bezinová, 2015). Overuse of pesticides decreases soil fertility by disrupting the soil's microflora 

and fauna (Farhan et al., 2021). It has frequently been identified as a potential neurotoxin and 

endocrine disorder around the world. (Farhan et al., 2021). Chlorpyrifos must therefore be identified 

in agricultural soil in order to lessen the harm to public health presented by residues of the pesticide 

in agricultural goods. Having extensive and trustworthy information about the degree of pollution 

will also enable one to develop policies that will ensure the public's access to safe food. 

Need for novel restoration techniques for polluted soils is great. Because it is more effective, 

environmentally friendly, selective in its destruction, and inexpensive, bioremediation is becoming 

more and more popular (Farhan et al., 2021). Agricultural soils, wetlands, sludge, and ground water 

have all been effectively decontaminated through bioremediation. By injecting particular bacteria, 

pesticide-contaminated soil can be recovered (Patel et al., 2021). The best place to look for resistant 

microorganisms is in soils that have been contaminated by pesticides (Morillo and Villaverde, 2017). 

Over time, native bacteria in contaminated soils or places gain resistance. An ecologically friendly 

technique of in situ detoxification is developed by the isolation and characterisation of local 

microbial strains (Megharaj et al., 2011). Indigenous species are favoured as they have less of an 

impact on the soil's microflora (Weidenhamer and Callaway, 2010). Autochthonous bacterial 

populations have adapted to live in toxic environments, such as the muddy ground from dairies used 

in the current study. (Asamba et al., 2022). 

In particular, when it comes to the amount of time required for maximal degradation, the new results 

are superior than those reported in several earlier investigations. For instance, 30.78% Chlorpyrifos 
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breakdown showed observed by Hamsavathani et al., 2017. Additionally, findings are more 

noteworthy than those made by Kumar (2011), who found that 77% of chlorpyrifos was destroyed.  

Results support earlier research that identified bacterial communities with the capacity to break 

down chlorpyrifos in soil and liquid culture. Serratia marcescens and Pseudomonas aeruginosa are 

among the bacteria that have been isolated, according to studies by Singh et al. (2004), Anwar et al. 

(2009), Yadav et al. (2015), Hamsavathani et al. (2017), and Anode et al. Arthrobacter sp. and 

Flavobacterium sp. were shown to co-metabolize the drug chlorpyrifos, according to Yadav et al. 

(2015). The creature does not utilise chlorpyrifos as its energy source, study has revealed. Instead, 

according to Singh et al. (2004), the bacterium hydrolyzes chlorpyrifos into TCP and diethyl 

thiophosphate (DETP), which it then uses for energy and growth. The primary metabolic byproduct 

of CP breakdown has been validated by numerous other investigations (Fawzy et al., 2014; Briceo et 

al., 2020; Bose et al., 2021). It may therefore be claimed that the microbial consortium's capacity to 

biodegrade chlorpyrifos illustrates the ability of such isolates' ability to break down dangerous 

compounds in polluted soil. More study is still needed to comprehend the molecular level of the 

pesticide's biodegradation in varied forms of soil, crops, and circumstances. 
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Figures: 

 

 
Fig. 1 

 

  

 
GGGATGAAGGGAGCTTGCTCCTGGATTCAGCGGCGGACGGGTGAGTAATGCCTAGGAATCTGC

CTGGTAGTGGGGGATAACGTCCGGAAACGGGCGCTAATACCGCATACGTCCTGAGGGAGAAAG

TGGGGGATCTTCGGACCTCACGCTATCAGATGAGCCTAGGTCGGATTAGCTAGTTGGTGGGGT

AAAGGCCTACCAAGGCGACGATCCGTAACTGGTCTGAGAGGATGATCAGTCACACTGGAACTG

AGACACGGTCCAGACTCCTACGGGAGGCAGCAGTGGGGAATATTGGACAATGGGCGAAAGCCT

GATCCAGCCATGCCGCGTTGTGAAGAAGGTCTTCGGATTGTAAAGCACTTTAAGTTGGGAGGA

AGGGCAGTAAGTTAATACCTTGCTGTTTTGACGTTACCAACAGAATAAGCACCGGCTAACTTCG

TGCCAGCAGCCGCGGTAATACGAAGGGTGCAAGCGTTAATCGGAATTACTGGGCGTAAAGCGC

GCGTAGGTGGTTCAGCAAGTTGGATGTGAAATCCCCGGGCTCAACCTGGGAACTGCATCCAAA

ACTACTGAGCTAGAGTACGGTAGAGGGTGGTGGAATTTCCTGTGTAGCGGTGAAATGCGTAGA

TATAGGAAGGAACACCAGTGGCGAAGGCGACCACCTGGACTGATACTGACACTGAGGTGCGAA

AGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAGTCCACGCCGTAAACGATGTCGACTAGC

CGTTGGGATCCTTGAGATCTTAGTGGCGCAGCTAACGCGATAAGTCGACCGCCTGGGGAGTAC

GGCCGCAAGGTTAAAACTCAAATGAATTGACGGGGGCCCGCACAAACGGTGGAGCATGTGGTT

TAATTCAAACCACGCGAAGAACCTTACCTGGCCTTGACATGCTGAAAACTTTCCAAAGATGGAT

TGGTGCCTTCGGGAACTCAGACACAGGTGCTGC 
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Fig. 2 

 

 
 

 
GAACCGGCCCAAANTCTTTGGGGGGGGGNNNGGGGATTCTGGGAAATGGGGAAAACCTGAAGC

AGCCATGCCGCCTGAATGATGAAGGTTTTAGGATGTAAAATTCTTTCACCGGGGACGATAATGAC

GGTACCCGGAGAAGAAGCCCCGGCTAATTTCGTGCCAGCAGCCGCGGTAATACGAAGGGGGCTA

GCGTTGCTTGGAAATTACTGGGCGTAAAGGGAGCGTAGGCGGACATTTAAGTCAGGGGTGAAAT

CCCGGGGCTCAACCTTGGAATTGCCTTTGATACTGGGTGTCTTGAGTATGACAGAGGTGTGTGGA

ATTCCGAGTGTAGAGGTGAAATTCGTAGATATTCGGAAGAACACCAGTGGCGAAGGCGACACAC

TGGCTCATTACTGACGCTGAGGCTCGAAAGCGTGGGGAGCAAACAGGATTAGATACCCTGGTAG

TCCACGCCGTAAACGATGATTGCTAGTTGTCGGGATGCATGCATTTCGGTGACGCAGCTAACGCA

TTAAGCAATCCGCCTGGGGAGTACGGTCGCAAGATTAAAACTCAAAGGAATTGACGGGGGCCCG

CACAAGCGGTGGAGCATGTGGTTTAATTCGAAGCAACGCGCAGAACCTTACCACCTTTTGACATG

CCTGGACCGCCACGGAGACGTGGCTTTCCCTTCGGGGACTAGGACACAGGTGCTGCATGGCTGT

CGTCAGCTCGTGTCGTGAGATGTTGGGTTAAGTCCCGCAACGAGCGCAACCCTCGCCATTAGTTG

CCATCATTTAGTTGGGAACTCTAATGGGACTGCCGGTGCTAAGCCGGAGGAAGGTGGGGATGAC

GTCAAGTCCTCATGGCCCTTACAGGGTGGGCTACACACGTGCTACAATGGCGACTACAGAGGGT

TAATCCTTAAAAGTCGTCTCAGTTCGGATTGTCCTCTGCAACTCGAGGGCATGAAGTTGGAATCG

CTAGTAATCGCGGATCAGCATGCCGCGGTGAATACGTTCCCGGGCCTTGTACACACCGCCCGTC

ACACCCATGGGAGTTGGCTCTAACCCGTATAGGTCCCTGGCCTTGGAACCAAGACTTCGTAACCA

ATGGCGACCCAACTAGAGTTCCG 

Fig. 3 

 

 
 

 
AAATGTTCACAACCCTTTGTTGTCCGACTCTGTTGCCTCCGGGGCGACCCTGCCTCCGGGCGGGGG

CCCCGGGGGACACTTCAAACTCTTGCGTAACTTTGCAGTCTGAGTAAATTTAATTAATAAATTAAA

ACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCGAAATGCGATAAGTAATG

TGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCCCTGGTATTCCGGGG

GGCATGCCTGTTCGAGCGTCATTTCACCACTCAAGCCTCGCTTGGTATTGGGCGACGCGGTCCGCC
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GCGCGCCTCAAATCGACCGGCTGGGTCTTCCGTCCCCTCAGCGTTGTGGAAACTATTCGCTAAAGG

GTGCCGCGGGAGGTCACGCCGCAAAACAACCCCATTTCTAAGGTTGACCTCGGATCAGGTAGGNA

TACCCGCTGATCTTACGCATATCAATAAGCCGGAGAAGAC 

Fig. 4 

 

  

 
TCCCTGGTGAACATACCTATACGTTTGCCTCGGCGGATCAGCCCGCGCCCCGTAAAACGGGACGG

CCCGCCCGAGGACCCCTAAACTCTGTTTTTAGTGGAACTTCTGAGTAAAACAAACAAATAAATCAA

AACTTTCAACAACGGATCTCTTGGTTCTGGCATCGATGAAGAACGCAGCAAAATGCGATAAGTAAT

GTGAATTGCAGAATTCAGTGAATCATCGAATCTTTGAACGCACATTGCGCCCGCCAGTATTCTGGC

GGGCATGCCTGTTCGAGCGTCATTTCAACCCTCAAGCTCAGCTTGGTGTTGGGACTCGCGGTAACC

CGCGTTCCCCAAATCGATTGGCGGTCACGTCGAGCTTCCATAGCGTAGTAATCATACACCTCGTTA

CTGGTAATCGTCGCGGCCACGCCGTTAAACCCCAACTTCTGAATGTTGACCTCGGATCAGGTAGGA

ATACCCGCTGAACTTAAGCATATCAATAAAGCGGAGGAA 

Fig. 5 

 
Fig. 6 
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Fig. 7 

 
Fig. 8 
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Fig. 9 

 

 


