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Abstract 

For qualitative and skewed data collected through questionnaires, which do not 

meet the assumptions of classical regression models, response variables are 

estimated through alternate regression models. With the objective to obtain 

significant predictors on the psychological health of young adults, Quantile 

regression (QR) and Quantile regression Neural Network (QRNN) models were 

employed on the data collected through three chronological surveys on young 

adults in higher educational institutions in India during COVID-19 period using 

the Strength and Difficulty Questionnaire. 

The QR model was applied with the quantile obtained as ratio of frequencies of 

two extreme categories.For the QRNN model, optimal quantiles were extracted 

from a range of quantiles on the basis of the maximum predictive power. The 

two models were compared through mean absolute error (MAE), mean square 

error (MSE), and root mean square error (RMSE). The efficacy of the models 

was computed and predictive powers of both the models were obtained under 

each category of the response variable by comparing the results with the 

observed data. Significant predictors were extracted through the QR model. 

Emotional symptom and hyperactivity-inattention problem were found to be the 

significant predictors in all the three surveys. 

On the basis of predictive power, QRNN performed better than the QR models. 

But the significant predictor can’t be extracted through QRNN as the model 

does not provide the significant value of the test statistic. The study concluded 

that the two models should be used simultaneously to get a comprehensive 

picture of data under study. 

Keywords: Behavioral problems, Psychological health, Quantile Regression, 

Quantile Regression Neural Network, Social dysfunction 
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1 Introduction 

Generally, the regression models are used to estimate the conditional mean of a response 

variable for a given set of predictors. Among various regression models, the most frequently 

used models are multiple regression, neural networks, support vector machine (SVM), 

decision trees, etc. , each used in a specific scenario but with the same objective of estimating 

the mean of the response variable. However, the situation may not always warrant the 

prediction about the mean. If the data is skewed, one may be more interested in the use of 

different quantiles rather than the mean only. But the use of quantiles increases the 

complexity of the model and the number of calculations. However, advancements in 

computing have allowed the development of regression models for predicting a given 

quantile of the conditional distribution, both parametrically and non-parametrically (Vasseur 

et al., 2021). The general approach is called Quantile Regression, but the methodology (of 

conditional quantile estimation) applies to any statistical model, be it multiple regression, 

SVM vector machines, or random forests. Quantile regression neural networks (QRNN) 

estimate conditional values of an individual quantile using a multilayer perceptron neural 

network (Taylor, 2000). 

Quantile regression (QR), introduced and developed by Koenker and Bassett in 1978, 

complements and improves the traditional mean regression models which assume that the 

data is distributed homogeneously. However, this assumption is rarely met and in general 

data sets tend to be asymmetric. In such cases when asymmetries and heavy tails exist, the 

sample median, the 50th percentile as quantile, provides a better summary of centrality than 

the mean. QR, which estimates the unknown parameters using various quantiles, is more 

robust to outliers and more flexible as in QR the outcome does not need to be strictly 

specified in the parametric distribution assumptions. This approach assumes the various 

quantile functions of a Y distribution as a function of X (Haung et al., 2017; Koenker et 

al.,2005; Koenker, 2005). 

Mostly quantile regression is used for prediction with multiple predictors based on linear or 

simple parametric nonlinear models (Koenker et al., 2005). A further advancement in QR 

was suggested by Taylor (2000) when he proposed Quantile Regression Neural Network 

(QRNN), a nonlinear nonparametric method that combined the advantages of quantile 

regression and neural network (Taylor, 2000). Neural Network (NN) is a forecasting method 

applied to nonlinear data with high accuracy, without requiring a principle to meet (Zhang, 

2003). Hidden layers are inherent in NN which are nodes, each meant to perform a specific, 

predetermined function and to produce some output, which then becomes the input of the 

second node, if any. For prediction, a neural network with a single hidden layer feed-forward 

network which consists of a set of inputs is widely used. 

Due to its flexible and versatile nature, the QR has been applied to very different types of 

areas viz. investment, finance, economics, medicine, and engineering. Huang et al (2017) 

applied QR to different types of data; independent data, time-to-event data, and longitudinal 

data (Haung et al., 2017). Telbany (2014) applied the QRNN technique to predict the 

activity of the pyrimidines-based structure–activity relationship of these compounds for 

finding potential treatment agents for serious diseases. The study also compared QR and 

QRNN models and showed that the QRNN model significantly reduced the prediction error 

(El-Telbany, 2014).LI Gan-qiong et al.(2012)used the approach to model 
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price movements of livestock based food items and to analyse the short-term impacts of cost 

factors on livestock’s price fluctuation. They also generated confidence intervals from 

quantiles 5th and 95th and showed that it is a good method to forecast livestock price 

fluctuation (Liet al., 2012). Sigalingginget al., (2004) and Amalia et al., (2018) applied 

QRNN to forecast inflow and outflow of cash (Sigalingging et al., 2004; Amalia et al., 2018). 

In the present study, the quantile regression model (QR) and quantile regression neural 

network (QRNN) models have been used to estimate/predict the categorical response variable 

with independent predictors. Both models were applied to the real data collected during the 

COVID-19 pandemic (Goyal et al., 2023)with the help of the Strength and Difficulty 

Questionnaire (SDQ) 17
+
 extended version concerning the psychological health of young 

adults in India. Three surveys were conducted at different time points; and, respectively 1020, 

743, and 934 responses were obtained. Among the two components of the extended version, 

the ‘impact’ score was the response variable, which measures distress in terms of social 

dysfunction, and the scales of the second component viz. the ‘difficulty’ score were taken as 

the predictors that measure behavioral problems. These scales are the conduct problem, peer 

problem, emotional symptoms, and hyperactivity-inattention. Firstly, the QR model was 

applied with the appropriate value of the quantile, and significant predictors were extracted. 

Secondly, for the application of the QRNN model, the data was divided randomly into two 

parts; train data and test data. The QRNN model was applied with the train data for the range 

of quantiles with one hidden node, and the regression coefficients were computed for every 

value of quantile. Further, for each set of regression coefficients, the response variable was 

estimated for the test data. Thirdly, the QR and the QRNN models were compared with mean 

absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). Lastly, 

we estimated the response variable values/category from the predictors under both models, 

and the efficacy of the models was computed and compared. The predictive power of both 

models was computed by comparing the results with the observed values. 

1.1 Objectives and Novelty of the study 

This study is in continuation with a previous work by authors in which they used Ordinal 

regression to estimate the three severity categories of the impact score with the components 

of the difficulty score. Although the model was found to be efficient for estimating the 

categories of the ‘Normal’ and the ‘Abnormal’ cases but the model failed to estimate the 

‘Borderline’ category cases (Sabharwal et al., 2023). With the objective of overcoming the 

limitation of the OR model for this complex and multi-component data, and to get a complete 

picture in terms of the significant predictors and optimal quantile the authors explored the use 

of QR and QRNN models. 

Novelty of this study is that the applied models have been cross- validated through three 

different data sets in place of cross-validation through the same data set which is the general 

procedure followed in machine learning. Also the robustness of the QR models has been 

established by comparing standard median-based models with data-specific quantiles. To the 

best of our knowledge, this is the first study where QR and QRNN models were compared 

after extracting the optimum value of the quantile. Further, this comparison helped us to 

extract significant predictors under QRNN models, which was otherwise not possible from its 

result table. 
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Besides the introduction, the course of the paper is as follows: material and methods have 

been explained in Section 2; applications of the models are discussed with real data under 

results in Section 3; followed by discussion and conclusion in Section 4. 

2 Material and Methods 

2.1  Material 

The data collected and the method of data collection are therein the previous works of the 

authors (Goyal et al., 2023; Sabharwal et al.,2023) as the present study is in continuation 

with these works. 

2.2 Methods 

2.2.1 Quantile Regression 

Quantile Regression uses an asymmetric weighting system of data which are based on their 

distance from the data-specific quantile for the estimation (Forooqi, 2019). A multiple 

Quantile Regression model with k predictors can be written as  

qkY X       (2.2.1) 

whereY is (n×1) matrix of the response variable,  X is an (n ×(k+1)) matrix of the predictor 

variables (including the intercept),  
qk is a (k×1) matrix of the regression coefficients at 

given quantile level and   is a (n×1)  matrix of the error. 

For a single predictor iX , model (1) is reduced to 

0i q qi qi qiY X                                                      (2.2.2) 

where qi ’s are random error, 0q and qi are the unknown parameters associated with 
thq

quantile.  

The 
thq quantile given iX  is defined as: 

0( | )q i i q qi qiQ Y X X   (2.2.3) 

( ) 0q qiQ    

Let  0
ˆ

q and  ˆ
qi be the estimates of the unknown parameter 0q and qi  respectively.   

To obtain the estimates, the sum of absolute errors, 
1

n

i qi  is minimized subject to 

asymmetric penalties (0 1)q q   for under prediction and (1 )q  for over prediction 

(Farooqi, 2019) so that the objective function to be minimized is     

 : :( ) min 1
i i i iq i Y X qi i Y X qiQ q q

 
   

     
 

 

where,   
0( )qi i q qi qiY X      

So, 

 : 0 : 0( ) min ( ) 1 ( )
i i i iq i Y X i q qi qi i Y X i q qi qiQ q Y X q Y X

 
     

         
 

 

 1 ( ) 0 ( ) 0min ( ) 1 ( )
i i i i

n

i Y X i q qi qi Y X i q qi qiI q Y X q I Y X
 

     
        
 

        (2.2.4) 

where I is an indicator function. 

2.2.2  Goodness of Fit test for Quantile Regression 
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A measure of goodness of fit is obtained by comparing the sum of the weighted absolute 

deviations of the full model (a model with all the predictors in it) with the, that of the null 

model (no predictors in the model)(Koenker et al., 1999). So if ˆ( )Z q is the sum of the 

weighted absolute deviations of the full model and ( )Z q that of the null model for prediction 

of the same quantile q then a measure of goodness of fit for quantile regression is: 

ˆ ( )
( ) 1 ; 0 ( ) 1

( )

Z q
R q R q

Z q
                                            (2.2.5) 

The larger value of ( )R q  is indicating a better model fit. 

The likelihood ratio (LR) test measures the difference in the absolute deviations of null 

model and the full model as a proportion of null model at the 
thq  quantile (Koenker et al., 

1999).i.e. 

2

( )1

ˆ2( ( ) ( ))

(1 ){ (0)}
k

eq

Z q Z q
LR

q q f








                                        (2.2.6) 

Where
1{ (0)}eqf 
, the reciprocal of the density function evaluated at the quantile of interest, 

is called the sparsity function; and is considered a nuisance parameter (Koenker et al., 1999). 

1 0( ) n

i iZ q Y    ; and 

1 0 1 1
ˆ ( ) ( ............ )n

i i i k kiZ q Y X X        ; 

and k  is the difference between the number of predictors in full model and null model. 

2.2.3Quantile Regression Neural Network (QRNN) 

A QRNN model works as follows: 

 

               Figure1:Quantile Regression Neural Network model with four predictors and with one hidden layer 

For given predictors, ( )iX t  and response variable, ( )Y t  , the output of at a hidden  layer 

node j is, 

 ( ) ( )

1( ) tanh ( )I h h

i i i ij jo t X t W a     (2.2.7) 

where 
( )h

ijW , 
( )h

ja  are the weight, and  bias of hidden layer respectively. An estimate of 

ˆ ( )qY t , the conditional 
thq  quantile is, 
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i 

 (0) (0)

1
ˆ ( ) ( )J

q j i jY t f o t W a       (2.2.8) 

where (.)f  is a function of the output layer with
(0)

jW  and bias
(0)a  at the output layer 

(Cannon,2011). 

To minimize the loss between the predicted and target outputs, a loss function is used to 

compare the target and predicted output values of the train data. For QRNN,Huber Loss is 

used generally, which has the advantage over MSE and MAE when the average distance 

approaches 0 and the function's derivative at 0 are undefined. 

The Huber Loss function is defined as 

( ) 1
( )

( 1) ( ) 0
q

q h e if e
e

q h e if e



 

 
   (2.2.9) 

where e  the residual of the parameter  and ( )h e is Huber norm given by 

2

0
2( )

2

e
if e

h e

e if e








 

 
  


    (2.2.10) 

 is the threshold whose value is to be determined. Then the optimized error function is  

 1

1 ˆ( ) ( )N

q t q qE Y t Y t
N

         (2.2.11) 

2.2.4 Comparison of QR and QRNNN Models 

QR and QRNNN models are compared using Mean absolute Error (MAE), Mean square 

Error (MSE) and Root mean Square Error (RMSE).  

1

1 ˆm

i i iMAE Y Y
m

       (2.2.12) 

 
2

1

1 ˆm

i iMSE Y Y
m

      (2.2.13) 

 
2

1

1 ˆm

i iRMSE Y Y
m

     (2.2.14) 

ˆ
iY are the predicted values and  iY , the observed values. 

3 Results

Cronbach’s alpha and Guttman Lambda (Goyal et al., 2023) coefficients of data reliability 

were respectively 0.83 and 0.89 (for first survey), 0.86 and 0.89 (for second survey); and 

0.88 and 0.86 for third survey. Table 1 has the descriptive statistics for all five scales of the 

basic version and the impact score of the extended version component. The descriptives 

have been presented only for those respondents who were facing distress due to behavioural 

problem(s).Impact scores were available for: 772/1020, 584/743, and 773/934 from Survey 

1, Survey 2, and Survey 3 responses respectively. 

Table1: Descriptive statistics of all three surveys giving mean, standard deviation, minimum, and maximum of 

five strength and difficulty scales; and Difficulty and Impact scores 
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 Scale 

(Items) 

Surveys Total Mean Sd Minimum Maximum 

Prosocial behaviour 

(1, 4, 9, 17, 20) 

1 772 7.891 1.686 1 10 

2 584 7.932 1.754 0 10 

3 773 7.825 1.736 0 10 

Hyperactivity-inattention 1 772 4.104 2.034 0 9 

(2, 10, 15, 21, 25) 2 584 3.724 2.059 1 10 

 3 773 4.304 1.916 0 10 
 

Emotional symptoms 

(3, 8, 13, 16, 24) 

1 772 4.193 2.450 1 10 

2 584 3.995 2.488 0 10 

3 773 4.788 2.519 0 10 

Conduct problem 

(5, 7, 12, 18, 22) 

 
 

Peer problem 

(6, 11, 14, 19, 23) 

1 772 2.902 1.713 0 10 

2 584 2.942 1.787 0 9 

3 773 3.352 1.884 0 10 

Difficulty score 1 772 14.136 5.142 1 31 

 2 584 13.443 5.568 2 33 

 3 773 15.562 5.499 2 31 
 

Impact Score 

(28, 29,30,31,32) 

1 772 1.528 1.721 0 7 

2 584 1.885 2.100 0 9 

3 773 2.289 2.558 0 10 

1.2 The QR model 

1.2.1 Testing the validity of the model 

For every participant, the QR model with independent predictors: conduct problem, peer 

problem, emotional symptoms; and hyperactivity-inattention, has been applied to estimate the 

probability/category of impact score. The data based quantile q is taken to be the ‘ratio of 

problematic to normal category’ for all the three surveys; yielding values 0.44, 0.36, and 0.34 

for survey 1, survey 2, and survey 3 respectively. Using the computed value of q, the 

coefficient of determination, 𝑅(𝑞) is computed for all the three surveys, which in turn is used 

in the likelihood ratio (LR) test to compare the null model with the full model with given 

predictors. 

Null hypothesis and alternative were: 

H0i:    There is no significant difference between the null and full model. 

H1i:    There is significant difference between the null and full model. 

i= survey 1, survey 2, survey 3 

The results are presented in Table 2 below: 

 

Table 2: - Likelihood Ratio test for all three surveys data 

Survey q 𝒇𝒆𝒒(𝟎) χ2-statistic p-value 

1 0.44 0.22 397.023 <0.0001 

2 0.36 0.18 431.835 <0.0001 

3 0.34 0.17 656.080 <0.0001 

1 772 2.935 1.456 0 9 

2 584 2.785 1.441 1 7 

3 773 3.119 1.554 0 8 
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With each p-value less than 0.001, the full model is significantly different from the null 

model for all the three surveys. 

Concerning the significance of individual predictors, hyperactivity-inattention, and emotional 

symptoms are significant contributors to estimating respondents’ probability of belonging to a 

category, as p< 0.01 in all three surveys. Conduct problem is a significant factor in survey 1. 

Peer problem is a significant contributor for estimating impact score only in survey 2. The 

detailed results are given below in Table 3. 

Table3: Quantile Regression showing the partial effects of components of difficulty scales on impact scores of 

the participants in the three surveys 

 
 

First Survey q=0.44 overall 

Coefficients Estimate Std. Error t- value Pr(>|t|) 

Intercept -0.57407 0.14361 -3.99742 0.00007 

Hyperactivity Scale 0.16667 0.03231 5.15896 0.00000 

Emotional 0.22222 0.03678 6.04225 0.00000 

Peer Problem 0.05556 0.03781 1.46935 0.14215 

Conduct Problem -0.09259 0.03980 -2.32659 0.02025 

Fitted Model 

Q((Impact|components of difficulty score)=-0.57407+0.16667*Hyper+0.2222*Emo+.055556*Peer- 

0.09259259*Con 

P( Impact|c<-0.57407+0.16667*Hyper+0.2222*Emo+.055556*Peer-0.09259259*Con)=0.44 

Second Survey q=0.36 overall 

Coefficients Estimate Std. Error t- value Pr(>|t|) 

Intercept -0.87500 0.19001 -4.60508 0.00001 

Hyperactivity Scale 0.12500 0.03839 3.25622 0.00120 

Emotional 0.25000 0.03733 6.69747 0.00000 

Peer Problem 0.12500 0.04177 2.99225 0.00289 

Conduct Problem 0.00000 0.04902 0.00000 1.00000 

Fitted Model 

Q((Impact|components of difficulty score)=-0.875+0.125*Hyper+0.25*Emo+.125*Peer-0.00*Con 

P( Impact|c<-0.875+0.125*Hyper+0.25*Emo+.125*Peer-0.00*Con)=0.36 

 
Third Survey q=0.34 overall 

Coefficients Estimate Std. Error t- value Pr(>|t|) 

Intercept -1.14119 0.21854 -5.22196 0.00000 

Hyperactivity Scale 0.14936 0.03144 4.75030 0.00000 

Emotional 0.24737 0.03879 6.37693 0.00000 

Peer Problem 0.09568 0.04942 1.93615 0.05322 

Conduct Problem 0.03734 0.06137 0.60847 0.54306 

Fitted Model 

Q((Impact|components of difficulty score)=-1.14119+0.14936*Hyper+0.24737*Emo+.09568*Peer-0.03754*Con 

P( Impact|c< -1.14119+0.14936*Hyper+0.24737*Emo+.09568*Peer-0.03754*Con)=0.34 
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1.2.2 Quantile regression Neural Network (QRNN) model 

To apply QRNN, the total data was divided into two parts; train data, which was 60% of the 

total data, selected by random sampling and the remaining 40% as the test data. The quantiles 

were computed for the train data yielding values 0.43 for survey 1, 0.40 for survey 2, and 

0.36 for survey 3. For each survey a narrow band of quantiles was selected which included 

the computed value in it and QRNN with a single hidden node was run for each quantile in 

the chosen bands. The results are given below in Table 4. 

 
Table 4: Estimated value of predictor coefficient for different values of q for QRNN model for train data with 

one hidden node 

First Survey 

Values of q 0.40 0.42 0.46 0.48 0.43 

Coefficients Estimated value Estimated value Estimated value Estimated value Estimated value 

Intercept -0.50710 -0.46178 -0.35809 -0.27098 -0.40394 

Hyperactivity 

Scale 

0.13333 0.13334 0.13334 0.13334 0.13334 

Emotional 0.26666 0.26665 0.26666 0.26666 0.26665 

Peer Problem 0.01512 0.01511 0.01512 0.01509 0.01509 

Conduct 

Problem 

-0.10256 -0.10255 -0.10254 -0.10254 -0.10254 

  Second Survey   

    Values of  q 0.32 0.34 0.38 0.40  

Coefficients Estimated value Estimated value Estimated value Estimated value  

Intercept -1.13780 -1.13780 -1.13780 -1.13780  

Hyperactivity 

Scale 

0.14754 0.14754 0.14754 0.14754  

Emotional 0.30491 0.30491 0.30491 0.30491  

Peer Problem 0.12457 0.12457 0.12457 0.12457  

Conduct 

Problem 

0.04912 0.04912 0.04912 0.04912  

  Third Survey   

    Values of  q 0.30 0.32 0.36 0.38  

Coefficients Estimated value Estimated value Estimated value Estimated value  

Intercept -0.929835 -0.877123 -0.754416 -0.684285  

Hyperactivity 

Scale 

0.105263 0.105283 0.105279 0.105280  

Emotional 0.228076 0.228065 0.228075 0.228073  

Peer Problem 0.087722 0.087713 0.087708 0.087712  

Conduct 

Problem 

-0.017543 -0.017571 -0.017550 -0.017558  

 

Table 5 below presents the comparison of the QRNN model with the QR model using mean 

absolute error (MAE), mean square error (MSE), and root mean square error (RMSE). For all 

the three surveys, errors were lower under the QRNN model than the errors under QR model. 

Table 5: Comparison of QR and QRNN models based on MAE, MSE and RMSE for different values of q 

 

First Survey 

QR for q   QRNN for q   

 0.44 0.50 0.44 0.40 0.42 0.46 0.48 0.43 

MAE 0.7261 0.9186 0.7273 0.7263 0.7306 0.7366 0.7523 0.7227 

MSE 0.8552 1.2491 0.8455 0.8635 0.8770 0.8701 0.8792 0.8461 

RMSE 0.9247 1.1176 0.9195 0.9292 0.9365 0.9328 0.9376 0.9198 

Second Survey 

QR for q                                     QRNN      for q 

 0.36 0.50 0.36 0.32 0.34 0.38 0.40  
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MAE 

 
MSE 

0.6949 

 
0.8174 

1.2525 

 
2.2330 

0.6912 

 
0.8174 

0.7049 

 
0.8535 

0.7035 

 
0.8629 

0.6948 

 
0.8128 

0.6801 

 
0.8086 

RMSE 0.9041 1.4943 0.9011 0.9238 0.9289 0.9015 0.8992  

Third Survey 

QR  for q                     QRNN for q 

0.34 0.50 0.34 0.30 0.32 0.36 0.38 

MAE 0.6761 1.1130 0.6758 0.7081 0.6933 0.6627 0.6794  

MSE 0.7007 1.9840 

RMSE 0.8371 1.4085 

0.7007 0.7600 0.7346 0.6974 0.7279 

 
0.8370 0.8717 0.8571 0.8351 0.8532 

 

In order to select an optimum QRNN model, results obtained using one; two and three hidden 

nodes for the optimum quantile (the one with minimum error term) were compared on the 

basis of MAE, MSE, and RMSE values. The results in Table 6 show that a single hidden node 

was the best choice for QRNN model for all the three surveys. 

 

Table 6: Justification of hidden nodes for all three surveys by using MAE, MSE, and RMSE 

First Survey    

Hidden nodes 1 2 3 

MAE 0.7281 0.7587 0.7551 

MSE 0.8484 0.9296 0.9122 

RMSE 0.9210 0.9641 0.9551 

Second Survey    

MAE 0.6941 1.0275 1.0317 

MSE 0.8162 1.5180 1.5391 

RMSE 0.9034 1.2320 1.2406 

Third Survey    

MAE 0.6758 0.7048 0.7236 

MSE 0.7007 0.7741 0.8064 

RMSE 0.8370 0.8798 0.8980 

 

The regression results of QR and QRNN models (corresponding to the optimum quantile for 

each survey) are presented in Table 7 below. A comparison of the results of the two 

regressions shows that the two models yielded almost similar estimates of the independent 

predictors. This finding helped us to overcome a limitation of QRNN model which does not 

provide the significance of individual predictors. With p< 0.05 in all three surveys, 

thehyperactivity-inattention and emotional symptoms were found to be significant 

contributors to the probability that a respondent will belong to a category. For the other two 

predictors, conduct problem was significant survey 1; and peer problem in survey 2 only. 

 

Table 7: Comparison of QR and QRNN predictor coefficient for the computed quantile 

First Survey  

QR QRNN 
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Coefficients Estimate value Pr(>|t|) Estimate value 

Intercept -0.32658 0.0979 -0.40394 

Hyperactivity Scale 0.13165 0.0012 0.13334 

Emotional 0.26582 0.0000 0.26665 

Peer Problem 0.01013 0.8606 0.01509 

Conduct Problem -0.11899 0.0245 -0.10254 

Second Survey    

Intercept -1.1019 0.00001 -1.13780 

Hyperactivity Scale 0.1337 0.00304 0.14754 

Emotional 0.3152 0.00000 0.30491 

Peer Problem 0.1242 0.02284 0.12457 

Conduct Problem 0.0350 0.60369 0.04912 

Third Survey    

Intercept -0.7647 0.00652 -0.82452 

Hyperactivity Scale 0.0980 0.03037 0.10527 

Emotional 0.2156 0.00005 0.22806 

Peer Problem 0.0980 0.08953 0.08770 

Conduct Problem -0.0198 0.76189 -0.01755 

Table 8 shows the expected frequency of each category of impact score corresponding to 

different categories of difficulty scoreswas computed using both the models. 

Table 8: Comparison of observed values with estimated values under both the models for all the three survey 

First Survey 

Difficulty Impact Observed QR 

Estimated (q=0.44) 

QRNN 

Estimated (q=0.43) 

Normal 

(489) 

Normal 283 231 256 

Borderline 34 239 224 

 Abnormal 172 19 09 

Borderline 

(168) 

Normal 46 05 05 

Borderline 28 78 104 

 Abnormal 94 85 59 

 Normal 14 00 00 

Abnormal 

(115) 

Borderline 24 17 30 

Abnormal 77 98 85 

Second Survey 

  Impact Observed QR 

Estimated (q=0.36) 

QRNN 

Estimated (q=0.40) 

Normal 

(391) 

Normal 190 185 191 

Borderline 73 190 148 

 Abnormal 128 16 52 

Borderline 

(106) 

Normal 19 00 05 

Borderline 21 32 55 

 Abnormal 66 74 46 

Abnormal 

(87) 

Normal 05 00 08 

Borderline 09 01 13 

 Abnormal 73 86 66 

Third Survey 

  Impact Observed QR 

Estimated (q=0.34) 

QRNN 

Estimated (q=0.36) 

Normal 

(335) 

Normal 189 203 190 

Borderline 66 130 136 

 Abnormal 80 02 09 

Borderline 

(293) 

Normal 65 02 07 

Borderline 42 141 175 

 Abnormal 186 150 111 

Abnormal 

(145) 

Normal 15 00 00 

Borderline 18 01 08 

 Abnormal 112 144 137 



Alka Sabharwal / Afr.J.Bio.Sc. 6(9) (2024) Page 4704 of 16 
 

 

While the QR model estimated the observed ‘Normal’ band as the ‘Normal’ and the observed 

‘Advance’ band as the ‘Advance’ with over 83% accuracy, the QRNN model predicted the 

same with over 88% accuracy. The participants with overall difficulty score under the 

‘Normal’ band but facing ‘a great deal’ problem in one of the areas of behavioural problems 

were estimated in the ‘Borderline’ category of the impact score. The borderline cases were 

predicted with 40 % accuracy. Further, the predictive power of QRNN model is better than 

QR model for all the three surveys as shown in Figure 2 below. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 2: The predictive power (%) of the two models for the ‘normal’ and ‘abnormal’ categories of impact scores 

All the analysis has been done using R software, version 4.2.1. The R-code is available in the 

Appendix. 

 

2. Discussion and conclusion 

In an earlier work, the authors used the ordinal regression (OR) model to estimate social 

dysfunction with components of difficulty scores (Sabharwal et al., 2023). While the OR 

model exhibited good predictive power to estimate the normal and abnormal categories of 

social dysfunction as measured by impact score, it was not able to estimate the borderline 

category. The idea of this study was to overcome this limitation of the applied ordinal 

regression. One of the possible solutions was exploring the use of QR and QRNN models as 

the data was skewed. Both QR and QRNN models have exhibited good predictive powers as 

the models are based on quantile value. QR provides greater flexibility than other regression 

methods to identify differing relationships at different parts of the distribution of the 

dependent variable (Cannon, 2011). Further these models are not just based on median but 

the quantile(s) can be researchers’ choice based thus increasing the flexibility of the model(s). 

Here, we are interested in group-differences across the distribution of a given dependent 

variable rather than only the mean. We used quantile regression to allow slopes of the 

regression line to vary across quantiles of the psychological health scale. The median-based 

quantile prediction was compared with data-based quantile prediction values and found to be 

significantly different. However, under the QR model, one can use only one quantile value, 

i.e. for comparing the model for different values of quantiles one has to run the model the 

same number of times as the number of quantile values. But the QRNN model is one-step 
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ahead of the QR model. Under QRNN we have used a range of quantile values and checked 

the predictive power for each quantile value, thus suggesting the most appropriate quantile 

value and corresponding coefficients of independent predictors for the train data. Using the 

obtained coefficients, we predicted the impact score/category for the remaining data (40%). 

However QRNN gives the optimum value of the quantile, based on the highest predictive 

power but the significant predictor can’t be extracted as the test statistic along with that the 

significant value is not there for all predictors. This justifies the use of QR and QRNN 

models together to get appropriate quantile and the effect of predictors on the dependent 

variable based on that chosen quantile. 

The comparison of frequencies obtained through QRNN model and those through the QR 

model (Table 8) yielded that QRNN was better in estimating/predicitng distress categories as 

compared to QR. These findings were consistent with the observations of (EL-Telbany, 

2014). As depicted in Figure2, the predictive power of the models was found to be good as the 

categories of respondents having no distress or severe distress were estimated/predicted with 

90% accuracy by both the models which is similar to the results produced by the OR model. 

In spite of the complex and multi-component nature of the SDQ questionnaire, both these 

models were able to estimate/predict the borderline category with 40% accuracy as against no 

prediction by the OR model (Sabharwal et al., 2023). 

The models were applied to the survey-based data (as against the simulated data which has 

been the usual practice).The study not only applied the models but also validated the use of 

the models for psychological data as the models were applied on three distinct data sets 

obtained at different time points during COVID-19 period and each time consistent results 

were obtained. 

For data based quantile models, the upper bound of predicitve power lies at the optimum 

quantile obatined. The classcal confidence intervals are meaningless for these models. 

This study was a step further than the previous study based on OR model but this is not the 

last model for this SDQ data as the authors wish to explore some other models also. A 

limitation of this study is that the models have not been explored for longitudinal data. 
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Appendix 

 

A.1 

R Code 

 
library(readxl) 

read_excel("C:\\Users\\ADMIN\\Desktop\\paper1\\Paper1_phd\\data_survey1_modified.xlsx") 

summary(data_survey1_modified) 

library(quantreg) 

t<- matrix(table(data_survey1_modified$Impact_score),ncol=8) 

q<-t[,1]/sum(t);q 

q_1<- the value of median quantile is taken from [13] 

q_2<- median quantile 

f_0e<-( q_1*q)/q_2; f_0e 

##Null Model 

model.qr_null<-rq(formula = Impact_score~1,tau=q,data = data_survey1_modified) 

summary(model.qr_null) 

s1<-sum(abs(model.qr_null$residuals));s1 

#######Full model 

model.qr3<-rq(formula=Impact_score~HyperactivityScale+Emotional+Conduct_Problem+Peer_Problem,tau=q,data = 

data_survey1_modified) 

summary(model.qr3) 

s2<-sum(abs(model.qr3$residuals));s2 

R_q1 <- 1-(s2/s1); R_q1 

##H_0<- There is no significant difference between null and complete model 

##H_1<- There is significant difference between null and complete model 

LR_1<-2*(s1-s2)*f_0e/(q*(1-q));LR_1 

http://dx.doi.org/10.1080/01621459.1999.10473882
http://dx.doi.org/10.1080/01621459.1999.10473882
https://doi.org/10.1038/s41598-021-90063-3
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summary(model.qr_null,se="boot") 

summary(model.qr3,se="boot") 

fit_qr3<-model.qr3$fitted.values 

Final_fit<-ifelse(fit_qr3<0.5,"Normal",ifelse(fit_qr3>=1.5,"Abnormal","Borderline")) 

 

A.2 Quantile Regression Neural Network (QRNN) Model 
 

###Firstly the whole data divided into Train and Test data (60% Train and 40% Test) 

Train_b1<-sample(60% of survey first data,replace = FALSE) 

Train_quant1<-data_survey1_modified[Train_b1,] 

Test_quant1<-data_survey1_modified[-Train_b1,] 

###QR model 

library(quantreg) 

model.qr_train1<-rq(formula=Impact_score~HyperactivityScale+Emotional+Conduct_Problem+Peer_Problem ,tau=q,data 

=Train_quant1) 

fit_qr_train1<- model.qr_train1$fitted.values 

Final_fit_train1<-ifelse(fit_qr_train1<0.5,”Normal”,ifelse(fit_qr_train1>=1.5,”Abnormal”,”Borderline”)) 

summary(model.qr_train1,se="boot") 

library(qrnn) 

diff_compo1<- 

as.matrix(data.frame(Train_quant1$HyperactivityScale,Train_quant1$Emotional,Train_quant1$Conduct_Problem,Train_qua 

nt1$Peer_Problem),ncol=4) 

test_comp1<- 

as.matrix(data.frame(Test_quant1$HyperactivityScale,Test_quant1$Emotional,Test_quant1$Conduct_Problem,Test_quant1$ 

Peer_Problem),ncol=4) 

ml_qrnn2<-qrnn.fit(diff_compo1,as.matrix(Train_quant1$Impact_score),tau = q,n.hidden = 1) 

t_tau1<-seq(0.40,0.48,0.02) 

x.y.tau1 <- composite.stack(diff_compo1,as.matrix(Train_quant1$Impact_score) ,t_tau1) 

binary.tau1 <- dummy.code(as.factor(x.y.tau1$tau)) 

fit.cqr1 <-qrnn.fit(cbind(binary.tau1, x.y.tau1$x), x.y.tau1$y,tau=x.y.tau1$tau, n.hidden=1, n.trials=1,Th=linear, 

Th.prime=linear.prime) 

pred.cqr1 <- matrix(qrnn.predict(cbind(binary.tau1, x.y.tau1$x), fit.cqr1),ncol=length(t_tau1)) 

Final_fit_qrnn<-ifelse(pred.cqr1<0.5,”Normal”,ifelse(pred.cqr1>=1.5,”Abnormal”,”Borderline”)) 

coef.cqr<- lm.fit(cbind(1,diff_compo1), pred.cqr1)$coef; coef.cqr 

### train data the value of q is 0.43, hence same value applied for test data 

diff_compo2<- 

as.matrix(data.frame(Train_quant1$HyperactivityScale,Train_quant1$Emotional,Train_quant1$Conduct_Problem,Train_qua 

nt1$Peer_Problem),ncol=4) 

test_comp2<- 

as.matrix(data.frame(Test_quant1$HyperactivityScale,Test_quant1$Emotional,Test_quant1$Conduct_Problem,Test_quant1$ 

Peer_Problem),ncol=4) 

t1<- matrix(table(Train_quant1$Impact_score),ncol=7) 

q_1<-t1[,1]/sum(t1);q_1 

t_tau2<-q_1 

ml_qrnn1<-qrnn.fit(diff_compo2,as.matrix(Train_quant1$Impact_score),tau = q_1,n.hidden = 1) 

x.y.tau2 <- composite.stack(diff_compo2,as.matrix(Train_quant1$Impact_score) ,t_tau2) 

binary.tau2 <- dummy.code(as.factor(x.y.tau2$tau)) 

fit.cqr2 <- qrnn.fit(cbind(binary.tau2, x.y.tau2$x), x.y.tau2$y, 

tau=x.y.tau2$tau, n.hidden=1, n.trials=1, 

Th=linear, Th.prime=linear.prime) 

pred.cqr2 <- round(matrix(qrnn.predict(cbind(binary.tau2, x.y.tau2$x), fit.cqr2), 

ncol=length(t_tau2)),3) 

pred.cqr2 <- matrix(qrnn.predict(cbind(binary.tau2, x.y.tau1$x), fit.cqr2),ncol=length(t_tau2)) 

Final_fit_qrnn_0.43<-ifelse(pred.cqr2<0.5,”Normal”,ifelse(pred.cqr2>=1.5,”Abnormal”,”Borderline”)) 

 
####test data q=0.43 

test_comp3<- 

as.matrix(data.frame(Test_quant1$HyperactivityScale,Test_quant1$Emotional,Test_quant1$Conduct_Problem,Test_quant1$ 

Peer_Problem),ncol=4) 
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ml_qrnn1<-qrnn.fit(test_comp3,as.matrix(Test_quant1$Impact_score),tau =q_1,n.hidden = 1) 

t_tautest1<-q_1 

x.y.tautest1 <- composite.stack(test_comp3,as.matrix(Test_quant1$Impact_score) ,t_tautest1) 

binary.tautest1 <- dummy.code(as.factor(x.y.tautest1$tau)) 

fit.cqrtest1 <- qrnn.fit(cbind(binary.tautest1, x.y.tautest1$x), x.y.tautest1$y, 

tau=x.y.tautest1$tau, n.hidden=1, n.trials=1, 

Th=linear, Th.prime=linear.prime) 

pred.cqrtest1 <- round(matrix(qrnn.predict(cbind(binary.tautest1, x.y.tautest1$x), fit.cqrtest1), 

ncol=length(t_tautest1)),3) 

pred.cqrtest1<-matrix(qrnn.predict(cbind(binary.tautest1,x.y.tautest1$x),fit.cqrtest1),ncol=length(t_tautest1)) 

Final_fit_qrnn_test<-ifelse(pred.cqrtest1<0.5,”Normal”,ifelse(pred.cqrtest1>=1.5,”Abnormal”,”Borderline”)) 

 
###Comparison of Both Models by MAE, MSE and RMSE for different values of tau 

### MAE, MSE and RMSE for QR Model 

MAE_qr<-mean(abs(Train_quant1$Impact_score - model.qr_train1$fitted.values )) 

MSE_qr<-mean((model.qr_train1$fitted.values - Train_quant1$Impact_score)^2) 

RMSE_qr<-sqrt(mean((model.qr_train1$fitted.values - Train_quant1$Impact_score)^2)) 

### MAE, MSE and RMSE for QRNN Model 

MAE_qrnn<-mean(abs(Train_quant1$Impact_score - pred.cqr1[,3] )) ##For tau=0.44 

MSE_qrnn<-mean((pred.cqr1[,3] - Train_quant1$Impact_score )^2) 

RMSE_qrnn<-sqrt(mean((pred.cqr1[,3] - Train_quant1$Impact_score )^2)) 

 
 


