https://doi.org/10.48047/AFJBS.6.12.2024.1006-1026

9986±51.83, &% Drug content found 93.67.038. **Key Word-S**cabies, Formulation, Nanosponges, Ethosomes, Ivermectin, Development of method,Plackett-Burman,ANOVA Method

1 Introduction

Scabies is caused by the Sarcoptesscarbiei mite. It causes a rash so itchy that it interrupts sleep. Scabies is a skin condition caused by the Sarcoptesscabiei var hominis mite. These little bugs make tunnels (burrow) under your skin and cause small red bumps and severe itching. Scabies spreads easily from person to person, especially among people who live close together.

Quality by Design is the modern approach for quality of pharmaceuticals. It describes use of Quality by Design to ensure quality of Pharmaceuticals. In this review, the Quality by Design is described and some of its elements identified. Process parameters and quality attributes are identified for each unit operation. Benefits, opportunities and steps involved in Quality by Design of Pharmaceutical products are described.

"Ethosomes are ethanolic liposomes". Ethosomes can be defined as noninvasive delivery carriers that enable drugs to reach deep into the skin layers and/or the systemic circulation. These are soft, malleable vesicles tailored for enhanced delivery of active agents. The vesicles have been well known for their importance in cellular communication and particle transportation for many years.

Nanosponge is a novel approach which offers controlled drug delivery for topical use. Nanosponge is an emerging technology for topical drug delivery. Nanosponge drug delivery system is utilized for development of performance of topically applied drugs. Nanosponges are small sponges with a size of about a virus, which can be loaded with a wide variety of drugs. These tiny sponges can circulate around body until they encounter specific target site and stick on surface and begin to release drug in a controlled and predictable manner.

Ivermectin-Ivermectin is an anti-infective agent with activity against several parasitic nematodes and scabies and is the treatment of choice for onchocerciasis (river blindness). It is typically given as one or two oral doses. Ivermectin therapy has been associated with minor, self-limiting serum aminotransferase elevations and very rare instances of clinically apparent liver injury.

2.Method and formulation-

2.1 Identification and Determination of Wavelength max (\lambda max) of Ivermectin Stock solution (1000µg/mL) of Ivermectin in methanol was prepared. This solution was diluted to obtain 100 μ g/mL solution. 5 mL was withdrawn and adjusted to 50 µg/mL concentration and scanned between 200 - 400 nm. The U.V spectrum of Ivermectin is shown in Fig. The maximum absorbance was observed at 245 nm which indicates that the λ max of Ivermectin is similar to λ max as per I.P i.e., 245 nm.

Figure-1Wavelength max (λ max) of Ivermettin Table -1 Wavelength max (λ max) of Ivermectin

Drug	Actual	λ	Observedλ
		max	max
Ivermectin	245nm		245nm
ComplieswithSta	andardData ofIP2010		

2.2 Preparation of Calibration Curve of Ivermectin

	Table-2 Calibration	
Sr No	Concentration	Absorbance
1	0	0
2	2	0.19
3	4	0.403
4	6	0.61

5	8	0.8
6	10	0.95

Figure- 2 Calibration CurveofIvermectin

2.3 Particle Size Study- Drug- Ivermectin

Figure-3 Particle size study of Ivermectin

2.4 RiskIdentification

2.4.1 Screening of significant risk factors using placket-burman design

Plackett-Burman design is an efficient screening method to identify the critical factors using as few experimental runs as possible. The design is used for screening of independent variables: significant (critical) or non-significant (non-critical). It is two-level design i.e. Low (-1) level, High (+1) level.PB design gives 12 runs that may be used for an experiment containing up to 11 factors.

Table 3-2 -level Plackett-Burman design

Factor	FactorName	Level	
Code		Low(-1)	High(+1)
Independ	dentFactors	I	
X1	PhospholipidConc.(%)	2	4
X2	EthanolConc.(%)	20	40
X3	CholesterolConc.(%)	0.1	0.3
X4	OrganicphaseComposition	Ethanol+PG	Ethanol+IPA
X5	StirringSpeed(rpm)	500	700
Depende	ntFactors		
Y1	%EntrapmentEfficiency		
Y2	%CDR		

Table 4- Compositions of Batches in Coded Form

Run	Phospholipid conc.(%)	Ethanol conc.(%)	Cholesterol conc.(%)	Composition	Stirring speed
	X1	X2	X3	X4	X5
1	1	1	-1	Ethanol+IPA	1
2	1	-1	1	Ethanol+IPA	1
3	-1	-1	-1	Ethanol+IPA	-1
4	-1	-1	1	Ethanol+PG	1
5	-1	1	1	Ethanol+PG	1
6	1	1	-1	Ethanol+PG	-1
7	-1	1	1	Ethanol+IPA	-1
8	1	-1	1	Ethanol+IPA	-1
9	1	1	1	Ethanol+PG	-1
10	-1	1	-1	Ethanol+IPA	1
11	-1	-1	-1	Ethanol+PG	-1
12	1	-1	-1	Ethanol+PG	1

Table 5 -Compositions of Batches in Decoded Form

Run	Phospholipid conc.(%)	Ethanolconc. (%)	Cholesterol conc.(%)	Composition	Stirring speed
1	4	40	0.1	Ethanol+IPA	700
2	4	20	0.3	Ethanol+IPA	700

3	2	20	0.1	Ethanol+IPA	500
4	2	20	0.3	Ethanol+PG	700
5	2	40	0.3	Ethanol+PG	700
6	4	40	0.1	Ethanol+PG	500
7	2	40	0.3	Ethanol+IPA	500
8	4	20	0.3	Ethanol+IPA	500
9	4	40	0.3	Ethanol+PG	500
10	2	40	0.1	Ethanol+IPA	700
11	2	20	0.1	Ethanol+PG	500
12	4	20	0.1	Ethanol+PG	700

Table-6Plackett-Burman screening design output matrix with results

	X1:	X2:	X3:		X5:SS	Y1:	Y2:
RUN	PL	ETH	CHL	X4: Org.Phase	(RPM)	%E.E	%CDR
	(%)	(%)	(%)				
1	2	20	0.1	ETHANOL+IPA	500	65.4	78.49
2	2	20	0.1	ETHANOL+PG	500	64.46	77.14
3	2	40	0.3	ETHANOL+IPA	500	71.38	84.86
4	4	20	0.3	ETHANOL+IPA	700	75.86	86.17
5	4	40	0.1	ETHANOL+PG	500	78.27	88.36
6	2	40	0.1	ETHANOL+IPA	700	71.16	83.77
7	2	40	0.3	ETHANOL+PG	700	72.76	83.64
8	4	40	0.1	ETHANOL+IPA	700	79.27	88.23
9	4	40	0.3	ETHANOL+PG	500	80.23	90.35
10	4	20	0.3	ETHANOL+IPA	500	72.49	84.5
11	4	20	0.1	ETHANOL+PG	700	74.48	85.29
12	2	20	0.3	ETHANOL+PG	700	67.16	80.34

2.4.2 Effect analysis of variables on Entrapment Efficiency (Y1)

Table-7 Effect analysis of variables on Entrapment Efficiency (Y1)

ANOVA for selected factorial model

Analysisofvariance table[Partialsumofsquares-Type III]

Source	Sum of Squares	df	Mean Square	F Value	p-value Prob > F	
Model	296.34	5	59.27	95.61	< 0.0001	significant
A-PhospholipidConc.	194.25	1	194.25	313.35	< 0.0001	
B-EthanolConc.	91.96	1	91.96	148.35	< 0.0001	
C-CholesterolConc.	3.90	1	3.90	6.29	0.0460	
D-Organicphase Composition	0.27	1	0.27	0.44	0.5338	
E-StirringSpeed	5.96	1	5.96	9.62	0.0211	
Residual	3.72	6	0.62			
CorTotal	300.06	11				

ParetoChart

Figure -4 Pareto chart for entrapment efficiency

Results of the % Entrapment Efficiency for all batches of Plackett-Burman screening design are given in Table 6. The analysis of variance (ANOVA) revealed a statistical difference between the batches. A regression coefficient is said to be significant if pvalue is less than 0.05. TheR2 value was 0.9843 indicating a good fit. From the result, it is evident that phospholipid conc. (p=<0.0001) and ethanol conc. (p=<0.0001)significantly affect the entrapment efficiency which is again confirmed by Pareto chart (Fig. 5.15). When the higher EE is desired within selected factor range, factor X1and X2have positive coefficients which indicate that increasing factor value increases the response which means that increasing phospholipid and ethanol concentration increases the %EE of ethosomes. Additionally, stirring speed shows least effect on entrapment efficiency with negative co-efficient.

2.4.3 Effect analysis of variables on %CDR (Y2)

Table-8 ANOVA for response entrapment efficiency (Y1)

Response1% Entrapment Efficiency

ANOVAforselected fa	Aforselected factorialmodel sofvariance table[Partialsumofsquares-Type III]					
Analysisofvariance tab						
Source	Sum of Squares	df	Mean Square	F Value	p-value Prob > F	
Model	296.34	5	59.27	95.61	< 0.0001	significant
A-PhospholipidConc.	194.25	1	194.25	313.35	< 0.0001	
B-EthanolConc.	91.96	1	91.96	148.35	< 0.0001	
C-CholesterolConc.	3.90	1	3.90	6.29	0.0460	

D-Organicphase Composition	0.27	1	0.27	0.44	0.5338	
E-StirringSpeed	5.96	1	5.96	9.62	0.0211	
Residual	3.72	6	0.62			
CorTotal	300.06	11				

Rank

Figure -5 Pareto chart for entrapment efficiency

Results of the% Entrapment Efficiency for all batches of Plackett-Burman screening design are given in Table 6. The analysis of variance (ANOVA) revealed a statistical difference between the batches. A regression coefficient is said to be significant if p-value is less than 0.05. TheR2 value was 0.9843 indicating a good fit. From the result, it is evident that phospholipid conc. (p=<0.0001) and ethanol conc. (p=<0.0001) significantly affect the entrapment efficiency which is again confirmed by Pareto chart (Fig.6). When the higher EE is desired within selected factor range, factor X1and X2have positive coefficients which indicate that increasing factor value increases the response which means that increasing phospholipid and ethanol concentration increases the %EE of ethosomes. Additionally, stirring speed shows least effect on entrapment efficiency with negative co-efficient.

3.0 Formulation and Development of Ivermectin ethosomes by using 32 Factorial **Design approach:**

A two factor, three level (3²) factorial design was developed via (RSM) using Design-Expert version 10.0.1 software (Stat-Ease, Minneapolis, MN, USA). Various batches of Ivermectin ethosomes by DoE using QbD approach were prepared according to 3²factorial designs. Accordingly, phospholipid percentage (X1) and ethanol percentage (X2) were nominated to represent the independent variables that were inspected for their effects on the entrapment efficiency (Y1) and % CDR (Y2) of developed ethosome. Data in Table demonstrated two independent variables that showed their responses on the dependent variables Y1 and Y2 using three different levels (-1, 0, 1).

Т	able -9 3 ² Fac	torial Design	
	Level		
Independent variables	Low (-1)	Medium (0)	High (+1)
X ₁ = Phospholipid Conc. (%)	2.5	3	3.5
X ₂ = Ethanol Conc. (%)	25	30	35
Dependent variables	-		
Y ₁ =Entrapment Efficiency (%)		
Y2=CDR (%)			

BATCHES	RUN	X1: PL (%)	X2: ETH (%)	%E.E	%CDR
IVE 1	1	3.5	30	81.11	85.73
IVE 2	2	2.5	30	69.22	82.63
IVE 3	3	3.5	25	79.3	83.15
IVE 4	4	3	30	77.35	85.97
IVE 5	5	2.5	25	67.74	78.3
IVE 6	6	3	35	83.77	89.21
IVE 7	7	3.5	35	82.57	88.91
IVE 8	8	3	25	74.53	84.21
IVE 9	9	2.5	35	71.81	82.08

Figure 6-Characterization of batches from ET1-ET9

Statistical analysis:

Design expert version 10.0.1 was used for statistical analysis and produced first order polynomial equations. From preliminary screening results, a 3^2 full factorial design was utilized in which 2 factors was evaluated, separately at 3 levels and possible nine combinations was formulated. Three level factorial studies were carried out using two different variables. In factorial design, amount of phospholipid concentration(X1) and ethanol concentration(X2) was taken as independent variables while % entrapment efficiency (Y1) and % cumulative drug release (Y2) was selected as dependent variables for both factorial designs.

Effect on entrapment efficiency (Y1) - Surface response study:

Positive value for the coefficient of X1 in equation indicates increase in entrapment efficiency with concentration of phospholipid. Positive value of coefficient B indicates increase in response of Y1 i.e. entrapment efficiency. It indicates linearity of surface response and contour plot as shown in figure

Final Equation in Terms of Coded Factors:

%E.E = +78.0655 +5.70 * A +2.763* B -0.20* AB - 3.258 *A^2 +0.7267 * B^2 Final Equation in Terms of Actual Factors:

%E.E = -71.06 + 92.0033 * PL CONC. - 0.95134 * ETH - 0.08* PL CONC. * ETH - 13.030 * PL CONC.^2 + 0.029* ETH^2

ANOVA for Response Surface Linear model							
Response 1: %E.E							
Analysis of varia	ance table [P	artia	l sum of squ	uares - Ty	pe III]		
	Sum of Mean F p-value						
Source	Squares	df	Square	Value	Prob > F		
Model	263.32	5	52.66	13.54	0.0286	significant	
A-PL CONC.	195.05	1	195.05	50.14	0.0058		
B-ETH	45.82	1	45.82	11.78	0.0415		
Residual	0.16	1	0.16	0.041	0.8523		
Cor Total	21.23	1	21.23	5.46	0.1016		

Table 11 ANOVA TABLE for Response surface Y1

Fig.7 Response surface plot of A phospholipid conc. and B ethanol conc. on entrapment efficiency

Fig. 8 3D surface plot of A phospholipid conc. and B ethanol conc. on entrapment efficiency

Effect on %CDR (Y2)-Surface response study:

Positive value for the coefficient of X1 in the equation indicates increase in %CDR with concentration of phospholipid. Positive value of coefficient B indicates increase in response of Y2 i.e. %CDR. It indicates linearity of surface response and contour plot as show in figure 5.21 and 5.22.

Final Equation in Terms of Coded Factors: %CDR = +86.77 + 2.464 * A + 2.42 * B + 0.495 * AB - 2.99 * A^2 -0.467 * B^2

Final Equation in Terms of Actual Factors: %CDR = -49.41 + 70.91 * PL CONC. +1.01 * ETH + 0.198 * PL CONC. * ETH -11.986 * PL CONC. ^2 - 0.01867 * ETH^2

 Table -12 ANOVA table for response surface Y2

 ANOVA for Response Surface Linear model

Response 2: %CDR						
Analysis of varia	ance table [P	artia	l sum of sq	uares - Ty	pe III]	
Sum of Mean F p-value						
Source	Squares	df	Square	Value	Prob > F	
Model	91.02	5	18.20	13.73	0.0280	significant
A-PL CONC.	36.41	1	36.41	27.47	0.0135	
B-ETH	35.24	1	35.24	26.58	0.0141	
AB	0.98	1	0.98	0.74	0.4531	
A^2	17.96	1	17.96	13.55	0.0347	
B^2	0.44	1	0.44	0.33	0.6066	
Residual	3.98	3	1.33			
Cor Total	95.00	8				

Fig. 9 Response surface plot of A phospholipid conc. and B ethanol conc. on %CDR

Fig.10 3D surface plot of A phospholipid conc. and B ethanol conc. on %CDR

3.1 Establishing design space and control strategy:

Fig.11 FDS Graph

FDS curve indicates what % fraction of design space has a given prediction error or lower. A good design will have a flatter and curve than a poor design as shown in figure . Flatter means overall prediction error will be constant. Lower means overall prediction error will be least 0.8 or 80% for exploration and 100% for robustness testing. FDS was 0.89 or 89% which indicating robust standard error of prediction related to prediction interval around a prediction response at a given pair of factor level.

4. Validation:

From polynomial equation generated for response, intensive grid and integrated examine was performed over experiment field using design Expert software 12.0.1. During independent variable characterization study, impact of parameter phospholipid concentration (%) and ethanol concentration (%) were assessed. Criteria consideration of response entrapment efficiency (Y1) and %CDR (Y2) is between 66.71- 82.79% and 79.32-90.23% respectively. Design space shown in figure Design Exper 10.0.01also called as overly plot which is shaded region with yellow color indicates that region of successful operating ranges.

Fig.12 Overlay plot

A: PL CONC. (%)

A: PL CONC. (%)

4.1 Check point analysis of validation batches:

ET11 and ET12 formulation was made for check point analysis and predict and experimental values compared.

Table 13	Validation bate	h of ET10 and	d ET11: Predictio	n response
Iubic Ic	runuation bac	I OI LI I O uno		in response

ВАТСН	10 th	11 th
X1: PL CONC. (%)	3	3.15
X2: ETH CONC. (%)	30	32.52
Y1: E.E. (%)	78.07	81.07
Y2: CDR (%)	86.77	88.43

Table 14 Validation batch of ET10 and ET11: Actual response

BATCH	10 th	11 th
X1: PL CONC. (%)	3% w/v	3.15% w/v
X2: ETH CONC. (%)	30% v/v	32.52% w/v
Y1: E.E. (%)	79.53%	82.10%
Y2: CDR (%)	87.92%	89.27%

OPTIMIZED BATCH FORMULATION FROM 3² FACTORIAL DESIGN Table 15 Optimized Formulation Batch

INGREDIENTS	FORMULATION
Ivermectin	0.1% (30mg)
Phospholipid conc.	3.15% w/v
Ethanol conc.	32.52% w/v
Cholesterol	0.2% w/v
Isopropyl alcohol	10% v/v
Water	q.s

4.2 CHARACTERIZATION OF OPTIMIZED BATCH OF IVERMECTIN ETHOSOMES:

4.2.1 Scanning Electron Microscopy (SEM)

Fig 14 SEM image of optimized batch

The SEM micrograph showed the presence of spherically shaped vesicles in the formulation and somewhat irregular in shape. It also showed that there was no vesicle aggregation in formulation which indicates physical stability.

4.2.2 Particle Size Analysis

Vesicle size was found to be 128.2 d.nm with PDI ratio of 0.490. Increasing concentrations of ethanol decreases the vesicle charge as it imparts a net negative charge & confers the system some degree of steric stabilization that may finally lead to a decrease in the mean particle size.

4.2.3 Zeta Potential

Fig.15 Zeta potential of Ivermectin ethosomes

Zeta-potential of the optimized formulation was -27.1 mV, i.e. negative value. This was due to the presence of ethanol which confers a negative charge to surface of ethosomes. Thus zeta potential value indicates that ethosomal vesicles have good stability.

4.2.4 % Entrapment efficiency

Prepared ethosomes formulation showed good entrapment efficiency of 90.12 ± 0.38 . This behavior may be due to the presence of a higher concentration of ethanol which increases AM solubility in ethosomes.

4.2.5 Drug content

Drug content (%) of optimized batch was found to be 96.28 ± 0.75 . This indicate good amount of drug in ethosomes.

5. Preparation and characterization of Ivermectin ethosomes loaded topical gel:

5.1 Preliminary Trial batches

Ingredient	AEG1	AEG2	AEG2
Carbopol 934(%w/v)	1	1.5	2
Propylene glycol(mL)	5	5	5
Methyl paraben(mL)	0.1	0.1	0.1
Propyl paraben(mL)	0.05	0.05	0.05
Triethanolamine(mL)	0.25	0.25	0.25
Water(mL)	100	100	100

Table 16 Formulation Design of Topical Gel Trial Batches

Batch code	Color	Odor	pH (Mean ± S.D.) (n = 3)	Viscosity (cp) Spindle no:62 (Mean ± S.D.) (n = 3)	Spreadability (gm.cm/sec) (Mean ± S.D.) (n = 3)
AEG 1	Colourless	Odourless	06.94±00.08	10048±446.50	11.83±00.46
AEG 2	Colourless	Odourless	06.90±00.05	13966±800.98	10.96±00.61
AEG 3	Colourless	Odourless	06.83±00.06	16009±473.96	09.03±00.33

Table 17 Result of evaluation of Carbopol gel

AEG 1 Formulation was taken as optimized formulation

The AEG 1 shows good spreadability and viscosity. Therefore, it was taken as optimized formula for further formulation of promising alternative ethosomal loaded gel.

5..2 Dose Calculation of Ivermectin Ethosomes for Topical Gel:

30 gm of marketed Ivermectin Gel contains 0.1% Ivermectin as drug

So, for loading Ivermectin as drug

30 gm of gel = 30 gm Ivermectin i.e. 100% Ivermectin as Drug.

So, (?) gm gel 0.1 % Ivermectin.

30 * 0.1 / 100 = 0.03 gm = 0.03 * 1000 = 30 mg Ivermectin required.

So, marketed Ivermectin gel contains 30 mg Ivermectin as Drug.

Now, 100 mg Ivermectin ethosomes contains 4.3 mg of drug, so, for meeting the requirement of 30 mg i.e. 0.1% ethosomal gel we require 420 mg of ethosomes

4.3 mg drug is present in 100 mg ethosomes

30 mg of drug requires (?) mg of ethosomes

30*100/4.3=697.67 mg ethosomes

 \approx 700 mg of ethosomes.

6.Result and Discussion

Parameter	Marketed Ivermectin Gel	Optimized Ivermectin Ethosomal Gel
Dose	0.1%	30 mg
Strength	30gm	30 gm
Clarity	Opaque	Opaque
Odor	Odorless	Odorless
pH (Mean ± S.D.) (n = 3)	06.13±0.20	06.79±0.015
Viscosity (Mean ± S.D.) (n = 3)	9986±51.83	9820±116.59

Spreadability (Mean ± S.D.) (n = 3)	12.93±0.08	11.63±0.61
% Drug content (Mean \pm S.D.) (n = 3)	93.67±0.38	96.57±0.52

7.Conclusion

IVM-loaded Ethosomes were successfully prepared by the Cold method. Formulation and process variables were screened by a PB-QbD approach to understand the most important factors influencing the responses of IVM-loaded Ethosomes. The invitro release study of IVM-loaded Ethosomes has showed sustained release pattern. Within the formulation and process factors studied, two formulation factors Phospholipid Concentration&Ethanol Concentrationwere found to have significant effect on Entrapment Efficiency and %CDR. The study concludes that the statistical PB design could be useful to identify influencing significant variables. PB design was proved to be efficient tool to understand the parameters affecting the response variables and to recognize the most influencing factor

References

- 1. Banerji A; (2015). CanadianPaediatric Society, First Nations, Inuit and Métis Health Committee. Scabies. *Paediatr Child Health*. Oct;20(7), 395-402.
 - 2 Bhise,(2019) .A Review on Quality by Design Approach (QBD) for Pharmaceuticals, *Journal of Drug Delivery & Therapeutics*.; 9(3-s)1137-1146.
 - 3 ICH Q8 (R2), Pharmaceutical Development, Part I: Pharmaceutical Development, (2009).
 - 4 ICH Q9, Quality Risk Management, (2005).
 - 5 Akash B, (2019)."A Review on Novel Drug Delivery System: A Recent Trend." J of Drug Del. & Therapeutics. 9(3)517-21.
 - 6 Hiraman P, (2013)"Ethosome: A Novel Drug Carrier." International J. of P'ceutical Research & Allied Sciences.,2(3),18-30.
 - 7 SatyajitPanda, SvVijayalakshmi, (**2015**) "Nanosponges: ANovelCarrierForTarget edDrugDelivery" *Int.J. OfPharmtechRes.*, ., 8(7), 213-224.
 - 8 TejasJ.Patel,AbdulMannanKhanandDhirenP.Shah,(**2021**)."Nanosponges:AnE merging Trend for Topical Drug Delivery" *World J. of* Pharmacy *andPharmaceuticalSciences.*,10(10), 758-771.