https://doi.org/10.33472/AFJBS.6.13.2024.1499-1513

Comparing Two Methods for Assessing Periodontal Risk: A Retrospective Study

Dr. J. Bhuvaneswarri. Mds¹, Dr. Julius Amaldas Phd², Dr. Ramya.V Mds³, Dr. Angelin Fionaj⁴

 ¹professor Research Scholar, Department of PeriodontologySree Balaji Dental College Biher, Chennai. Tamil Nadu, India
²professor & Head of The DepartmentDepartment of Biochemistry Sree Balaji Dental CollegeChennai. Tamil Nadu, India
³Professor, Research Scholar, Department of periodontologySree Balaji dental college BIHER, Chennai.
⁴Senior lecturer, Department of periodontologySree Balaji dental college, Chennai.

Email: ¹drbhuvana22@gmail.com, ²juliusamaldas@yahoo.co.in, ³dr.ramya@yahoo.co.in, ⁴angelinsamuel20@gmail.com

CORRESPONDING AUTHOR: Dr. J.BHUVANESWARRI.MDS Professor, Research Scholar Department of PeriodontologySree Balaji Dental College Biher Chennai. Tamil Nadu, India Email: <u>drbhuvana22@gmail.com</u>

Article Info

Volume 6, Issue 13, July 2024

Received: 02 June 2024

Accepted: 30 June 2024

Published: 24 July 2024

doi: 10.33472/AFJBS.6.13.2024.1499-1513

ABSTRACT:

AIM: The aim of the present study is to evaluate the level of agreement and validation between the Periodontal Risk Assessment (PRA) and the Periodontal Risk Calculator (PRC).to know the efficacy of risk assessment for use in clinical perspective.

MATERIALS AND METHODS: Periodontal risk was retrospectively assessed among 60 patients using PRA and PRC from the available data after thorough periodontal examination for a period of 1 year in Sree Balaji dental college Chennai. PRA by assessing probing pocket depths and bleeding on probing at six (PRA6) sites per tooth, PRC by permanently marking or unmarking the dichotomously selectable factors and statistical analysis was done to see if there is any correlation between PRA and PRC. RESULTS: Statistically it was analyzed by SPSS version 26. There was no statistically significant relation (p value 0.744) and kappa test was done for level of agreement between risk assessment there was no correlation found between the criteria that were considered to assess risk.

CONCLUSION: PRA and PRC showed no agreement when compared to each other. Specific disease severity may result in improved agreement.

Keywords: Risk, Periodontal Disease, risk indicators, risk determinants, periodontal risk

1. INTRODUCTION:

Periodontal disease encompasses a range of disorders affecting the periodontium, including common conditions like gingivitis and chronic periodontitis. Recent decades have underscored the variability in individual susceptibility to these diseases, influenced by both acquired and intrinsic factors ^{1,2}. Epidemiological studies suggest that chronic periodontitis affects 35% to 50% of adults ³.

Understanding the complex interplay of factors contributing to disease initiation and progression is crucial. Initially, it was believed that periodontitis stemmed solely from factors like plaque accumulation, poor oral hygiene, and occlusal trauma⁴. However, it's now recognized that specific bacterial infections play a central role, and not everyone is equally susceptible to these infections and their consequences.

Identifying key pathogens is crucial for effective periodontal disease treatment. Periodontal pockets harbor various bacterial species, making it challenging to distinguish between commensals and true pathogens. Supragingival plaque primarily consists of gram-positive facultative anaerobes such as Actinomyces species and streptococci, while gram-negative species include Veillonella and Prevotella, alongside significant pathogens like Porphyromonas gingivalis and Tannerella forsythia. Subgingival plaque houses a similar mix, including Prevotella denticola, Porphyromonas endodontalis, and Porphyromonas gingivalis

2,3

In recent times, risk assessment has become integral to periodontal care. Unlike other fields where risk assessment is applied broadly, in periodontics, it involves a systematic approach tailored to clinical evaluation.^{5,6} This includes thorough clinical and radiographic examinations to assess tissue health and biofilm-related issues, consideration of systemic, genetic, medical, and social factors, and formulation of a diagnosis and treatment plan based on these findings. Accurate documentation and ongoing evaluation of treatment outcomes are essential for adjusting therapy as needed. Efforts in this area focus on identifying new risk factors and developing effective algorithms for clinical risk assessment.

2. METHODOLOGY:

The study, approved by the Institutional Ethical Committee of Sree Balaji Dental College and Hospital, involved 60 subjects over a one-year period. Data from patients treated at the outpatient department of Periodontics and Implantology were collected, considering demographics (age, gender), habits (smoking), systemic health (Hb%, WBC count, diabetic status), and periodontal status (staging, grading). Inclusion criteria encompassed age ≥ 18 years, at least 20 permanent teeth, and complete periodontal assessments including probing depths, clinical attachment levels, and bleeding on probing. Exclusion criteria excluded pregnant or lactating individuals, recent antibiotic or steroid use, recent periodontal treatment, and certain medical conditions.

Patients were classified according to the 1999 periodontal disease classification, with subsequent assessment based on the 2018 criteria. Data, including bone loss measurements and dental history, were input into Periodontal Risk Assessment (PRA) and Periodontal Risk Calculator (PRC) tools for retrospective risk analysis. PRA evaluated parameters like bleeding on probing, pocket depths, tooth loss, periodontal support loss, smoking, and systemic/genetic factors to classify risk as low, moderate, or high. PRC utilized factors such as gender, age, smoking, oral hygiene, recall visits, treatments received, and clinical findings to assign a Gum Disease Risk Score ranging from very low to very high risk.

Statistical analysis using SPSS version 26 assessed correlations between PRA, PRC levels, and variables including age, sex, smoking, systemic health, and periodontal disease status using Pearson chi-square tests and kappa statistics for agreement analysis.

3. **RESULTS:**

In a retrospective study of 60 patients (29 females, 31 males) aged 18 to 60 years, clinically categorized by periodontitis staging and grading, the mean age associated with PRA and PRC was 5.010 and 2.638, respectively. Statistical analysis showed no significant correlation between age and PRA (p = 0.542) or PRC (p = 0.853). Gender analysis revealed mean PRA and PRC values of 1.355 and 4.423, respectively, with no significant association found between gender and PRA (p = 0.508) or PRC (p = 0.110). Similarly, no significant correlations were observed between Hb% and PRA (p = 0.651) or PRC (p = 0.307). WBC counts also showed no significant association with PRA (p = 0.491) or PRC (p = 0.234). Regarding diabetic status, no statistical significance was found with PRA (p = 0.802) or PRC (p = 0.545). Analysis of periodontitis staging (p = 0.819 for PRA, p = 0.348 for PRC) and grading (p = 0.773 for PRA, p = 0.238 for PRC) similarly showed no significant associations. Cohen's kappa agreement between PRA and PRC was -0.705, indicating poor agreement between the two methods.

4. **DISCUSSION**

Periodontitis is a chronic inflammatory disease driven by bacterial pathogens and one of the most common oral infections worldwide (WHO 2004) that affects around 5-20% of adult population globally⁷. Although in population with poor oral care, the prevalence of periodontitis as high as 60% and up to 90% for gingivitis⁸, the host response to periodontal pathogens represents a crucial determinant of the individual's susceptibility to periodontitis. Risk assessment has become a regular feature in both dental practice and society, and principles used to assess risk in society are like those used in a clinical setting. Although the concept of risk assessment as a sign for periodontal disease incidence and activity is well established for managing periodontitis, the use of risk assessment to manage the treatment of periodontitis practically and its sequelae appears to have weak foundation. Initial risk assessment system uses Basic Periodontal Examination (BPE), clinical, medical, and social factors. The risks of not treating the patient are considered as failure and the problems of successful treatment are illustrated by the practical management of post -treatment. Periodontal risk assessment may help clinicians to identify patients with an impaired periodontal prognosis as well as determine the impact of treatment on prognosis⁹. It is incumbent upon the clinician to recognize when treatment has been less successful and to reassess the situation to try and identify the reasons for the lack of a positive treatment response. This study aimed to evaluate the level of agreement between the Periodontal Risk Assessment (PRA) and the Periodontal Risk Calculator (PRC) and was done to evaluate if

both risk analysis methods i.e; periodontal risk assessment (PRA)and periodontal risk calculator (PRC) differ from each other about calculated risk categories in the first visit of theindividual.

In this study, we assessed PRC and PRA for 60 patients. According to PRC and PRA, patients were categorized into low, medium and high risk. In PRC, 6 were categorized as low risk and in PRA 1 individual is in low-risk category, in PRC 7 are in medium risk group and in PRA 10 are in medium risk group and in PRC 47 are in high risk and in PRA 49 are in high risk. The difference between PRC and PRA among the study groups is because of the variability in the parameters taken to calculate. In PRC parameters like previous history of periodontal surgery, furcation involvements, subgingival restorations and calculus seen in radiographs or below the gingival margins have been taken. Whereas in PRA greater detail about bleeding sites than PRC and details of the genetic makeup of the patient were used. While in the PRC pocket depth are assessed segment wise in the PRA pocket depth is assessed tooth wise. Other differences are that while PRA assesses for tooth loss, PRC does not.

In a study done by Hari Petsos¹⁰ in 2020 on periodontal risk assessment tools, results showed that PRA4 and PRCred did not match p=0.13 and concluded that the assessment of the individual risk for the progression of periodontitis using 2 risk assessment methods showed only a minimal agreement. In the current study p-value is 0.87 which is >0.01 showing that PRA and PRC has no correlation indicating no agreement between the tools when compared.

In a similar study by Naga Sai Sujai¹¹, it was concluded that there is a significant relation between PRA and PRC (p < 0.05) indicating accuracy of both the tools. However, in the present study, it is found that there is no significant relationship between the tools (PRA and PRC).

Matuliene G¹²used PRA for assessing recurrence of periodontitis and tooth loss and stated that patients with a high-risk profile after APT were more prone to recurrence of periodontitis and to tooth loss than patients with a moderate or a low risk profile. But in the current study PRA is only calculated in the first visit and the individuals were categorized into high, medium, and low profiles but prediction of recurrence of disease was not assessed.

Mayer baumer¹³A done a study to evaluate the predictive value of the modified periodontal risk assessment (PRA) in patients with aggressive periodontitis (AgP). for the first time on 86 patients and results showed that total of 14 patients showed a localized AgP, 60 a high-risk-profile and 19 were compliant with the proposed maintenance-interval and concluded that the prognostic value cannot be confirmed in case of aggressive periodontitis. But in this study, newclassification of periodontitis(2017) was considered. Since there is no category for aggressive periodontitis in the current classification, individuals were categorized into staging and grading and results showed that among 60 patients 47 has high risk profile, 10 medium risk and 1 lowrisk profile.

Yong Hur¹⁴conducted a study to check the association between risk calculator and microbial testing in periodontitis pts in 74 patients and concluded that 46 patients scored as "very high" risk of periodontitis and 22 patients scored as "high" risk of periodontitis by PRC. Patients with a risk score of "very high" risk showed a higher detection of each bacterium except *C. spec*. than the rest of the study population. *Treponema denticola* and *Prevotella intermedia* (p)

= 0.01 and p = 0.02, respectively) were two bacteria that showed statistical significance between patients at very high

risk. But, in the present study, no microbiological assessment was done. Due to the retrospective nature of our study, it was not possible to retrieve information on the causes for tooth loss or extraction. In absence of this information, it is uncertain whether tooth loss may represent here a true indicator of periodontitis progression. BOP or BI reflects the inflammatory status of the gingiva. Combined with the presence of deep pockets, BOP >30% is known as a risk factor for TL. The present study suggests that the prevalence of BOP was high in individuals who has high risk category when PRA tool was used. But in PRC, BOP was recorded dichotomously.

This is the first study where hematological parameters like Hb% and WBC were correlated with PRA and PRC. However, the results doesn't show any statistical significance. The limitation of the current study is there is no equal distribution of cases that lead to variations in the results.

In all the other studies, patients were categorized according to AAP 1999 classification, whereas in the current study, new classification (world workshop 2017) was used to categorize the individuals into staging and grading. However, when periodontal status is correlated with periodontal tools like PRA and PRC, no statistical significance was found.

No data, however, is available on the impact that risk assessment may have on patient management. In this aspect the use of risk assessment to determine the frequency of supportive periodontal care appointments has been proposed along with the idea that it may help in treatment approach.

To further elucidate the use of risk assessment tools, a long-term study with large sample of subjects with equal distribution of samples should be carried out.

5. CONCLUSION:

In today's healthcare environment, effective decisions for preventing and treating periodontal diseases hinge on accurate risk assessment to identify high-risk populations, potentially reducing the need for complex therapies and improving outcomes. Risk assessment enables clinicians to tailor treatment plans based on disease severity and individual risk factors, facilitating targeted interventions. Site-specific risk assessments aid in evaluating disease activity and guiding supportive periodontal therapy. Utilizing chair-side tools like PRA and PRC supports personalized treatment strategies, fostering interdisciplinary care. These tools contribute to more consistent clinical decisions, enhanced oral health, and a shift towards a wellness-oriented care model. However, further longitudinal studies are needed to validate and refine risk assessment models for optimal clinical integration and patient care efficiency.

6. **REFERENCES**

- 1. Beck JD. Methods of assessing risk for periodontitis and developing multifactorial models. J Periodontol1994;65:468-78.
- Genco RJ. Current view of risk factors for periodontal diseases. J Periodontol 2. 1996;67: 1041-9.

- 3. Albandar JM, Brunelle JA, Kingman A. Destructive periodontal disease in adults 30 years of age and older in the United States, 1988-1994. J Periodontol1999;70:13-29
- 4. David G..Kleibbaum,Lawrence L..Kupper, Morgenstern H.Epidemiologic research :principles and quantitative methods. Van Nostrand Reinhold;1982.
- 5. Lang NP, Tonetti MS. Periodontal risk assessment (PRA) for patients in supportive periodontal therapy(SPT). Oral Health Prex Dent. 2003 Jan 1;(1):7-16.
- 6. Page RC,Martin J, Krall EA, Mancl L, Gracia R. Longitudinal validation of risk calculator for periodontal disease. Journal of clinical periodontology. 2003 Sep;30(9):819-27.
- 7. Borrell LN, Burt BA, Taylor GW. Prevalence and trends in periodontitis in the USA: from the NHANES III to the NHANES, 1988 to 2000. Journal of dental research .2005 Oct;84(10): 924-30.
- 8. Baker EA, Brownson CA. Defining characteristics of community-based health promotion programs. Journal of public health management and practice:JPHMP.1998 Mar 1;4(2):1-9
- 9. Woodman AJ. Using Risk Assessment in Periodontics. Primary dental journal.2014 Sep;3(3):51-6.
- 10. Petsos H, Arendt S, Eickholz P, Nickles K, Dannewitz B. Comparison of two different periodontal risk assessment methods with regard to their agreement: Periodontal risk assessment versus periodontal risk calculator. Journal of Clinical Periodontology.2020 Aug;47(8): 921-32.
- 11. Sujai GN,Triveni VS ,Barath S, Harikishan G. Periodontal risk calculator versus periodontal risk assessment. Journal of Pharmacy &Bioallied sciences.2015 Aug:7(Suppl 2):S656.
- 12. Matuliene G, Studer R, Lang NP, SchmidlinK,Pjetursson BE, Salvi GE, Brägger U, ZwahlenM.Significance of periodontal risk assessment in the recurrence of periodontitis and tooth loss. Journal of clinical periodontology. 2010 Feb;37(2):191-9.
- 13. Meyer-Bäumer A, Pritsch M, Cosgarea R, El Sayed N,Kim TS, Eickholz P, Pretzl B. Prognostic value of the periodontal risk assessment in patients with aggressive periodontitis. Journal of clinical periodontology. 2012 Jul;39(7):651-8.
- Hur Y, Choi SK, Ogata Y, Stark PC, Levi PA.Microbiologic Findings in Relation to Risk Assessment for Periodontal Disease: A Cross -Sectional Study.Journal of periodontology. 2016 Jan;87(1):21-6.

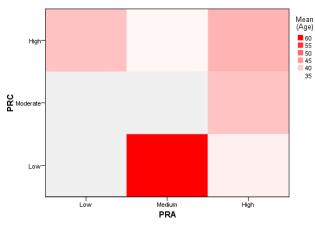
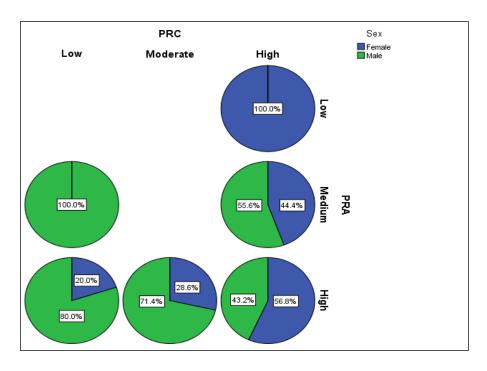

Age*PRA									
			PRA		Tatal				
	Low	Medium	High	Total					
<20Veens	Count	0	2	8	10				
≤30Years	Row%	.00	20.00	80.00	100.00				
31–40	Count	0	5	17	22				
51-40	Row%	.00	22.73	77.27	100.00				
41–50	Count	1	1	11	13				
41-30	Row%	7.69	7.69	84.62	100.00				
>50Years	Count	0	2	13	15				

TABLE 1: CO -RELATION OF AGE WITH PRA AND PRC:

Page 1506 to 09

	Row%	.00	13.33	86.67	100.00
Total	Count	1	10	49	60
Total	Row%	1.67	16.67	81.67	100.00
	Pearson Corela	ation test V	alue:5.010; P=0.	542	
		Age*Pl	RC		
1			PRC		Total
Age		Low	Moderate	High	– Total
≤30Years	Count	2	1	7	10
	Row%	20.0	10.0	70.0	100.0
21 40	Count	1	3	18	22
31–40	Row%	4.5	13.6	81.8	100.0
41.50	Count	2	1	10	13
41–50	Row%	15.4	7.7	76.9	100.0
50.7	Count	1	2	12	15
>50Years	Row%	6.7	13.3	80.0	100.0
	Count	6	7	47	60
Total	Row%	10.0	11.7	78.3	100.0
	Pearson Corela	ation test V	alue:2.638; P=0.8	853	

FIGURE 3:CO -RELATION OF AGE WITH PRA AND PRC

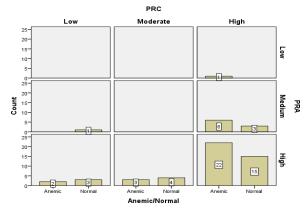

TABLE 2:CO-RELATION OF GENDER WITH PRA AND PRC:

Gender*PRA								
		PRA						
Gender	Low	Medium	High	Total				

Page 1507 to 09

	Count	1	4	24	29					
Female	Row%	3.4	13.8	82.8	100.0					
	Count	0	6	25	31					
Male	Row%	.0	19.4	80.6	100.0					
	Count	1	10	49	60					
Total	Row%	1.7	16.7	81.7	100.0					
	Pearson Corelation test Value:1.355; P=0.508									
Gender * PRC										
	PRC									
Ger	nder	Low Moderate		High	Total					
	Count	1	2	26	29					
Female	Row%	3.4	6.9	89.7	100.0					
	Count	5	5	21	31					
Male	Row%	16.1	16.1	67.7	100.0					
	Count	6	7	47	60					
Total	Row%	10.0	11.7	78.3	100.0					
Pearson Corelation test Value:4.423; P=0.110										

FIGURE 4:CO-RELATION OF GENDER WITH PRA AND PRC:



I ADI		nemic/Nor	NEMIA WITH PRA rmal* PRA	AND FRU:	
			PRA		
Anemic/	Normal	Low	Medium	High	Total
	Count	1	6	27	34
Anemic	Row%	2.9	17.6	79.4	100.0
	Count	0	4	22	26
Normal	Row%	.0	15.4	84.6	100.0
	Count	1	10	49	60
Total	Row%	1.7	16.7	81.7	100.0
	Pearson Cor	elation test	Value:0.859; P=0.6	51	
	A	nemic/Norr	nal * PRC		
			PRC		
Anemic/I	Normal	Low	Moderate	High	Total
	Count	2	3	29	34
Anemic	Row%	5.9	8.8	85.3	100.0
	Count	4	4	18	26
Normal	Row%	15.4	15.4	69.2	100.0
	Count	6	7	47	60
Total	Row%	10.0	11.7	78.3	100.0
	Pearson C	orelation test	Value:2.359; P=0.30 ′	7	

ATION OF ANEMIA WITH DDA AND DDC

FIGURE5:CO-

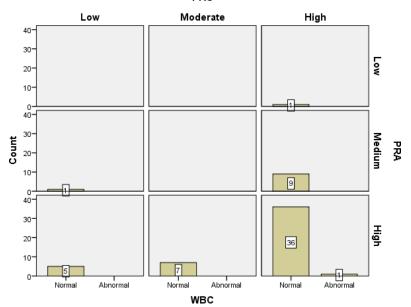
RELATION OF ANEMIA WITH PRA AND PRC:

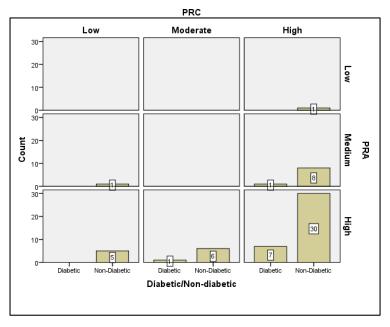
		PRA										Independent Samplest-			
	Low			Med	ium			Hi	gh		test				
	Mean	SD	Me	an	SI	D	Mean SD		t-Value		P-Value				
WBC	6540.0	•	788	5.0	5.0 1556.6		756	1.4	1300.7		.6	.694		.491	
		PRC													
	Lo	ow			Mod	erate	;		Hi	gh	Oneway ANOVA				
	Mean	S	D	Me	ean SE		D	Me	ean	SD		F- Value	e	P- Value	
WBC	8448.3	106	50.8	772	5.7 1079.1		749	1.1	138	34.9	1.488	3	.234		

TABLE 4:CO-RELATION OF WBC WITH PRA AND PRC:

FIGURE 6:CO-RELATION OF WBC WITH PRA AND PRC:

PRC




TABLE 5:CO-RELATION OF DIABETES WITH PRA AND PRC: Diabetic/Non-diabetic*PRA

Diabetic/Non-dia	Low	Medium	High	Total				
	Count	0	1	8	9			

Page 1510 to 09

Diabetic	Row%	.0	11.1	88.9	100.0			
	Count	1	9	41	51			
Non-Diabetic	Row%	2.0	17.6	80.4	100.0			
	Count	1	10	49	60			
Total	Row%	1.7	16.7	81.7	100.0			
PearsonChi-Squ	aretest:	Chi-Sq	uareValue:0.44	0; P=0.80 2	2			
Diabetic/Non-diabetic * PRC								
PRC								
Diabetic/Non-dia	ıbetic	Low	Moderate	High	Total			
	Count	0	1	8	9			
Diabetic	Row%	.0	11.1	88.9	100.0			
	Count	6	6	39	51			
	- T							
Non-Diabetic	Row%	11.8	11.8	76.5	100.0			
	Count	6	7	47	60			
Total	Row%	10.0	11.7	78.3	100.0			
PearsonChi-Squ	aretest:	Chi-Sq	uareValue:1.21	2; P=0.545	5			

FIGURE 7:CO-RELATION OF GENDER WITH PRA AND PRC:

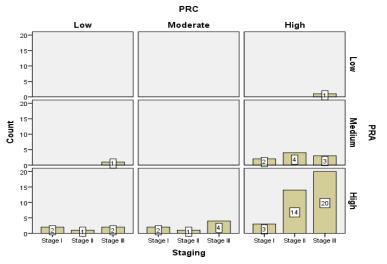
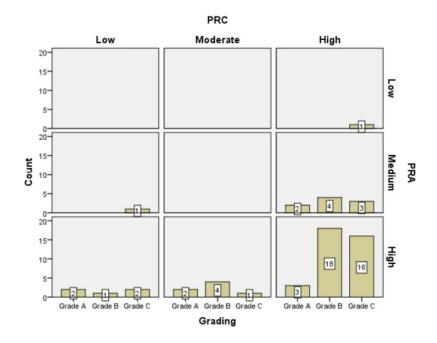


TABLE 6:CO-RELATION OF PERIODONTITIS STAGING WITH PRA AND PRC:								
		Sta	ging	g*PRA				
S to a				PRA		TT (1		
Stag	ging	Lo	W	Medium	Hig	gh	– Total	
Ctore I	Coun	t ()	2	7		9	
StageI	Row%	.0	0	22.22	77.7	78	100.00	
Cto coll	Coun	t ()	4	16	5	20	
StageII	Row%	.0	0	20.00	80.0)0	100.00	
Cto colli	Coun	t 1		4	26	5	31	
StageIII	Row%	3.2	23	12.90	83.8	37	100.00	
Total	Coun	t 1		10	49)	60	
Total	Row%	1.0	57	16.67	81.6	57	100.00	
	Pearson Core	lation test	Valu	e Value:1.54	1; P=0.81	9		
		Sta	ging	g*PRC				
Starin	~			PRC			Total	
Stagin	8	Low		Moderate	High		Total	
Stagol	Count	2		2	5		9	
StageI	Row%	22.22		22.22	55.56		100.00	

TABLE 6:CO-RELATION OF PERIODONTITIS STAGING WITH PRA AND PRC:

Stagoll	Count	1	1	18	20
StageII	Row%	5.00	5.00	90.00	100.00
StocoIII	Count	3	4	24	31
StageIII	Row%	9.68	12.90	77.42	100.00
Total	Count	6	7	47	60
Total	Row%	10.00	11.67	78.33	100.00
Pearso	nChi-Square	test:	Chi-SquareValu:4.457; P=0.348		


FIGURE 8:CO-RELATION OF PERIODONTITIS STAGING WITH PRA

			rading*PRA		ITH PRA AND PRC:	
Grad	ling		PRA		Total	
Ulac	Grading		Low Medium		Totai	
GradeA	Count	0	2	7	9	
GladeA	Row%	.00	22.22	77.78	100.00	
GradeB	Count	0	4	23	27	
Gradeb	Row%	.00	14.81	85.19	100.00	
GradeC	Count	1	4	19	24	
GradeC	Row%	4.17	16.67	79.17	100.00	
Total	Count	1	10	49	60	
Total	Row%	1.67	16.67	81.67	100.00	
Pears	onChi-Squa	retest:	Chi-Squ	are Value:1	.798; P=0.773	
		G	rading*PRC			
			PRC			
Grad	ing	Low	Moderate	High	Total	
	Count	2	2	5	9	
GradeA	Row%	22.22	22.22	55.56	100.00	
	Count	1	4	22	27	
GradeB	Row%	3.70	14.81	81.48	100.00	
	Count	3	1	20	24	
GradeC	Row%	12.50	4.17	83.33	100.00	
	Count	6	7	47	60	
Total	Row%	10.00	11.67	78.33	100.00	
Pears	onChi-Squa	retest:	Chi-Squ	are Value:5	.518; P=0.238	

TABLE 7: CO-RELATION OF PERIODONTITIS GRADING WITH PRA AND PRC:

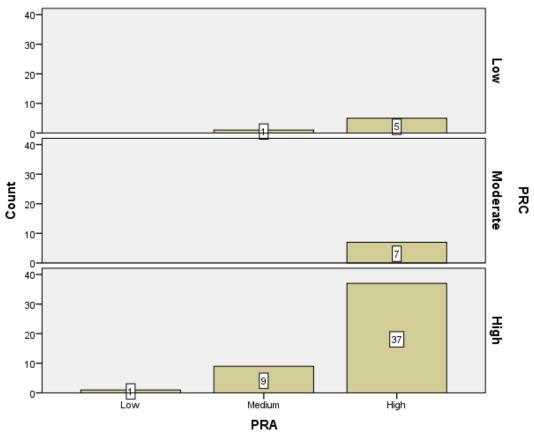

FIGURE 9:CO-RELATION OF PERIODONTITIS GRADING WITH PRA AND PRC:

	TABLE 8:CO-RELATION BETWEEN PRA AND PRC: PRA*PRC								
PRC									
PRA	A	Low	Moderate	High	Total				
Low	Count	0	0	1	1				
Low	Row%	.0	.0	100.0	100.0				
Medium	Count	1	0	9	10				
Wiedrum	Row%	10.0	.0	90.0	100.0				
Iliah	Count	5	7	37	49				
High	Row%	10.2	14.3	75.5	100.0				
Total	Count	6	7	47	60				
TOTAL	Row%	10.0	11.7	78.3	100.0				
Pearso	PearsonChi-Squaretest: Chi-SquareValue:1.9572; P=0.744								

TABLE 8:CO-RELATION BETWEEN PRA AND PRC:

