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Abstract 

The goal of optimization theory is to minimize an objective function while 

taking a set of constraints into account. The design, management, operation, 

and analysis of systems in the actual world depend heavily on this field. For 

many decades, there has been a vigorous research focus on the creation of 

effective minimization strategies and numerical algorithms. Finding the 

steepest decent method's computational comparison rate is the primary goal 

of this study. Gradient Descent is one of the most popular methods to pick 

the model that best fits the training data i.e. the model that minimizes the 

loss function for example, minimizing the residual sum of squares in linear 

regression. Stochastic Gradient Descent is a stochastic, as in probabilistic, 

Spin on gradient descent. It improves on the limitations of gradient descent 

method and performance much better in large scale datasets. In this work, 

we study and compare all i.e. modified ellipsoid method, David-Fletcher-

Powell variable metric method, Newton's method, and Fletcher-Reeves 

conjugate gradient techniquesin optimization theory. 

Keywords:Unconstrained convex minimization, constrained optimization, 

design, control, etc. 
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Introduction 

An optimization issue is one where a collection of workable solutions is presented, and the user must choose 

an optional answer in one or more sense. There are many different types of optimization challenges. The 

objective, which includes inequalities or equalities, free or non-negative variables, and the mathematical 

characteristics of the functions involved in the objective or restrictions, may all change. One of the main 

quantitative methods in operational research is mathematical programming. The use of optimization 

methods in management economic, industrial, and other processes is known as mathematical programming. 

It works especially well at the operational level to solve recurring operational issues. 

This may be explained analytically as the optimization of a numerical function that characterizes the 

different activity levels in the presence of several factors. This function is accompanied with certain 

limitations. When handling situations where the decision maker must distribute scarce or restricted resources 

to achieve the decision maker's objectives while reaching the maximum degree of quantifiable goals or 

objectives, a mathematical programming method is helpful. There may or may not be a huge number of 

solutions, depending on the presumptions and unique features of a specific situation. These might be 

unlimited or finite.Among the range of practical. The optimal solution satisfies the specified criteria to the 

greatest extent possible (see [10-13]).Formulated the general linear programming problem and developed 

the simplex method for its solution (1963). Early applications were limited to military operations. Since that 

time, several useful extensions of the basic linear programming model have been developed. Any situation 

in which a choice among available alternatives must be considered defines a decision problem. Such 

decisions are made to influence future events. The decision maker has to make certain assumptions 

regarding the certainty or uncertainty of own estimation of future states of nature. Problems involving 

certainty are called deterministic approach seems to be prevailing in the investigation of mathematical 

programming and its application. However, this approach can often encounter stumbling blocks and even an 

elaborate and sophisticated deterministic programming model may have to be discarded because the data it 

requires may not exist or may exist but be of such poor quality that the results obtained from it could not be 

Relied upon. As a result, these difficulties arise because the operation which we are performing to stimulate 

mathematically is performed in the presence of uncertainties due to the occurrence of unpredictable events. 

Randomness sources may be many, depending on the nature and type of operation under study. For instance, 

in financial planning, decisions must be taken before the variables like demands, available capacities, prices 

and interest rates etc. Are known and as such must be treated as random variables. In the design of 

mechanical system, the actual dimensions of any machined part has to be taken as a random variable since 

the dimension may lie within a specified tolerance band. Another example is the designing of aircraft and 

rockets in which the actual load acting on the variable is unpredictable and hence random. This is dependent 

on the atmosphere conditions at the time of the flight, which cannot be predicted precisely in advance. 

To ensure a certain class of reliability for the solutions to optimization problems containing random data, it 

has become an accepted approach to introduce probabilistic constraints into the model. In fact deterministic 
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development is based on assumptions constantly violated by random factors. For the classical deterministic 

approach to be more realistic, the assumption of absolute knowledge of the data required must be relaxed, 

and the effects of stochastic uncertainties have to be taken into consideration in addition to the assumptions 

that the required data is completely known. 

Probabilistic problems, however, occur when the decision maker does not assume certainty about the 

outcome of the course of action. Uncertainty can arise in many ways. It is possible for the outcome of a 

particular action to be influenced by some chance event. There are times when the distribution of chance 

events is known or partially understood. There are times when uncertainty arises as a result of competitors or 

enemies. Madansky [14] pointed out that the area of programming under uncertainty cannot be useful stated 

as a single problem, Dantzing [10,12], Ferguson and Dantzig [15]. The situations of decision makers facing 

random parameters in optimization can be found in Sengupta [16], Vajda [13], Kall [17], Kolbin [18], Kall 

and Prekopa [19], Dempester [20], Ermoliev and Wets [21], Frauendorfer [22], etc. 

Stochastic uncertainty influences a programming model in two ways. Firstly, there is a direct effect resulting 

from random phenomena whose probability distributions of anticipation are clearly known. Specifying the 

probability distributions of a random phenomenon has a direct effect. Tinter [23] distinguishes the two as 

subjective risk and subject uncertainty. A technical distinction is, therefore, sometimes made between risk 

and uncertainty to indicate that the probability distributions of random variables involved are unknown 

respectively. The former field leads to the stochastic or probabilistic programming. Stochastic programming 

problems are characterized by their difficulty of solutions. As soon as one or more of the parameters of the 

problem become random variables, even the simplest linear problems can and often do become non-linear. 

One basic difficulty is that such a problem is capable of many formulations with only fragmentary results for 

each formulation, Madansky [24].Mathematical programming is a branch of optimization theory in which 

one determines the largest or smallest value of a function of several variables. This is subject possibly to one 

or more constraints. Mathematical programming is effective in solving problems in which the decision 

maker must allocate scarce or limited resources to achieve the highest level of measurable goals or 

objectives.Charnes and Cooper [25] proposed the chance constrained programming procedure for solving 

linear stochastic programming problem. Chance constraints are transformed into nonlinear constraints of 

deterministic nonlinearity that have a normal distribution and are distributed independently of each other as 

nonlinearities that are distributed normally. Ecker and Kuptershmid [26] provide a computational evidence 

that the ellipsoid algorithm is extremely robust and relative to efficiency. For a complete study of ellipsoid 

algorithm see the survey of ellipsoid algorithm given by Bland et al.,[27]. A linear approximation for chance 

constrained programming was given by Olson and Scott [28]. A piecewise linear goal programming method 

has been used by Rakes et al. [29] in order to solve models with chance constraints. Weintrub and Vera [30] 

considered the constraints (1) of the problem defined in (1)-(2) of the coming part for ≥ case taking ∝𝑙𝑘  as a 

randomvariables distributed normally and solve it by cutting plane algorithm. In this note, we consider the 
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constraints (2) for ≤ case taking both ∝𝑙𝑘  and 𝛽𝑙as random variables and solving such problems by using 

ellipsoid algorithm. 

The rate of convergence of the steepest-decent method is the best linear even for a quadratic cost function. It 

is possible to accelerate this rate of convergenve of the steepest-decent method if the condition number of 

Hessian of the cost function can be reduced by scaling the design variables(see [1-4]). The first non-linear 

conjugate gradient method was introduced by Fletcher and Reeves, it is one of the earliest known techniques 

for solving non-linear optimization problems (see [5-6]).  

The David on- Fletcher-Powell penalty function method is a technique that been used successively to solve 

constrained minimization problems. The method was devised by combining an exterior penalty function 

with a performance function for solving constrained minimization problems (see [7]). 

In 1979, the Russian mathematician L.G. Khachiyan published his famous paper with the title “A 

polynomial Algorithm in Linear programming (see [8]). He was able to show that LP can be solved 

efficiently; more precisely that LP belongs to the class of polynomially solvable problems. Khachiyan’s 

approach was based on ideas similar to ellipsoid method arising from convex optimization. These methods 

were developed by D. Yuddin and A. Nemirovski (see [9]). Ellipsoid method solves the problem of finding a 

feasiblepoint of a system of linear inequalities. This problem is closely related to the problem of solving the 

LPP 

    max 𝛽𝑇 𝛼 

    𝛼 

    𝑠. 𝑡. 𝛾𝑇𝛼 ≤⋋, 
     𝛼 ≥ 0 
 

Comparison of Unconstrained convex minimization methods  

In an unconstrained minimization problem, if the first and second derivatives of the objective can be 

evaluated easily (either in closed form or by a finite difference scheme), and if the number of design 

variables is not large (𝑛 ≥ 50), one of the quasi-Newton methods is being used effectively. For n greater 

than about 50, the storage and inversion of the Hessian marix on computer at each stage becomes quite 

tedious and the variable matrix method is considered more useful. As the problem size increases (beyond 

n=100 or so), the conjugate gradient method is found more powerful. 

 

In many practical problems, the first derivatives of the function can be computed more accurately than the 

second derivatives. In such cases, the variable metric method becomes an obvious choice of minimization up 

to a value of n=100. If the evaluation of the derivatives of the function is extremely difficult or if the 

function does not possess continuous derivatives, the Powell’s method is used to solve the problem 

efficiently. 

The Ellipsoid method requires only the first derivative of the functions involved. Further with regard to the 

time required for developing the computer program and to the accuracy of the solution, the Ellipsoid method 
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is found to be the robust one. The Ellipsoid method however, being able to handle many of the smooth non-

convexities, it converge to the solution for larger set of problems. 

 

Numerical Example: 

We consider the minimization of the following function for comparing the relative efficiencies of the 

various unconstrained methods. 

 Min σ 𝜃 = 100(𝜃1
2 − 𝜃2)2 + (1 − 𝜃1)2 

The points reached at various iterations by different methods and the respective values of the function are 

listed in the following tables. 

 

 

 

 

 

 

(i) Steepest Descent Method. 

Iteration 𝜃1 𝜃2 𝜎 𝜃  

0 −0.100 1.000 4.00 

1 −0.995 1.000 3.99 

2 −0.995 0.990 3.98 

3 −0.990 0.990 3.97 

4 −0.990 0.979 3.96 

5 −0.984 0.979 3.95 

. …… …… …… 

. …… …… …… 

. …… …… …… 

70 −0.742 0.550 3.03 

80 −0.698 0.487 2.88 

90 −0.950 0.422 2.72 

100 −0.594 0.352 2.54 

 

 

(ii) Fletcher-Reeves Conjugate Gradient Method. 

Iteration 𝜃1 𝜃2 𝜎 𝜃  

1 −0.1000 1.000 4.00 

2 −0.983 0.988 3.99 
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3 −0.472 0.248 3.98 

4 −0.451 0.294 2.23 

5 −0.358 0.100 2.11 

. …… …… …… 

. …… …… …… 

. …… …… …… 

. …… …… …… 

70 1.0870 1.173 1.02 

71 1.0870 1.012 1.01 

72 1.0070 1.009 0.00 

73 1.0040 1.009 0.00 

 

 

 

 

(iii) Newton’s Method. 

Iteration 𝜃1 𝜃2 𝜎 𝜃  

0 −0.1000 1.000 4.00 

1 1.000 −3.000 1599.00 

2 1.000 0.999 0.00 

3 1.000 1.000 0.00 

 

 

(iv) David –Fletcher-Powell Variable Metric method. 

Iteration 𝜃1 𝜃2 𝜎 𝜃  

0 −0.1000 1.000 4.00 

1 −0.995 1.000 4.00 

2 −0.775 0.562 3.99 

4 −0.254 0.029 3.31 

. …… …… …… 

. …… …… …… 

. …… …… …… 

17 0.961 0.927 0.01 

19 1.000 1.000 0.00 
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(v) Modified Ellipsoid Method 

Iteration 𝜃1 𝜃2 𝜎 𝜃  

0 −0.1000 1.000 4.000 

1 0.000 1.000 101.000 

2 0.004 −0.154 3.380 

3 0.009 0.615 1.880 

4 0.057 0.103 …… 

. …… …… …… 

. …… …… …… 

. …… …… …… 

. …… …… …… 

25 0.882 0.784 0.017 

26 0.993 0.853 0.047 

27 1.000 1.000 0.000 

 

In the above numerical example it was found that the convergence of the Steepest Descent Method 

was very slow and after 100 iterations, it reached a point where the Fletcher-Reeves conjugate 

gradient method reached in only 4 iterations. The convergence of the Newton method is seen to be 

extremely rapid although the function value increased in the first iteration. The Ellipsoid Method 

started converging towards the optimal solution after 5 iterations. 

 

Constrained Optimization (Convex case) 

In convex programming problems involving explicit (non-linear expression for objective function, 

constraints with small or moderate number of variables the penalty function methods have been 

expected to work most efficiently. Out of these, the interior penalty function method is less efficient 

since even a feasible starting point leads to an infeasible point at the end of the minimization 

procedure. As the sequence of optimal points 𝜃1
∗, 𝜃2

∗. .. lies in the feasible region, and approaches 

the optimum point and feasibility simultaneously, this method is useful only when a starting feasible 

point cannot be found. If all constraints of the Optimization problem are linear, the gradient 

projection methods has been used as the best one. If the problem involves objective 

function and constraints that are implicitly dependent on the design vector (i.e. an analysis is to be 

needed to evaluate 𝜎𝑖(𝜃), (𝑖 = 0, . . . , 𝑛) , the derivatives of the functions𝜎𝑖(𝜃) cannot be obtained in 

closed form. When these derivatives can be obtained by finite-difference formulae, the Zoutendijk's 

method of feasible direction has been used and is more efficient than the penalty function methods. 

However, if one intends to use approximation in evaluating 𝜎𝑖(𝜃)itself, the penalty function methods 

appear to be more promising. If the evaluation of 𝜎𝑖(𝜃)is extremely difficult and if one is Interested 

in finding only a near-optimal solution, the interior penalty function method was the obvious choice. 
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We consider the following example to have an idea about the comparative efficiencies of 

the above methods. 

 Minimize𝜎𝑖 𝜃 = −15𝜃1 − 27𝜃2 − 36𝜃3 − 18𝜃4 − 12𝜃5 

   +30𝜃1
2 + 39𝜃2

2 + 10𝜃3
2 + 39𝜃4

2 + 𝜃2 

   +40𝜃1𝜃2 − 62𝜃2𝜃4 + 64𝜃2𝜃5 − 12𝜃3𝜃4 − 20𝜃3𝜃5 − 40𝜃4𝜃5 

   +4𝜃1
3 + 8𝜃2

3𝜃3+6𝜃4
3+2𝜃5

3
 

    subject to 

   16𝜃1 − 2𝜃2 − 𝜃4 ≤ 40 

   2𝜃2 − 0.4𝜃4 − 2𝜃5 ≤ 2 

   
7

2
𝜃1 − 2𝜃3 ≤

1

4
 

   𝜃1 +  −4𝜃4 − 𝜃5 ≤ 4 

   9𝜃2 + 2𝜃3 − 𝜃 + 0.8𝜃5 ≤ 4 

   −2𝜃1 − 4𝜃3 ≤ 1 

   𝜃1 +  𝜃2 + 𝜃3 + 𝜃4 + 𝜃5 ≤ 40 

   𝜃1 + 2𝜃2 + 3𝜃3 + 2𝜃4 + 𝜃5 ≤ 40 

    −𝜃1 − 2𝜃2 − 3𝜃3 − 2𝜃4 − 5𝜃5 ≤ 60 

    −𝜃 − 𝜃2 − 𝜃3 − 𝜃 − 𝜃5 ≤ −1 

    −𝜃𝑖 ≤ 0, 𝑖 = 1, … ,5. 

Different solution methods of convex programming have been implemented to solve the above 

problem and the results obtained have been shown in the tables given below. For all the methods the 

starting point is taken as (0, 0, 0, 0, 1) with 𝜎 𝜃 = 20. 

 

 (i) Zoutendi jk’s Method of Feasible Direction 

  

Iteration 𝜎 𝜃  𝜃1 𝜃2 𝜃 𝜃4 𝜃5    

2 −19.184 0.1337 0.0224 0.3169 0.5422 0.3403    

5 −23.916 0.3001 0.3328 0.4000 0.6725 0.0286    

10 −31.604 0.2568 0.3220 0.4892 0.4892 0.2978    

20 −31.779 0.2738 0.2474 0.5143 0.5143 0.2191    

45 −32.285 0.2983 0.3234 0.4521 0.4521 0.2645    

100 −32.3486 0.3000 0.3327 0.4268 0.4268 0.2255    
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(ii) Rosen’s Gradient Projection Method. 

  

Iteration 𝜎 𝜃  𝜃1 𝜃2 𝜃3 𝜃4 𝜃5    

7 11.215 0.0302 0.000 0.0485 0.0500 0.9526    

10 −24.363 0.2534 0.000 0.3767 0.4062 0.6159   

15 −24.825 0.2534 0.000 0.3866 0.4063 0.6160    

20 −31.582 0.3000 0.2735 0.3932 0.3887 0.4024    

26 −32.043 0.3000 0.3556 0.4000 0.4924 0.1719    

31 −32.329 0.3000 0.3403 0.4000 0.4449 0.2081    

45 −32.348 0.3000 0.3341 0.4000 0.4299 0.2226    

 

 (iii) Interior Penalty Function Method 

  

Value of 

penalty 

parameter 

𝜎 𝜃  𝜃1 𝜃2 𝜃3 𝜃4 𝜃5    

1 −26.25 0.1762 0.2575 0.2868 0.5698 0.4272    

2 × 10−2 −31.23 0.2684 0.3208 0.3743 0.4675 0.2673   

4 × 10−2 −32.19 0.2954 0.3311 0.3961 0.4952 0.2327    

8 × 10−2 −32.34 0.2993 0.3332 0.3994 0.4292 0.2254    

  

 (iv) Modified Ellipsoid Method 

  

Iteration 𝜎 𝜃  𝜃1 𝜃2 𝜃3 𝜃 𝜃5    

4 −10.540 −0.302 1.000 1.740 1.000 1.000    

5 19.987 0.309 −0.139 0.354 1.239 0.955    

6 10.840 0.164 −0.146 0.490 1.302 0.905    

9 −14.340 0.008 0.326 0.060 0.442 0.441    

47 −26.976 0.239 0.295 0.313 0.570 0.590    

65 −32.266 0.248 0.394 0.393 0.572 0.143    

 

The Zoutendijk's method converged after 100 iterations with 20 evaluations of ∇𝜎𝑖  and 20 

evaluations of the constraint set Whereas Rosen's method converged after 45 iterations with 70 

evaluations 𝜃𝑖   and ∇𝜎𝑖 . The Interior penalty function method took 315 evaluations of 𝜎𝑖(𝜃) and 18 

evaluations of second partial derivatives. The Ellipsoid Method started Converging after 9 iterations 

and give the result in 65 iterations. 

 

Constrained optimization (Non-convex case) 
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In this section we mainly consider two situations: 

(i) The case of minimizing a concave objective function in a convex feasible solution space; and 

(ii) The case of minimizing a concave objective function in a non-convex feasible set. 

The methods of Tui [1964], Ritter [1964], Hoffman [1981], Benson [1986] and Khan et al [1986] etc. 

come in the first situation. Tui [1964] developed a method which introduces a cut and reduces the 

feasible region. But the introduction of a cut always increased the number of extreme points of the 

feasible region. Later many modifications for improvement in the algorithm were made by Ritter 

[1964], Hoffman (1981) and Benson [1986] etc. Zwart [1973] demonstrated, the cycling of the 

method of Tui [1964] and Ritter [1964]. Khan (1986] developed a cutting plane method which 

decreased the number of extreme points since the cut passes through the second adjacent extreme 

points of the current solution. 

Below we solve a numerical example using some of the above methods and then by the modified 

Ellipsoid Method. Here the objective function is concave and the constraint set is convex. 

 

 Numerical Example: 

  Minimize 𝜎(𝜃) = 2𝜃1
2 − 𝜃1𝜃2 − 2𝜃2  

      Subject to 

  𝜃1 + 𝜃2 ≤ 1 

  1.5𝜃 + 𝜃2 ≤ 1.4 

  −𝜃1 ≤ 0 

  𝜃 ≤ 10 

 (i) Ritter’s Method 

  

Iteration 𝜃1 𝜃2 𝜎 𝜃  

2 0 −1 2  −1 

3 0 1 −2 

4 0 1 2  −1 

5 0 1 −2 

. . . . 

. . . . 

. . . . 

  

 (ii) Adjacent points Cutting Plane Method 

 

Iteration 𝜃1 𝜃2 𝜎 𝜃  

1 0 11 −2 

2 7.6 −10 −19.52 
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 (iii) Modified Ellipsoid Method 

  

Iteration 𝜃1 𝜃2 𝜎 𝜃  

0 0.000 0.000 0.0 

1 0.000 7.542 −15.08 

3 −0.431 2.658 −04.54 

− .. .. .. 

.. .. .. .. 

.. .. .. .. 

50 7.590 −09.995 −19.36 

52 7.589 −09.986 −19.44 

55 7.594 −09.992 −19.47 

58 7.596 −09.995 −19.49 

60 9.603 −10.006 −19.52 

 

In the solution of the above numerical example it was found that in the Ritter's Method, the solution 

procedure becomes interminable, as long as we choose the next extreme point. The adjacent points cutting 

plane method converged in two steps. The Ellipsoid Method took about 60 iterations to converge the optimal 

solution. 

As far as the situation of minimizing a concave objective function in a non-convex solution space is 

concerned, no method has got successful convergence other than Modified Ellipsoid Method. The Ellipsoid 

Method converged in a finite number of iterations in the problems with concave functions in the 

constrained set. 
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