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Introduction 

DNA sequence can undergo a persistent modification, which is termed as genetic variation. The term "gene 

variant" is now preferred over "gene mutation" because genetic changes don't always lead to disease, whereas 

"mutation" often carries a negative impact. Genomes frequently contain structural variations and presence or 

absence of polymorphisms (Voichek and Weigel, 2020) but are being generally ignored. Recently, the methods 

Abstract: 

This study presents an in-silico pipeline for identifying single nucleotide polymorphisms (SNPs) 

and insertions or deletions (InDels) using RNA sequencing (RNA-seq) data. Genetic variations, 

such as SNPs and InDels, are vital for understanding genetic diversity and gene function. RNA-

seq is an efficient and cost-effective method for analysing these variations, enabling detailed 

examination of gene expression profiles and detection of differentially expressed transcripts. 

The pipeline involves converting RNA samples into cDNA libraries, followed by fragmentation 

and adapter ligation. The RNA-seq data undergoes rigorous quality control, read alignment, and 

variant calling using advanced bioinformatics tools. This approach allows for precise 

identification of SNPs and InDels, providing critical insights into gene regulation, protein 

structure, and evolutionary adaptation. By detailing the workflow from RNA extraction to 

variant annotation, this study underscores the utility of RNA-seq in genetic variation research. 

The integration of high-throughput sequencing technologies and sophisticated computational 

methods facilitates the identification of genetic variants, with significant applications in 

personalized medicine, disease research, and crop improvement. This study highlights RNA-

seq's potential to enhance our understanding of genetic diversity and its implications across 

various biological fields. 
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of genetic variant detection is rapidly advancing, moving beyond the identification of single nucleotide changes 

to more complex variations, including insertions, deletions, repetitive sequences, and larger structural changes. 

(Tan et al., 2015). 

Sequencing of whole-genome (WGS), exome sequencing (ES), and genotyping-by-sequencing (GBS) are well-

established techniques that have greatly contributed to the analysis of genetic changes at the genome level 

(Bickhart et al., 2012; Davey et al., 2011; Elshire et al., 2011; Goodwin et al., 2016). These approaches are 

instrumental in identifying and characterizing various types of genetic variation, including single nucleotide 

polymorphisms (SNPs), single nucleotide variants (SNVs) and insertions or deletions (InDels) (Alkan et al., 

2011; DePristo et al., 2011; Van der Auwera et al., 2013). These genetic variations leads to genetic diversity 

within and between populations. 

Additionally, RNA-sequencing (RNA-seq) offers a cost-efficient approach to genetic variation studies, providing 

a powerful alternative to traditional methods (Wang et al., 2009; Trapnell et al., 2010). RNA-seq enables the 

examination of gene expression profiles and identify the transcripts which are differentially expressed across 

various conditions and tissues. Detecting SNP in a single nucleotide can provide essential information associated 

with a particular phenotype (Pickrell et al., 2010; Montgomery et al., 2010). Besides, SNP can be linked to a 

particular stress response leading to a more specific understanding of stress responses (Li et al., 2011).  

Genetic variation has a key function in shaping the diversity of living organisms. single nucleotide 

polymorphisms (SNPs) and insertions or deletions (InDels) are mostly found genetic variation in genome. The 

emergence of high-throughput sequencing technologies like RNA sequencing (RNA-seq) has made it easier to 

identify and characterize genetic variation at a genome-wide scale. 

RNA-seq is a technique that allows researchers to capture a snapshot of the transcriptome, the complete package 

of RNA molecules produced by the genome by transcription, in a particular cell type or tissue at a time (Wang et 

al., 2009; Mortazavi et al., 2008). By comparing RNA-seq data from different individuals or populations, it is 

possible to identify genetic variants that affect gene expression or splicing, as well as to quantify gene expression 

levels and detect alternative splicing events (Pan et al., 2008; Trapnell et al., 2012). 

Types of Genetic variants: 

Genetic variants are naturally occurring discrepancies in DNA sequence found among individuals within a 

specific population. These distinctions can emerge in both protein-coding and non-coding regions of the genomic 

sequences and have the potential to impact an array of traits and features, including susceptibility to diseases, 

efficacy of drug metabolism, and physical attributes. The different variations include structural variants, single 

nucleotide polymorphism or single nucleotide variation, insertion and deletion, copy number variants, 

translocation and transversion variants (Ku et al., 2010). These subtle alterations, involving the substitution of a 
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single nucleotide base pair, are termed single-nucleotide polymorphisms (SNPs) when observed in population-

level genetic variation, and single-nucleotide variations (SNVs) when identified in individual genomes . An 

average individual has millions of SNPs, and plants may have many more (Kumar S, et al., 2012). InDels, which 

stand for "insertion" and "deletion," are base pair additions or subtractions made to a DNA segment (Mullaney 

JM, et al., 2010). InDels are more significant than SNPs/SNVs since they involve one to ten thousand base pairs. 

Copy number variants (CNVs) denote variances in the quantity of genes for a given trait within a genome. CNVs 

are notably widespread, often encompassing three times the number of base pairs compared to SNP/SNVs, 

making them the most prevalent form of structural variation. 

Significance of SNPs and InDels: 

 SNPs and InDels are of particular interest because they are highly abundant in genomes and can have significant 

functional consequences. SNPs can alter the amino acid sequence of a protein, affect protein stability or activity, 

or influence RNA processing, whereas InDels can cause frameshifts that lead to truncated or altered protein 

products, or affect splicing by disrupting splice sites or creating new ones . In recent years, several studies have 

used RNA-seq to identify and characterize SNPs and InDels in a variety of species, including humans, model 

organisms, and non-model organisms. These studies have revealed a wealth of new genetic variation and have 

provided insights into the functional consequences of this variation. For example, RNA-seq data has been used 

to identify SNPs that affect gene expression in cancer cells, to detect InDels that cause genetic disorders in 

humans, and to discover novel splice sites that affect gene function in plants (Salk et al., 2018; Soemedi et al., 

2017). SNPs and InDels are crucial in various biological processes, including gene regulation, protein structure, 

and evolutionary adaptation. They play pivotal roles in shaping gene expression levels, protein function, and 

interactions with other molecules. SNPs occurring within coding regions can lead to amino acid substitutions, 

potentially affecting protein stability, enzymatic activity, or protein-protein interactions (Sauna and Kimchi-

Sarfaty, 2011). Non-synonymous SNPs, in particular, have the capacity to introduce alterations in the functional 

domains of proteins, potentially modifying their activity or specificity. On the other hand, although synonymous 

SNPs do not directly alter the amino acid sequence, they can influence protein folding, translation efficiency, or 

RNA stability. In the realm of InDels, they have the potential to cause substantial disruptions in gene function. 

Specifically, insertions or deletions within coding regions can give rise to frameshift mutations, resulting in 

premature stop codons and truncated proteins. This has a profound impact on protein function. Moreover, in non-

coding regions, InDels possess the capability to modify regulatory elements, thereby affecting gene expression 

patterns (O'Roak et al., 2011). From an evolutionary perspective, SNPs and InDels contribute significantly to 

genetic diversity within populations. They are instrumental in genetic adaptation and speciation by introducing 

variations that confer selective advantages or disadvantages under different environmental conditions (Nachman 

et al., 2004).  

Nowadays, Single Nucleotide Polymorphisms (SNPs) are the preferred since they are present in almost all groups 

of individuals in substantial numbers.human forensics (Brenner and Weir, 2003) and medicine (McCarthy et al., 
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2008). SNPs have been used in various fields, including aquaculture (Liu and Cordes, 2004), marker-assisted 

dairy cattle breeding (Schaeffer, 2006), crop improvement (Yu et al., 2011), conservation (Seddon et al., 2005) 

and management of resources in fisheries (Smith et al.,2005). 

 SNPs are useful in interpreting breeding pedigrees, determining species genomic divergence to clarify speciation 

and evolution, and connecting genetic variants to phenotypic features (McNally et al., 2009). SNPs have been 

used to measure genetic variation, identify individuals, ascertain population structure, and ascertain parentage 

relatedness (Morin et al., 2004). Through a Genome Wide Association Studies (GWAS) designed to uncover the 

rice's evolutionary path leading up to its domestication, seed shattering (or lack thereof) has been linked to an 

SNP (S. Konishi et al., 2006). 

Studies also say cells have numerous defences against the deadly effects of cancer-causing genetic mutations, in 

contrast to some other diseases that can be brought on by alterations in a single gene (Vogelstein and Kinzler, 

2004). As a result, a fraction of faulty genes lead to cancer (Yeang  et al., 2008) and several DNA alterations in 

cancer genes can influence the ultimate stage of carcinogenesis. Furthermore, it is believed that somatic mutation 

accumulation in tumour suppressor and oncogenes is crucial for the development of cancer and causes normal 

cells to transform into malignant ones throughout a few stages (Nowell , 1976). 

 Also, since chloroplast DNA (CpDNA) is inherited from mothers and has a stable structure, it is one of the 

essential parts of plant total DNA. Identification of various species will be aided by research on genetic 

differences found in the chloroplast genome, such as InDels and SNPs. Initially, population structure analysis, 

genetic diversity, and classification in the Oryza sativa L. genome were accomplished using SNP (Glaszmann, 

1987, Singh et al., 2013). The InDel species-specific markers of chloroplasts were created to differentiate 

between 22 species of the genus Oryza sativa L. (Misra, 2019). Singh et al. (2018) employed SNP array for 

population structure study in wild rice accessions. The use of SNP variants in phylogenetic analysis, association 

studies, background selection, QTL mapping, assessment of genetic diversity, and background selection has been 

supported by research of Singh et al., 2015. SNPs are now the most often used marker for genetic investigations 

in plant species like rice (Subbaiyan et al., 2012) and Arabidopsis (Horton et al, 2012).  

Workflow of RNA Sequencing  

RNA-seq, a high-throughput sequencing technology, enables the simultaneous quantification and 

characterization of RNA molecules in a sample. Transcriptome analysis allows for the identification of actively 

transcribed genes, as well as their relative expression levels, thereby providing knowledge about the dynamic 

interplay between genomic information and cellular function (Mackenzie, 2018). RNA sequencing (RNA-seq) 

offers a valuable alternative for identifying genomic variants, as it provides information not only on gene 

expression but also on alternative splicing events, RNA editing, and other transcriptomic features. Recent 

developments in accurate mapping of RNA-seq reads and computational methods to identify SNPs in cancer 

(Goya et al., 2010, Chen et al., 2012)) have been able to identify disease-associated variations in RNA-seq data 

(Shah et al., 2012). 
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The initial step in the procedure involves converting the RNA sample into a cDNA library by the fragmentation 

of the RNA into complementary DNA pieces. This is achieved through reverse transcription, allowing the RNA 

to be utilized in a next-generation sequencing (NGS) process. Subsequently, the cDNA is fragmented, and 

adapters are attached to both ends of the resulting fragments. These adapters contain functional components 

necessary for sequencing, such as the primary sequencing priming site and an amplification element, which 

facilitate the clonal amplification of the fragments. Short sequences that partially or entirely match the segment 

from which the cDNA library can be created, are produced by NGS analysis of the library after it has undergone 

amplification, size selection, clean-up, and quality-checking procedures. Sequencing can be performed using 

either single-end or paired-end techniques. Single-read sequencing, which sequences cDNA fragments from one 

end, is faster and significantly more cost-effective (approximately 1% of the cost of Sanger sequencing). Strand-

specific methods offer the advantage of providing additional information, resulting in millions of reads by the 

end of the workflow.  

Identification and Annotation of SNP and InDels from RNA-Seq Data 

Pre-processing of Raw Sequencing Data: 

The initial phase of raw sequencing data analysis is fundamental for ensuring data integrity and eliminating 

artifacts. This encompasses critical steps such as adapter trimming, culling low-quality reads, and purging 

contaminants. Several software tools are available for these pre-processing procedures, affording researchers 

flexibility in their approach. 

Trimmomatic (Bolger et al., 2014) and Cutadapt (Martin, 2011) are widely adopted tools for adapter trimming 

and enhancing sequence quality. Fastp is a powerful tool that seamlessly integrates adapter trimming, read 

filtering, and quality control (Chen et al., 2018). PRINSEQ provides extensive options for sequence pre-

processing, including quality trimming, filtering, and statistical assessments (Schmieder and Edwards, 2011). 

Additionally, BBMap offers a versatile suite of tools for pre-processing, encompassing tasks such as adapter 

trimming, filtering, and even error correction (Bushnell et al., 2017). 

Quality Control and Read Alignment: 

Quality control is an indispensable step in evaluating the fidelity of sequencing data. FastQC (Andrews, 2010) 

and tools like MultiQC offer a convenient means to aggregate quality control metrics from multiple samples into 

a comprehensive report (Ewels et al., 2016). 

Following quality control, the reads undergo alignment or mapping to a designated reference genome or 

transcriptome. Esteemed alignment algorithms such as Bowtie2 (Langmead and Salzberg, 2012), BWA (Li and 

Durbin, 2009), and HISAT2 (Kim et al., 2019) are standard choices for this endeavor. 
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Identification of Variants: 

For SNP and InDel calling, in addition to the well-established tools like GATK, FreeBayes, and SAMtools, there 

are other resources available. VarScan2 (Koboldt et al., 2012) is a versatile tool for identifying somatic mutations 

and germline variants. Platypus (Rimmer et al., 2014) provides a robust framework for detecting variants in high-

throughput sequencing data, encompassing SNPs, InDels, and structural variants. 

Functional Annotation of Genetic Variants: 

Functional annotation tools like ANNOVAR, SnpEff, and VEP offer comprehensive annotations. Additionally, 

tools like Variant Annotation in the R programming environment provide flexible solutions for variant annotation 

within a scripting environment (Obenchain et al., 2014). 

 

                    Fig 1.  Workflow for SNP and InDel Identification and Annotation from RNA-Seq Data 

Post-Processing and Downstream Analyses: 

Once variants are identified and annotated, further analyses can be conducted to gain insights into their functional 

implications. These analyses may include pathway enrichment, functional enrichment, and network analysis. 

Tools like DAVID (Huang et al., 2009), Enrichr (Chen et al., 2013), and STRING (Szklarczyk et al., 2019) are 
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commonly employed for such analyses. In addition to functional analyses, visualization of the variant data can 

provide valuable insights. Tools like Integrative Genomics Viewer (IGV) (Thorvaldsdóttir et al., 2013) and 

GenomeBrowse (Golden Helix, Inc.) allow for interactive exploration of the genomic data, enabling researchers 

to visually inspect the variants in their genomic context. 

Validation of identified variants is a crucial step to ensure their accuracy and reliability. Experimental validation 

methods, such as Sanger sequencing, polymerase chain reaction (PCR), or targeted sequencing, can be employed 

to validate specific variants of interest. 

Furthermore, validation against independent datasets or comparison with previously published studies can 

provide additional confidence in the identified variants. 

Conclusion 

In genetic variation studies, the detailed analysis of gene expression profiles and the identification of 

differentially expressed transcripts are made possible by the effective technique of RNA sequencing (RNA-

seq). It performs a fundamental part in identifying SNPs and InDels, offering essential insights into specific 

phenotypes and stress responses. Additionally, RNA-seq significantly contributes to advancing agriculture by 

elucidating how genes influence plant phenotypes. 

Single nucleotide polymorphisms (SNPs) and InDels are of particular interest due to their functional and 

evolutionary implications. SNPs can lead to alterations in protein sequences, stability, or RNA processing, while 

InDels can cause frameshift mutations, affecting protein function. These variations are essential in gene 

regulation, protein structure, and evolutionary adaptation, shaping genetic diversity within populations and 

undergoing natural selection. 

Recent studies utilizing RNA-seq have been instrumental in identifying and characterizing SNPs and InDels 

across diverse species, providing valuable insights into their functional consequences, including their 

involvement in diseases and adaptive processes. This integration of high-throughput sequencing technologies and 

RNA-seq holds far-reaching implications in fields ranging from personalized medicine to agriculture, driving 

progress in disease research and crop improvement. The ongoing refinement of these techniques promises even 

deeper insights into the genetic diversity of living organisms. 
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