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ABSTRACT 

In spite of significant advancements in cancer treatment, patients with cancer 

still have a poor prognosis and poor therapeutic outcomes. Combining 

chemotherapy and immunotherapy drugs, called chemo-immunotherapy, 

offers promise by harnessing the synergistic effects of these two treatments. In 

addition to reducing drug dosages, this strategy optimizes therapeutic efficacy, 

making it a viable option for treating cancer.A nano-based drug delivery 

system (NDDS) was developed as a result of nanotechnology integration into 

cancer therapy. Chemotherapeutic agents are encapsulated within 

nanocarriers, offering advantages such as site-specific release of drugs and 

responsiveness to the tumor microenvironment.Many nanocarriers have been 

approved to treat cancer, including liposomes, nanoparticles, and micelles. 

Comparatively to traditional formulations, they have demonstrated significant 

improvements in therapeutic efficacy.Cancer treatment could be 

revolutionized with the application of NDDS to chemoimmunotherapy. 

Cancer patients can benefit from this approach by improving therapeutic 

outcomes, minimizing adverse side effects, and optimizing clinical outcomes. 

Recent advancements in NDDS tailored for chemoimmunotherapy are 

discussed in this discussion of the current landscape of cancer immunotherapy 

and chemoimmunotherapy. 

KEYWORDS: Nano-drug delivery, cancer therapy, liposomes, nanocarriers, 

dermal delivery 
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INTRODUCTION 

Every year, millions of people are killed by cancer, a devastating and lethal disease. No 

matter what one's origin or organ it targets, it ranks as one of the foremost global health 

challenges of the 21st century [1].A multifaceted approach is required to treat cancer, which 

is characterized by unregulated cell growth and an impaired ability to apoptosis.Cancer is 

being treated using multiple approaches, each with its own limitations and potential side 

effects [2].Radiation therapy, chemotherapy, and hormone therapy are all available 

treatments for cancer. A common approach to treating cancer is chemotherapy, which 

administers anti-cancer medications systematically to patients in order to stem unbridled 

cancer cell growth [3].Anticancer agents suffer from numerous side effects due to their 

nonspecific nature, and their ineffective delivery makes them difficult to use.Differentiating 

cancerous cells from healthy body cells is one of the greatest challenges in cancer 

therapeutics. As a result, the primary focus is on developing drugs capable of recognizing 

cancerous cells and thereby stopping their growth and proliferation.It is impossible to 

selectively target cancerous cells with conventional chemotherapy without damaging healthy 

cells as well. This may negatively impact the effectiveness of treatment at lower doses by 

causing significant side effects, such as organ damage [4].A nanotechnology device typically 

consists of dimensions between a few nanometers (nm) and several hundred nanometers 

(nm), depending on its use [5].A precise drug delivery system has emerged as one of the most 

compelling areas of interest in nanotechnology in the last decade. As a result, it provides 

numerous advantages over traditional formulations in overcoming constraints [6,7].Since it 

penetrates tissues at the molecular level, it holds great promise for both cancer diagnosis and 

treatment.A significant leap forward has been made in cancer detection, diagnosis, and 

treatment through the application of cancer nanotechnology. In order to reduce conventional 

side effects associated with cancer treatments, different research efforts are underway to 

explore increasingly precise cancer treatments based on nanotechnology [5].Liposomes, 

polymeric micelles, dendrimers, nanospheres, nanocapsules, and nanotubes are some of the 

nanotechnology-based cancer treatment systems available today [8,9]. 

Immunotherapy 

During the past few years, cancer immunotherapy has rapidly advanced as a treatment option. 

A cancer-immunity cycle entails a number of critical stages. As part of these stages, cancer 

cell antigens are released, antigen-presenting cells (APCs) present cancer antigens, T cells are 

initiated and activated, and T cells migrate to tumors and are infiltrated, followed by 

cytotoxic T cells that identify and eliminate tumor cells[10]. 

 

Fig.1 Cancer Immunity Cycle 
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Adoptive cell therapy 

In adoptive cell therapy (ACT), potent and tumor-specific lymphocytes are ex vivo 

cultivated, followed by significant quantities of these lymphocytes being administered to the 

same individual (autologous host) for cancer treatment [11].In comparison with other cancer 

immunotherapeutic methods, ACT offers several advantages. A large number of antitumor 

lymphocytes can be efficiently cultivated in vitro, which recognize the tumor specifically and 

help stimulate an effective immune response against it [12].B-cell non-Hodgkin lymphoma 

and B-cell acute lymphoblastic leukemia (B-ALL) patients have shown remarkable anti-

tumor effectiveness with anti-CD19 CAR-T cells. In multiple trials, between 70% and 94% 

of patients responded completely [13].Comparatively to macrophages treated with free 

cytokines, backpack-loaded macrophages displayed enhanced anti-tumor effects for up to 5 

days. 

Nanocarriers for cancer Chemoimmunotherapy 

A new avenue for cancer immunotherapy is available through nanoparticle drug delivery 

systems (NDDSs). The TME (Tumor Microenvironment) can be re-educated by these 

systems that are readily internalized by immune cells and have unique chemical and physical 

properties. This enhances the immune function of the body as a result of these systems 

[14].By enhancing solubility and bioavailability, extending agent circulation time, and 

enhancing in vivo pharmacokinetic profiles, NDDS can significantly enhance drug delivery. 

By combining these effects, therapeutic outcomes are improved and side effects are reduced 

[15-18].Chemoimmunotherapy can be achieved using NDDS via several flexible approaches 

[19,20]. 

Various techniques can be used to combine multiple agents in chemoimmunotherapy: one 

agent is administered free of charge and another via NDDS (Free drug + Nano), both agents 

are delivered via the same or different NDDS (Nano + Nano), or both agents are co-

encapsulated in a single NDDS (co-encapsulation). 

Several advantages can be derived from the "Free drug + Nano" approach, including 

customizable prescription, manageable administration intervals, straightforward preparation, 

and ease of industrial scale-up [21]. 

Poly(lactic-co-glycolic acid) nanoparticles (NPs) containing the chemotherapy drug 

paclitaxel (PTX) were developed . There are two types of PLGA NPs—CpG-loaded NPs 

(called PCNs) and PCNs for stimulating BMDCs. Also known as PINs, these PLGA NPs 

contain IL-10 small interfering RNA that is intended to silence IL-10 expression [22]. 

As compared to PTX alone, sequential treatment of melanoma-bearing mice (B16-F10) with 

PCNs and PINs improved anti-tumor effects and prolonged survival rates (p<0.05). NDDS 

was encapsulated within immunotherapy agents in a free form while chemotherapy drugs 

were in a nano form. This was referred to as the "Free drug + Nano" approach [23]. 

According to a study [24], they have developed an oxaliplatin (OXA)-prodrug vesicle that 

can be loaded with a photosensitizer (PS) and activated by the tumor microenvironment. 

Tumor cells are induced to die because of this combination. 

By combining two agents in a nano + nano formulation, you can adjust the dosage and 

coordinate their distribution [25,26].For the "co-encapsulation" approach of 
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chemoimmunotherapy, nanoparticle drug delivery systems (NDDS) have been developed. In 

addition to liposomes, polymer micelles, dendrimers, metallic and inorganic nanoparticles, 

nanogels, and biomimetic nanoparticles, there are also nanogels and nanoparticles in 

biomaterials. 

 

Fig.Nanocarriers for cancer Chemoimmunotherapy 

Liposomes 

Liposomes enable high encapsulation efficiency, targetability, and low toxicity. Liposomes 

are bilayer vesicles made of phospholipids and cholesterol. Industrial production would 

benefit greatly from their properties. Adjuvants and antigens attached to liposomes can either 

be encapsulated within the hydrophobic core or be adsorbate onto the lipid surface by charge 

interactions with lipids [27]. 

The interior aqueous cores of liposomes can also be used to encapsulate hydrophilic small-

molecule chemotherapeutic agents, whereas the lipid bilayers can encapsulate hydrophobic 

agents [28]. 

Numerous liposomal products have been approved for cancer therapy using liposomes. The 

use of liposomes for chemoimmunotherapy has also been extensively researched. In one 

study, Chen et al. developed dual-responsive liposomes (LPDp) that were pH- and MMP-

responsive. A combination of PD-L1 inhibitor conjugates and low-dose chemotherapy drug, 

doxorubicin (DOX), in LPDp liposomes resulted in significant antitumor activity [29].A 

remarkable 78.7% tumor suppression rate was achieved with the LPDp formulation. Immune 

checkpoint blockade and synergistic effects of chemotherapeutic agents contributed to this 

remarkable result.As a result of self-assembly of phospholipid-conjugated IND, a DOX/IND-

liposome was then assembled from a distance before DOX was loaded onto it. 

A comparison of DOX-liposomes and DOX/IND-liposomes showed that DOX/IND-

liposomes significantly increased the immune response against breast cancer. 
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Fig. 3 DOX/IND Liposome synthesis 

Polymer Micelles 

A polymer micelle is an amphiphilic block copolymer that self-assemblies to produce a stable 

colloid solution [30].Physicochemical interactions or chemical conjugation enable the 

encapsulation of hydrophobic medicines into micelles, while hydrophilic medications can be 

loaded into them physically [31]. 

Nanoxel®-loaded docetaxel (DTX) and Genexol®-loaded paclitaxel (PTX) are examples of 

polymer micelles approved for cancer treatment. Cancer chemoimmunotherapy makes 

extensive use of these versatile micelles. In addition, by surface-modifying polymeric 

materials, multifunctional polymer micelles can be created that provide effective packaging 

of hydrophilic and hydrophobic drugs while preventing degradation in vitro and in vivo. 

It has been demonstrated that polymer micelles derived from PLGA/PLA can be used in 

chemoimmunotherapy as drug carriers [32-34].After treatment with ATRA-PLGA-PEG-PD-

L1, a greater number of CD8+ T cells were activated in the tumor microenvironment 

compared to free ATRA in in vivo antitumor assays. 

In a synergistic cancer immunotherapy, designed micelles that can be triggered by both pH 

and MMP-2 [35]. 

PEGylated phospholipid micelles modified with Pt(IV) prodrugs have been reported. In these 

micelles, iron oxide nanoparticles (IONPs) are encapsulated with poly (I:C), which is then 

functionalized with platinum (IV) in order to achieve chemoimmunotherapy [36]. 

Several studies have demonstrated that PCPCD inhibits in vivo tumor growth, metastasis, and 

recurrence. The synergistic effects of chemotherapy enhanced immunogenicity and IDO-

blocking immunotherapy induced by NLG919 allowed this to be achieved. 
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Dendrimers 

Dendrimers as spherical polymers with a hydrophobic core, branched monomers, and 

functional peripheral groups, they are composed of a hyperbranched structure with 

hydrophobic monomers in the middle [37]. 

A number of innovative nanoparticles based on dendrimers have been developed and have 

gained significant scientific interest due to their distinctive structural characteristics, such as 

well-defined structure, near-monodispersity, ease of incorporation of multiple functionalities, 

and multivalency [38-40]. 

Small molecular drugs can be accommodated in the hydrophobic central core, while 

immunotherapy agents such as therapeutic antibodies can be chemically bonded to the 

functional peripheral groups. Most dendrimers currently employed in pharmaceutical 

applications are polyamidoamine (PAMAM), polypropyleneimine (PEI), and peptide 

dendrimers.The field of chemoimmunotherapy is currently showing significant promise with 

several dendrimers undergoing clinical trials–[41-43]. 

Chemoimmunotherapy with enhanced drug penetration has been enhanced by using novel 

dendrimer-based nanoparticles (NPs) [44]. 

Nanogels 

There is great promise in nanogels as chemoimmunotherapy delivery systems because of 

their nano-sized hydrogel scaffolds, excellent biocompatibility, high water content, and 

compatibility with a variety of therapeutic agents, including small-molecule drugs and 

biocompatible macromolecules. In addition to incorporating targeting ligands and 

synthesizing responsive functional bonds, multifunctional nanogels can be intelligently 

designed for chemo-immunotherapy applications [45-49]. 

Immune stimulation can be achieved through the use of certain hydrogel systems. One 

example is the discovery that a melittin-RADA32 hydrogel containing DOX (MRD) is an 

effective chemoimmunotherapy that actively modulates the tumor microenvironment [50]. 

A combination of MRD and innate immune cell modulation was found to be more effective 

at eliminating melanoma tumors via medication delivery, modulation of innate immune cells, 

and depletion of M2-type tumor-associated macrophages. 

Biomimetic NPs 

Through the incorporation or encapsulation of biocompatible materials, biomimetic 

nanoparticles (NPs) mimic the characteristics of natural organisms and structures. It also 

helps them evade immune system clearance by making them look like autologous 

components. Red blood cells and exosomes are natural structures with similar morphology, 

surface characteristics, and size. Through this innovative design, drugs are delivered to 

specific cells or tissues, biocompatibility is excellent, treatment effectiveness is improved, 

and side effects are minimized.In HDL, cholesterol and molecules are transport by high-

density lipoproteins (HDL), which allows them to reach specific cells. DTX-sHDL-CpG was 

developed to treat glioblastomamultiforme (GBM) with nano-discs that mimic HDL. A 

combination of DTX-sHDL-CpG and radiation therapy reduced tumor growth and prolonged 

survival in mice with GBM tumors [51]. 
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The most important component of cell membrane biomimetic nanoparticles is the coating of 

nanoparticles with the cell membrane. These cell membranes contain proteins that originate 

from several kinds of cells and retain their bioactivity. They achieve immune evasion, 

prolong their circulation time, and target tumors efficiently because of this unique feature 

[52,53]. 

Enhanced biocompatibility, biodegradability, and extended blood circulation potential can be 

achieved by erythrocyte membrane biomimetic nanoparticles [54]. 

The inner core of the nanogels consisted of two oppositely charged chitosan derivatives and 

2-hydroxypropyl-β-cyclodextrin (HP-β-CD), which was used for loading and controlled 

release of PTX. Nanogels could be altered to respond precisely to tumor microenvironments 

(TMEs), which are acidic. In addition, IL-2 was delivered through the nanogel by coating it 

with erythrocyte membranes. In the TME, PTX was released in a pH-responsive manner by 

HP-β-CD and chitosan. 

As a result of their homologous targeting and homology adhesion properties, tumor cell 

membrane biomimetic nanoparticles are recognized and aggregated in tumor tissue 

specifically [55].An extended circulation time within the body can be achieved by 

lymphocyte membrane biomimetic nanoparticles [56]. 

Nanoparticles based technology for dermal delivery 

Topical drug delivery through the skin with nanoparticle-based systems has been extensively 

studied over the years, both in vitro and in vivo. Nanoparticles have been shown to be 

capable of penetrating skin layers effectively, enabling bioactive molecules to be delivered to 

tumor sites. It also reduces the required dosage and minimizes toxicity risks, which ultimately 

improves patient compliance by enhancing drug retention in the skin and tumor [57]. 

It is still too early for nanoparticle-based topical therapies to be commercially approved. A 

review of the different topical systems that have been studied for the topical treatment of skin 

cancers is provided here to identify the key parameters influencing the formulation of an 

optimal formulation [58]. 

Niosomes 

Nonionic surfactants make up niosomes, which are similar to liposomes. Compared to 

liposomes, these are highly stable and cost-effective [59]. 

In addition to modifying the subcutaneous barrier, niosomes can also interact with lipid 

molecules. By restoring lost lipids and enhancing the smoothness of the subcutaneous layer, 

these particles can decrease transepidermal water loss. 

Transferosomes 

Cevc and Blume introduced Transferosomes in 1992, which are highly efficient vesicles that 

deliver drugs topically and transdermally [60].This provides enhanced SC penetration of 

Transferosomes via the intercellular route, which enables them to deliver drugs deep within 

the skin. [61] A phospholipid bilayer surrounds the aqueous core and an edge activator 

activates the edges. 
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Ethosomes 

The ethanolosome is a vesicle that contains phospholipids, cholesterol, water, and a majority 

of ethanol. [62] Ethosomes are elasticity-based molecules, which are introduced by Touitou 

et al as a result of ethanol and cholesterol effects on the phase transition temperature of 

phosphatidylcholine. [63] Drugs delivered by ethosomes reach systemic circulation more 

easily and are delivered deeper into skin layers. A controlled-release method was used in 

clinical studies to provide better antifungal activity with ethosomes. [64] 

Transethosomes 

This lipid vesicle is made by combining the features of both Transfersomes and Ethosomes, 

which was first introduced [65] About 30% ethanol was present in Transethosomes along 

with edge activators.  Transethosomes penetrate deeper into the skin with the help of edge 

activators. In chemotherapeutic treatment of many skin diseases, transethosomes proved 

effective due to their better penetration through skin. [66] 

Nanostructured Lipid carriers (NLCs) 

These molecules do not acquire the perfect crystalline structure of molecules because they are 

made up of solid lipids and liquid lipids in combination.Surfactant layers enclose lipids and 

lipids are located inside solid lipid matrixes. [67] There is a decrease in water content in the 

liquid phase of NLCs, as well as high drug loading in these formulations. Controlled drug 

release is achieved by using these particles. [68] 

Previously, NLCs were found to significantly improve the bioavailability and penetration of 

drugs through the deeper side of skin by improving the efficacy and delivery of drugs. As a 

result, drugs will be able to enhance anti-inflammatory effects with reduced doses without 

causing irritation to the site of delivery. [69] 

Natural polymeric nanoparticle  

There has been extensive research on natural polymers that can be made from Chitosan 

nanoparticles for dermal drug delivery. [70] 

This biodegradable cationic derivative of chitin is made up of N-deacetylated chitosan. By 

interacting with negative charges on the surface of skin, nanoparticles will enhance their 

ability to modify the barrier and deliver drugs, because of their positive charge [71]. 

Synthetic Polymeric nanoparticle 

There have been reports of the preparation of synthetic polymeric nanoparticles using 

biodegradable polymers (lactide-co-glycolide), copolymers (PLGA), and polylactic acid 

(PLA). Sun et al demonstrated the effectiveness of curcumin-loaded PLGA with particle sizes 

ranging from 50-150 nm. In another study, hydrogel formulations of curcumin were 

compared to imiquimod (IMQ)-induced psoriasis mice. [72] Because they are small, they can 

deposit on the skin surface by attaching to hair follicles. Depending on the application, these 

polymers may contain paramagnetic metals such as gadolinium (Gd) or manganese (Mn), 

which are used for topical diagnosis as image contrast agents. 
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Recent Nano-formulation in clinical trials 

As antineoplastic agents or in combination with existing anticancer drugs, nanomaterials can 

enhance the therapeutic efficacy of existing drugs. A limited number of nanotechnology-

based formulations have advanced to clinical trials, despite numerous descriptions in the 

literature. Recently, researchers have been interested in repurposing FDA-approved 

nanodrugs, such as Abraxane® (nab-paclitaxel) and Genexol-PM®, as adjuvants in 

combination cancer therapies.Designed to treat metastatic breast cancer, Abraxane® contains 

paclitaxel albumin-stabilized nanoparticles. Genexol-PM is composed of a poly(ethylene 

glycol)-poly(D,L-lactide) copolymer, and is a biodegradable polymeric micelle formulation 

of paclitaxel that does not contain cremophor EL. Due to its enhanced solubility in water, this 

formulation enhances its delivery efficiency and allows for higher doses of paclitaxel than 

paclitaxel free. An improved pre-clinical in vivo study using Genexol-PM has demonstrated a 

three-fold increase in the Maximum Tolerated Dose (MTD) as well as significantly reduced 

tumor growth. The effectiveness and safety of Genexol-PM have been demonstrated in phase 

II clinical trials in patients with metastatic breast cancer [73-75]. 

CONCLUSION 

Recently, nanotechnology has emerged as a breakthrough field that has successfully treated a 

number of diseases, including skin cancer. Skin cancer and a variety of other types of 

carcinoma can be effectively managed with nanomedicine, particularly in the context of 

dermal carcinomas. Molecular targets and therapeutic agents are delivered by nanoparticles 

through a variety of routes for cancer treatment. Individual variations in response can be 

reduced as a result of this approach, which enables personalized and targeted therapies.As a 

result of the integration of nanoparticles with a variety of therapeutic modalities such as 

chemotherapy, immunotherapy, gene therapy, and nano-carriers, along with laser radiation 

and physical methods, cancer treatments have been significantly enhanced. This advancement 

has the potential to lower cancer treatment costs as well. In order to ensure optimal outcomes 

for patients, ongoing research is essential to improve the safety and effectiveness of 

treatments for carcinoma. 
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