https://doi.org/10.33472/AFJBS.6.Si2.2024.173-192

Efficacy of Laser Photobiomodulation in the Management of Bell's Palsy: A Systematic Review

Puja C Yavagal¹, Amit Ashok Basannanavar², Sachin B Mangalekar³, Chandrashekar M Yavagal⁴, Jyuhn H. KE⁵,

Dr. Shashank Vijapure⁶

¹Professor, Department of Public Health Dentistry, Bapuji Dental College and Hospital, Davangere, Karnataka, India-577004
²Associate Professor, Department of Oral & Maxillofacial Surgery, Bharati Vidyapeeth (Deemed to be university) Dental College and Hospital, Sangli
³Prof, Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Sangli-416414, Maharashtra ⁴Professor, College of Dental Sciences, Davangere, Rajiv Gandhi University of Health Sciences, India
⁵Ph.D, Associate Professor, Institute of Mechanical and Electrical Integration Research, National Taipei University of Technology, Taiwan
⁶Assistant Professor, Department of Periodontology, Bharati Vidyapeeth (Deemed to be University) Dental College and Hospital, Sangli, India
Corresponding Author: Professor Puja C Yavagal, Department of Public Health Dentistry, Bapuji Dental College and Hospital, Davangere, Karnataka. E-mail – pujacyavagal@gmail.com

Abstract

Volume 6, Issue Si2, 2024

Received:25 Feb 2024

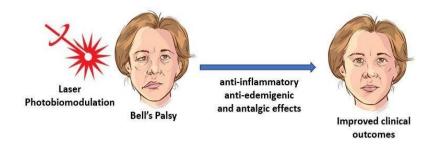
Accepted : 30 Mar 2024

doi: 10.33472/AFJBS.6.Si2.2024.173-192

Objective: The objective of this systematic review was to summarize the effectiveness of laser photobiomodulation in improving recovery rates in patients with facial palsy. **Review Method:** Literature search included three databases, namely Medline (via PubMed), EMBASE, and Google Scholar involving studies done till February2023. All articles that reported treatment to patients with facial palsy using low level laser therapy (Laser photobiomodulation)alone and as an adjunct therapy with conventional treatment (facial exercises and facial massage) were reviewed. The Physiotherapy Evidence Database (PEDro) scale, The National Institutes of Health (NIH) quality assessment tool, The Methodological item for non-randomized studies (MINORS) tool and The Joanna Briggs Institute (JBI) Critical Appraisal Checklist were used to assess methodological quality of studies. Sixteen studies were selected for review based on the eligibility criteria. Laser photobiomodulation was effective in treating facial nerve palsy in all the studies except for one study where its effect was comparable to conventional therapy and facial exercises/massage was effective in treating facial palsy. Facial palsy recovery rates improved in patients with co-existing conditions, like diabetes. **Conclusion**: Laser photobiomodulation alone and as an adjuvant therapy with conventional treatment is a novel, safe, user friendly and non-invasive treatment modality for the management of facial nerve palsy. **Keywords**: Facial paralysis, Photobiomodulation, Low level laser, Bell's Palsy

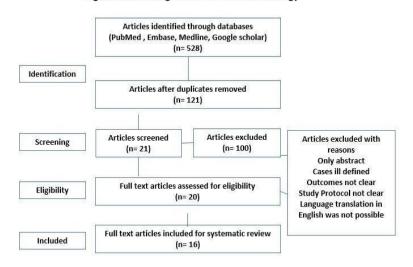
Key Message: Laser photobiomodulation alone and as an adjuvant therapy with conventional treatment is a novel, safe, user friendly and non-invasive treatment modality for improvement of treatment outcomes in patients with Bell's palsy.

Introduction: Bell's palsy is the most frequent acute mono-neuropathy and the most prevalent facial nerve paresis or paralysis. It is a rare disorder that affects people of all ages and genders, with incidence rates ranging from 11.5 to 53.3 per 100,000 person years in different populations.¹Dryness of the eye, xerostomia, taste disturbance or loss, hyperacusis, sagging of the eyelid or corner of the mouth, Ipsilateral pain around the ear or on the face are common symptoms of Bell's palsy.¹Pregnancy, obesity, hypertension, respiratory problems, diabetes,


postsurgicalinsult, viral infections, benign or malignant tumours and temporal bone damage are some of the common risk factors for Bell's palsy. ²Approximately 70% of patients are treated within 6 months, however the remaining 30% do not receive complete treatment, resulting in facial deformity, contracture, and synkinesis.³Facial paralysis has a significant impact on a patient's appearance, and psychological well-being, hence, treatment is immediately started in an attempt to reduce the chances of an incomplete recovery and improve quality of life. Corticosteroids and antivirals are most frequently prescribed drugs. Physical therapy, static and dynamic surgical reanimation treatments and injectables are common options for treating facial movement dysfunction. The therapies are planned based on the severity of the face zone's malfunction.⁴Laser photobiomodulation is a novel, non-invasive, painless and patient friendly therapeutic approach for facial palsy. Diode laser radiation has been shown to have anti-inflammatory, anti-edemigenic, and antalgic properties, validating its usage for treating Bell's palsy. ⁵In certain case reports, case series, clinical trials, and randomized controlled trials, photobiomodulation has been used as an adjunctive treatment with conventional treatment for recovery of facial palsy. This review aims to summarise evidence for the effectiveness of laser photobiomodulation in improving recovery rates in patients with facial palsy.

Methodology:

Registration: The systematic review was registered in PROSPERO database with reference ID CRD42022358429.


Search strategy for article identification: The Cochrane Handbook for Systematic Reviews of Interventions and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement guidelines were followed for review.^{6,7} The Population, Intervention, Comparison, Outcome, and Study design method as applicable is presented in Figure 1. An extensive electronic search for in vivo studies via three databases, namely Medline (via PubMed), Google Scholar and EMBASE till October 2022 was done. Search was focused on Medical Subject Headings (MeSH) terms such as "Low-level laser" OR "photobiomodulation" OR "phototherapy" AND "Bell's palsy" OR "facial palsy" OR "facial paralysis" OR "facial nerve injury". Electronic search strategy was supplemented by hand searching of eligible studies. In addition, reviews on the topic were searched and reference lists were extracted to identify potentially eligible studies that may have been missed through other

methods. There were no language restrictions. The studies were managed within the Review Manager (RevMan) [Computer program]. Version 5.4, The Cochrane Collaboration, 2020.

Efficacy of Laser Photobiomodulation in the management of Bell's Palsy: A systematic review

Laser photobiomodulation alone and as an adjuvant therapy with conventional treatment is a novel, safe, user friendly and non-invasive treatment modality for the management of facial nerve palsy.

Figure 1: Flow Diagram Of Review Methodology

Selection criteria of studies: All articles that reported in-vivo trials where facial palsy were treated with low level laser therapy (Laser photobiomodulation) were included for review. Trials testing Laser therapy as an adjunct therapy along with conventional therapy (facial exercises and facial massage) were also included. Trials testing other therapies, such as dry needling, electric stimulation, acupuncture, moxibustion were excluded.

Data extraction: Two authors searched the studies, screened the titles and abstracts of each study based on the criteria, and extracted data. Two authors reviewed the full text of the screened studies. Any disagreement between the two authors, was resolved by a third reviewer. Data collected for each study included information pertaining to year and place of publication, author, sample size in interventional group, study characteristics like interventional details, laser parameters, comparison groups, follow-up period, examination methods, outcomes and results.

Assessment of Methodological Quality of included Studies: Each study was critically evaluated for quality using relevant methodological quality assessment tools like The Physiotherapy Evidence Database (PEDro) scale for randomized controlled trials, The National Institutes of Health (NIH) quality assessment tool for case-series studies, The Methodological item for non-randomized studies (MINORS) tool and The Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Case Reports.⁸

Table 1: Patien	t, Intervention, Comparison, Outcome and Study design format for identification of studies
Patient	Patients with Bell's palsy (Unilateral/Bilateral, Acute/Chronic)
Intervention	Laser Photobiomodulation and Laser photobiomodulation along with other therapies.
Comparison	Steroids, Vitamin B complex and steroids, facial massage, facial expression exercises, magnetic field therapy and trans electrical nerve stimulation
Outcome	House Brackmann Scale, Sunnybrook facial grading system, physical facial disability index (PFDI) scores, social facial disability index (SFDI) scores, recovery rates, pain Scores (Visual Analogue scale), speech, muscular pain and chewing ability.
Study design	Randomized controlled/ clinical controlled trials, Case reports, Case series

Results

Studies selection and description: The search methodology and results are presented in Figure 1.Through the literature search, 528 studies were identified, including 121 duplicates. Twenty articles were identified after excluding duplications. A total of sixteen full-text articles were selected for systematic review.

Study characteristics: Sixteen relevant studies published between 1993 to 2022 (October) were considered for review. Six studies were reported from Asia, eight from America and two from Europe. All included studies were in vivo. Five studies were randomized controlled trials, three were non randomized trials, one was case series and seven were case reports. Intervention was carried out among adults except study by Fontana et al.¹² and Marina et al.¹⁸ where in therapy was given to a child and adolescent respectively. In the majority of studies, patients had unilateral complete or partial peripheral facial nerve palsy. Ten studies involved patients with acute palsy^{-9,10,12-18,24} whereas in six studies patients suffered from chronic palsy.^{12-18,24} Assessment of facial palsy was done based on House Brackmann Scale, Sunnybrook facial grading system, physical facial disability index (PFDI) scores, social facial disability index (SFDI) scores, recovery rates, pain Scores (Visual Analogue scale), speech, muscular pain and chewing ability. In comparative groups the therapies were Steroids,⁹Vitamin B complex and steroids,¹⁰facial massage, facial expression exercises ^{13-14,16-17}magnetic field therapy ¹⁴ and trans electrical nerve stimulation.^{19,22,24} Assessment of outcomes was done between 2 weeks to 6 months across studies.(Table 2)

Table	2: Study characteristics of articles inc	luded for systema	tic review					
SI	Author,	Year	Study	Patients treated	Age of patient	Type of palsy	Duration of palsy	Parameters assessed
no	Place		Design		(in years)			
1	Yamada et al,.9	1993	NRT	7	45.1±14.0	IPFP	Acute	Degree of Facial palsy assessment scale by facial nerve research
	Japan							group of Japan
2	Yoshida et al,. ¹⁰	2010	CR	14	48	IPFP	Acute	Yanagihara's Facial Palsy recovery rates
	Japan							
3	Alfaya et al,.11	2012	CR	1	29	IPFP, Unilateral	Chronic	Severity of paralysis, trismus, chewing, muscular pain
	Rio de Janerio					(right side)	3 years	assessment (VAS)
4	Fontana et al,. ¹²	2012	CR	1	3	IPFP, Unilateral	Acute	HBS
	Brazil					(right side)		
5	Macías-Hernández et al,.13	2012	RCT	11	38	IPFP	Acute	Manual muscle testing, Recovery rate
	Mexico							
6	Delgado Castillo et al,. ¹⁴	2013	RCT	38	NM	IPFP	Acute	HBS
	Cuba							
7	Rubis et al,. ¹⁵	2013	CR	1	40	IPFP Unilateral	Acute	HBS
	USA					Left Side		

8	Alayat et al,. ¹⁶	2014	RCT	15	43.3±10.1	IPFP Unilateral	Acute	PFDI , SFDI
	Saudi Arabia							
9	Ordahan et al,. ¹⁷	2017	RCT	23	44.7 ± 4.5	IPFP Unilateral	Acute	PFDI , SFDI
	Turkey							
10	Marina et al,. ¹⁸	2018	CR	1	13	IPFP Unilateral	Acute	Severity of paralysis, speech, chewing, muscular pain
	Brazil							assessment
11	Alyassiri et al,.19	2019	NRT	80	43.6 ± 15.6	IPFP	Chronic	Van Swearingen and Brach (HSB), 1996 grading of Bell's palsy.
	Iraq							
12	Agamohandi et al,.20	2020	NRT	30	40.66±13.67	IPFP	Chronic	HBS
	Iran							ENMG, Nerve Conduction Velocity
13	Rodrigues et al,. ²¹	2020	CR	1	25	IPFP	Chronic	HBS and
	Brazil							ENMG
14	Tanganeli et al,. ²²	2020	CR	1	72	IPFP Unilateral	Chronic	HBS
	Brazil							
15	Claudio Pasquale et al,.23	2021	CS	14	56.07±15.21	IPFP Unilateral	Chronic	HBS
	Italy							
16	Jaseel et al,. ²⁴	2021	RCT	12	40.33 ± 10.16	IPFP Unilateral	Acute	SBFG, Toassess facial symmetry and PFDI
	India							

Interventional details: All studies used diode lasers with wavelength ranging from 660-1064 nm in contact and continuous mode. Majority used 810-830 nm wavelengths. The points treated were along the course of facial nerve over the facial muscles, stylomastoid foramen and stellate ganglion. Laser light dose applied per point ranged between 3.3- 10 J. (Table 3)

Tabl	able 3: Interventional details of studies included for systematic review											
SI	Author	Interventio	Laser parameters				Intervention Deta	ils			Comparison	
no		n									group	
			Туре	Power	/	Total	Duration	of	Total	Location of points		
			/Wavelength	Dose/Ene	ergy		Treatment		points			
			/Mode	density/T	īme/po	int	(Number of sessio	ons)	treated			

						/session		
1	Yamada et al, ⁹	LLLT	Diode,,830nm,	At area of Paralysis	34.4 sessions across	3	Area of Paralysis, stylomastoid	LLLT +Steroids,
			CW, CM	150mW, 127 J/cm² (36J	21-66 days		foramen, stellate ganglion	
				per point for 10 mins)				
				At area of				
				stylomastoid foramen,				
				150mW, 38.2 J/cm ²				
				(10.8J per point for 3				
				mins)				
				At area of Stellate				
				ganglion				
				150mW, 63.7 J/cm² (18J				
				per point for 3 mins)				
2	Yoshida et al ¹⁰	LLLT +	Diode,1064nm,	300mW, 10-15 mins per	2 sessions/week over	2	Skin over the approximate area of	-
		Pharmaco	CW, CM	point	a period of 6 months		the stellate ganglion and foramen	
		therapy					stylomastoid on the distal side	
		(Vitamin B						
		complex,						
		steroids)						
3	Alfaya et al,. ¹¹	LLLT +ST+FE	Diode, 795nm ,	120mW, 4J per point	13 sessions across 2	NM	Region of innervation of facial	-
			CW,CM		months		nerve	
4	Fontana et al,. ¹²	LLLT	Diode,660,780n	780nm, 70mW, (17.5 J	2 sessions/week for 2	80	Area of all the facial muscles and	-
			m, CW,CM	per point for 10 s)	weeks and 3 sessions		nerves of the lower part of the face	
					in 3 rd week		or frontalis and points around the	
				660nm, 40-60mW, (10J			eyes, mouth, maxilla, and other	
				per point for 10 s)			areas penetrated by the facial	

							nerve.	
5	Macías-Hernández et al ¹³	LLLT +FM+FE	Diode,830nm, PW, CW	100mW, 40 J/cm ² (14J per point for 10-15 s)	15 sessions across 7 weeks	NM	Points of exit of facial nerve	Sham LLLT +FM+FE
6	Delgado Castillo et al ¹⁴	LLLT +FM+FE+MF E	Diode,670nm, PW, CM	100mW, 40 J/cm ² (14J per point for 10-15 s)	20 with 5/week for 4 weeks	NM	Through the course of facial nerve with 1.5-cm space between two points and extra point at nerve exit locale	LLLT+FM+FE MFE
7	Rubis et al,. ¹⁵	FM+FE +LLLT	Diode,910nm, CW, CM	1W, 47.6 J/cm ² (10J per point for 30s)	3 sessions spread across 1 week	6	Mastoid area at the stylomastoid foramen, along the course of	
8	Alayat et al,. ¹⁶	LLLT +FM+FE	Diode,980nm, CW, CM	100mW, 80 J/cm ² (10J per point for 5 s)	18 sessions spread across 6 weeks	8	Superficial roots of facial nerve on affected side	FM+FE+ Sham LLLT
9	Ordahan et al,. ¹⁷	LLLT +FE	Diode,830nm, CW, CM	100mW, 80 J/cm ² (10J per point for 120 s) 5	18sessions(3sessions per week for6 weeks)	8	Superficial roots of facial nerve	FE
10	Marina et al,. ¹⁸	LLLT	Diode,830nm, CW	100mW, 100 J/cm ² (5.6 J per point) 28s/point	3 sessions spread across 3 weeks	2	Origin and insertion of the right superficial masseter muscle and course of facial nerve	-
11	Alyassiri et al,.19	LLLT	NM	NM	NM	NM	NM	TENS
12	Agamohandi et al,. ²⁰	LLLT	Diode, 980nm, CW	334mW, 16 J/cm ² (5 J per point)	12 sessions (3/ week)	9	Mastoid process Course of facial nerve branches	-
13	Rodrigues et al,. ²¹	LLLT	Diode,660, 808nm,CW,CM	1W, 40.65 J/cm ² (4 J per point) and 60.97 J/cm2 (6 J per point for 1min)	24sessions(18sessionswith3sessionsperweek,	59	59 points evenly spread across right side of the face	-

					with at least a 48-h			
					interval between			
					sessions.			
					6 sessions with 48-h			
					interval between			
					sessions; during each			
					session the energy			
					density was 60.97			
					J/cm2 (6 J per point,			
					59 points).			
14	Tanganeli et al,. ²²	LLLT+TENS	Diode,		10 sessions (one	10	Facial muscles	-
			810nm, CW, CM	100mW, 120 J/cm² (3.3J	session every 48		(Frontal, temporal, zygomatic,	
				per point for 10 s)	hours; after the fifth		buccinator, lip elevator orbicularis,	
					session, two weekly		lip depressor, masseter	
				3.3 J per point (120	sessions)			
				J/cm2), 10 seconds				
				each, in contact with				
				the skin				
15	Claudio Pasquale et al ²³	LLLT	Diode, 808 nm,	1W, 60 J/cm ² (8.57 J per	7-20 sessions	7	NM	-
			CW,CM	point) 1min/point				
16	Jaseel et al,. ²⁴	LLLT +FM	Diode, 830nm,	NM, 80 J/cm ² (10J per	12 sessions spread	8	Superficial roots of facial nerve	TENS
		+FE	CW, CM	point for 40s)	across 2 weeks			

LLL	LLLT-Low level laser therapy (laser photobiomodulation), CW-Continuous wave, PW-Pulsed wave, CM-Contact mode, T ENS-Trans electrical nerve stimulation, FE-Myofacial exercises ,FM-										
Fac	ial Massage , NM-Not menti	oned									

Methodological quality of included studies: The methodological quality of randomized controlled trials included in review was good with total score ranging between 7-10 on PEDro scale. (Table 4). The MINORS scale total scores of non randomized trials ranged between 11-16 indicating good quality. (Table 5) Critical appraisal of case reports and case series using JBI and NIH quality assessment tools respectively indicated good methodological quality. (Tables 5,6)

Physiotherapy Evidence Database (PEDro) scale	Studies				
Components	Macías-Hernández et al ¹³	Delgado Castillo et al ¹⁴	Alayat et al ¹⁶	Ordahan et al ¹⁷	Jaseel et al 24
	(2012)	(2013)	(2014)	(2017)	(2021)
1. Eligibility criteria were specified	Yes	Yes	Yes	Yes	Yes
2. Random Allocation was done	Yes	Yes	Yes	Yes	Yes
3. Allocation was concealed	No	No	Yes	Yes	No
4. Groups similarity at baseline achieved	Yes	Yes	Yes	Yes	Yes
5. blinding of subjects	Yes	No	Yes	No	No
6. blinding of therapists	No	No	Yes	No	No
7. blinding of assessors	Yes	No	No	No	No
8. outcome measures were obtained from more than 85% of the subjects	Yes	Yes	Yes	Yes	Yes
9. Intention to treat analysis was done	Yes	Yes	Yes	Yes	Yes
10. between-group statistical comparisons reported	Yes	Yes	Yes	Yes	Yes

11. point measures and measures of variability reported	No	Yes	No	Yes	Yes
Total	8	7	10	8	7

The National Institutes of Health (NIH) quality assessment	Claudio	The Methodological item for non-randomized	Yamada et al ⁹	Allyasiri et al 19	Agamohodi et al ²⁰
tool for case-series study	Pascale 23	studies (MINORS) tool			
Components		Major Components			
1. study question or objective clearly stated	No	1. A clearly stated aim	1	0	1
2. study population clearly described	yes	2. Inclusion of consecutive patients	2	1	2
3. cases were consecutive	yes	3. Prospective collection of data	2	2	2
4. subjects comparable	yes	4. Endpoints appropriate to the aim of the study	1	1	2
5. intervention clearly described	yes	5. Unbiased assessment of the study endpoint	1	1	2
6. outcome measures clearly defined	yes	6. Follow-up period appropriate	1	1	2
7. length of follow-up adequate	yes	7. Loss to follow up less than 5%	2	2	2
8. statistical methods well-described	No	8. Prospective calculation of the study size	0	0	0
9.results well-described?	Yes	9. An adequate control group	2	2	NA
Quality Rating	Good	10. Contemporary groups	1	1	NA
		11. Baseline equivalence of groups	1	1	NA
		12. Adequate statistical analyses	1	1	NA
		Total Score	16	14	11

The Joanna Briggs Institute (JBI) Critical Appraisal Checklist for Case Reports	Studies						
Components	Yoshida et al ¹⁰	Alfaya et al ¹¹	Fontana et al ¹²	Rubis et al ¹⁵	Maria et al ¹⁸	Rodrigues et al ²¹	Tanganeli et al ²²
Patient's demographic characteristics clearly described	yes	yes	yes	yes	yes	yes	yes
Patient's history clearly described	yes	yes	yes	yes	yes	yes	yes
Clinical condition of the patient clearly described	yes	yes	yes	yes	no	yes	yes
diagnostic tests , assessment methods and the results clearly described	yes	yes	yes	yes	yes	yes	yes
intervention(s) or treatment procedure(s) clearly described	yes	yes	yes	No	yes	yes	yes
post-intervention clinical condition clearly described	yes	yes	yes	No	yes	yes	yes
adverse events (harms) or unanticipated events identified and described	no	no	No	No	no	no	yes
case report provides takeaway lessons	yes	yes	yes	yes	yes	yes	yes

Tabl	le 7: Results of studies included for systematic review						
SI	Author,	Time of assessment	Results	Conclusion			
no		of outcome					
1	Yamada et al,.9	2 weeks post	Paralysis score at Baseline, 2 weeks and final improvement was 10.1±6.9 ,14.6±9.3,33.3±8.0 in	LLLT + Steroid group was better than			
		treatment	LLLT group and in Steroid + LLLT group it was 9.3± 7.2 ,23.4±12.7,36.9±3.6.	LLLT alone			

2	Yoshida et al,. ¹⁰	After 2 weeks,2	Recovery rate was more (100%) in LLLT + Pharmacotherapy group compared to LLLT group	Laser photobiomodulation along with
		months and 6 months	(78.6%)	pharmacotherapy was more
				effective than LLLT alone.
3	Alfaya et al,. ¹¹	2 months	After two months, the patient reported no pain. Although the complete recovery of physiological	LLLT was effective
	•		movements in the patient's facial movements was not evidenced, the small motor improvement	
			was satisfactory for the patient, allowing an improvement in his quality of life.	
4	Fontana et al,. ¹²	After 2 and 3 weeks	Complete recovery (From Grade V to Grade I HB score after 3 weeks (11 sessions)	LLLT was effective
5	Macías-	60 days post	Laser group achieved recovery of 94.84% compared to 87.83% in the control group	LLLT was effective
	Hernández et	treatment		
	al,. ¹³			
6	Delgado Castillo	4 weeks, 12 weeks	Recovery rates were highest in steroid +laser+Magnetic field group at 4 and 12 weeks with	Combined treatment with steroid
	et al,.14		greatest improvement at 12 weeks	+laser+MF (Magnetic field therapy)
				was more beneficial than the
				separate combination of each one of
				these two physical agents with
				corticosteroids
7	Rubis et al,. ¹⁵	After 4 days and 1	70% to 80% improvement of facial movement after 4 days and 100% control of facial movements	LLLT was effective
		week	at 1 week with no relapse after 4 years of treatment	
8	Alayat et al,. ¹⁶	3 weeks and 6 weeks	Mean FDPI scores at week 3 and 6 (25.53 ,21.8) in LLLT was significantly low (p<0.001) compared	High intensity Laser therapy was
		post treatment	to HILT (37.41 ,39.74) group	better than LLLT
9	Ordahan et al,. ¹⁷	3 weeks and 6 weeks	Mean FDPI scores at week 3 and 6 (25.41 \pm 13.12, 29.06 \pm 11.09) in exercise group was	Laser with facial exercise was more
		post treatment	significantly low (p<0.001) compared to Laser ±exercise group (37.42 ± 8.13, 39.21 ± 9.08)	effective than LLLT alone.

10	Marina et al,. ¹⁸	Every week for 3	patient presented complete regression of paralysis, improvement of speech and chewing, and	LLLT was effective			
		weeks	absence of muscular pain				
11	Alyassiri et al,. ¹⁹	4 months	Post treatment, 5 patients with grade III , 11 patients with grade IV and 20 patients with grade V	LLLT was effective			
			improved to Grade I score in LLLT group according to the House Brackmann Scale. In the control				
			group no patients recovered to Grade I from Grade II,III,IV and V .				
12	Agamohandi et	3 months	After 12 sessions of low-level laser therapy (LLLT), we could observe complete recovery in 18	LLLT was effective			
	al,. ²⁰		patients and partial recovery in 6 patients after 3 months				
13	Rodrigues et al,. ²¹	After 12 th session	HBS test showed 1^{0-20} improvement in scores post treatment.ENMG test revealed a	LLLT was effective			
		After 24 th session	favourable amplitude of the motor conduction velocity post treatment				
14	Tanganeli et al,. ²²	After 6 weeks of	According to the HBS, after the fifth session, the patient's recovery was remarkable	LLLT was effective			
		intervention					
15	Claudio Pasquale	After 3 rd session	11 out of 14 patients completely recovered after treatment with PBM	LLLT was effective			
	et al,. ²³	onwards					
16	Jaseel et al,. ²⁴	After 2 weeks of	highly significant improvement in SFGS composite scores within the LLLT (P = 0.002, Z 146 = -	LLLT was effective			
		intervention	3.059) however, no significant difference in post-intervention FDI composite scores between				
			groups (P=0.423, Z = -0.87)				
HBS-House Brackmann Scale, PFDI -facial disability index physical, SFDI - facial disability index social, SBFG - Sunnybrook facial grading system, ENMG - Electroneuromyography values, LLLT-							
Low level laser therapy (laser photobiomodulation), TENS-Trans electrical nerve stimulation, FE-Myofacial exercises, FM-Facial Massage,							

Results: In majority of studies Laser photobiomodulation was effective in treating facial nerve palsy. In few studies , laser therapy used as an adjunctive therapy along with Steroid, pharmacotherapy, Magnetic field therapy and facial excercises/massage was effective in treating facial palsy.^{11,13-17,24}.In few studies laser therapy used alone was effective in treatment of facial palsy.^{9-10,12,18-23} However study by Delgado Castillo et

al showed no significant effect of Laser therapy in the management of facial palsy.¹⁴Facial palsy recovery rates improved in patients with coexisting conditions, like diabetes according to study done by Agamohadi et al.²⁰ Few study findings showed that laser photobiomodulation was effective in treating patients with chronic Bell's palsy and improved the physical and social well-being.^{16,17,24} (Table 7)

Discussion: In most studies, red/near-infrared (NIR) light (600–1100 nm) is selected for nerve regeneration because it offers maximal tissue penetration within this wavelength range. This is due to the scattering and absorption by tissue chromophores such as myoglobin, melanin (in visible regions), tissue water content (in the infrared region), and haemoglobin.²⁵Based on a systematic review by Rosso et al, the red spectrum (600–700 nm) was observed with excellent electrophysiological and morphological results, immunological variables, and tissue markers.²⁶ The photobiomodulatory effects are linked to photoreceptor absorption of photons accelerating mitochondrial activity through cytochrome oxidase leading to production of adenosine triphosphate (ATP) and transportation of intracellular Calcium; and the initiation of pathways mediated by reactive oxygen species (ROS), nitric oxide (NO) and cyclic adenosine monophosphate (cAMP). All these subsequently lead to stimulation of various transcription factors related to migration and cell proliferation, promoting tissue repair and regeneration. Photobiomodulation decreases inflammatory process, increases expression of neural growth factors, stimulates schwann cell proliferation and improves faster nerve functional recovery .²⁷Based on systematic review of morpho-quantitative study of the axons and nerve fibres, photobiomodulation facilitates muscular reinnervation while fastening the process of nerve regeneration.²⁶ A study by Lee et al tested the influence of two wavelengths (633 and 804 nm) on functional and morphological recovery after facial nerve injury and found that 633-nm laser irradiation improved cell viability under oxidative stress, stimulated schwann cells activity, intiated axonal regeneration which led to faster functional recovery of the facial nerve.²⁵ Despite the similarities in the facial paralysis treated across various studies, there is a wide range of differences in the methods of applying photobiomodulation. These differences include variations in wavelengths from 660 to 1064 nm, a diverse range of energy levels and energy densities, as well as variations in the duration of application. This calls for systematic approach in reporting of laser parameters based on world association for laser therapy (WALT guidelines). The findings of the studies under review must be taken into account while evaluating the

studies' shortcomings. Improvising study design, use of sham laser, and perform blinding, allocation concealment, proper randomization, proper statistical analysis and electrophysiological outcome evaluation may perhaps provide a clear conclusion of results

Conclusion: Laser photobiomodulation alone and as an adjuvant therapy with conventional treatment is a novel, safe, user friendly and non-invasive treatment modality for the management of facial nerve palsy. Lack of consistency between studies included in the review restricted the use of meta-analysis to make a conclusive statement.

References

- 1. Baugh RF, Basura GJ, Ishii LE, Schwartz SR, Drumheller CM, Burkholder R, et al. Clinical practice guideline: Bell's Palsy executive summary. Otolaryngol Head Neck Surg. 2013 Nov;149(5):656-63.
- 2. Hohman MH, Hadlock TA. Etiology, diagnosis, and management of facial palsy: 2000 patients at a facial nerve center. Laryngoscope 2014;124(7): E283–E293
- Goo B, Kim HN, Kim JH, Nam SS. A bibliometric analysis of research on the treatment of facial nerve palsy. Medicine (Baltimore). 2021 Aug 20;100(33):e26984
- 4. Jowett N, Hadlock TA. Contemporary management of Bell palsy. Facial Plast Surg. 2015 Apr;31(2):93-102.
- 5. Kim JH, Park YC, Seo BK, Baek YH, Goo B, Nam SS. The efficacy of laser therapy in patients with facial palsy: A protocol for systematic review and meta-analysis. Medicine (Baltimore). 2020 Aug 21;99(34):e21665.
- Higgins P Higgins JPT, Thomas J, Chandler J, Cumpston M, (editors). Cochrane Handbook for Systematic Reviews of Interventions. 2nd Edition. Chichester (UK): John Wiley & Sons, 2019.
- 7. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009 Jul 21;6(7):336-41.

- 8. Ma LL, Wang YY, Yang ZH, Huang D, Weng H, Zeng XT. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better?. Military Medical Research. 2020 Dec;7:1-1.
- 9. Yamada H, Yamanaka Y, Orihara H, Ogawa H. A preliminary clinical study comparing the effect of low level laser therapy (LLLT) and corticosteroid therapy in the treatment of facial palsy. Laser Therapy. 1995;7(4):157-62.
- 10. Yoshida K. Low level laser therapy for facial palsy. Laser Therapy. 2010;19(3):167-9.
- 11. Alfaya TA, Tannure PN, Dip EC, Uemoto L, Barcelos R, Gouvêa CV. Associação entre paralisia facial de Bell e disfunção temporomandibular: manejo clínico. Revista da Faculdade de Odontologia-UPF. 2012;17(2).
- 12. Fontana CR, Bagnato VS. Low-level laser therapy in pediatric Bell's palsy: case report in a three-year-old child. The Journal of Alternative and Complementary Medicine. 2013 Apr 1;19(4):376-82.
- 13. MacÍas-Hernández SI, Lomelí-Rivas A, Baños T, Flores J, Sánchez M, Miranda-Duarte A (2012) Effects of low power laser in the treatment of acute peripheral facial paralysis. Rehabilitacion 46(3):187–192.
- 14. Delgado Castillo M, Sanchez del Rio M, de Jesús Díaz García A, González Quevedo A, Sánchez López JV (2013) Usefulness of magnetic field and laser for the treatment of idiopathic peripheral facial palsy. Fisioterapia 35(6):252–257.
- 15. Rubis LM. Chiropractic management of Bell palsy with low level laser and manipulation: a case report. Journal of Chiropractic Medicine. 2013 Dec 1;12(4):288-91.
- 16. Alayat MS, Elsodany AM, El Fiky AA. Efficacy of high and low level laser therapy in the treatment of Bell's palsy: a randomized double blind placebo-controlled trial. Lasers in medical science. 2014 Jan;29(1):335-42.
- 17. Ordahan B. Role of low-level laser therapy added to facial expression exercises in patients with idiopathic facial (Bell's) palsy. Lasers in Medical Science. 2017 May;32(4):931-6.
- Poloni MM, Marques NP, Ribeiro Junior NV, Sperandio FF, Hanemann JA, de Carli ML. Bell's palsy treated with photobiomodulation in an adolescent: Rare case report and review of the published literature. International Journal of Paediatric Dentistry. 2018 Nov;28(6):658-62.

- 19. Alyassiri AM, Zaidan TF. Comparison between the beneficial Effects of Low Level Laser Therapy (Diode Laser) and Transcutenous Electrical Nerve Stimulation in Recovery of Patients with Bell's palsy. Prof. RK Sharma. 2019 Jan;13(1):332.
- 20. Aghamohamdi D, Fakhari S, Farhoudi M, Farzin H. The efficacy of low-level laser therapy in the treatment of Bell's palsy in diabetic patients. Journal of Lasers in Medical Sciences. 2020;11(3):310.
- 21. Rodriguez CG, Polho IB, Azevedo LH, de Paula Eduardo C. Photobiomodulation Therapy to Treat Facial Paralysis of 8 Years: Case Report. Photobiomodulation, photomedicine, and laser surgery. 2020 Aug;38(8):477-80.
- 22. Tanganeli JP, de Oliveira SS, da Silva T, Fernandes KP, Motta LJ, Bussadori SK. Complete and fast recovery from idiopathic facial paralysis using laser-photobiomodulation. Case Reports in Dentistry. 2020 Mar 11;2020.
- 23. Pasquale C, Utyuzh A, Mikhailova MV, Colombo E, Amaroli A. Recovery from Idiopathic Facial Paralysis (Bell's Palsy) Using Photobiomodulation in Patients Non-Responsive to Standard Treatment: A Case Series Study. InPhotonics 2021 Aug 20 (Vol. 8, No. 8, p. 341). MDPI.
- 24. Javath JM, D'Souza AF, Rebello SR. Low-level Laser Therapy Versus Electrical Stimulation for the Management of Acute Bell's Palsy: A Randomized Clinical Trial. Physical Treatments-Specific Physical Therapy Journal. 2021 Oct 10;11(4):261-8.
- 25. Lee JH, Carpena NT, Kim S, Lee MY, Jung JY, Choi JE. Photobiomodulation at a wavelength of 633 nm leads to faster functional recovery than 804 nm after facial nerve injury. J Biophotonics. 2021 Oct;14(10):e202100159.
- 26. Rosso MPO, Buchaim DV, Kawano N, Furlanette G, Pomini KT, Buchaim RL. Photobiomodulation Therapy (PBMT) in Peripheral Nerve Regeneration: A Systematic Review. Bioengineering (Basel). 2018 Jun 9;5(2):44.
- 27. Buchaim DV, Andreo JC, Ferreira Junior RS, Barraviera B, Rodrigues AC, Macedo MC, et al. Efficacy of Laser Photobiomodulation on Morphological and Functional Repair of the Facial Nerve. Photomed Laser Surg. 2017 Aug;35(8):442-449.