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Abstract: Biological data analysis is an important approach which utilizes genomic, 

transcriptomics, proteomic, metabolomics, or clinical data for disease detection process. 

Diabetes and Leukemia are two distinct medical conditions, but research has shown type 

2 diabetes patients have a 20% greater risk of being affected by blood cancers, like acute 

leukemia, indicating the relationship between the two diseases. Early detection of these 

diseases by analyzing the biological datasets is essential for providing prognostic 

support. However, the class imbalance and high dimensionality problems in Machine 

Learning (ML)-based techniques have often degraded effective analysis of clinical and 

genomic datasets for disease detection. This paper focuses on developing an efficient 

clinical decision support system using advanced metaheuristic and ML algorithms to 

solve class imbalance and high dimensionality problems. The first stage of the proposed 

approach utilizes an optional data augmentation and another pre-processing method for 

outlier detection and removal using Modified Z-Score (MZS) based on the Median 

Absolute Deviation (MAD) metric. Then, the optimal features/genes are selected using a 

hybrid Firefly Pearson’s Correlation Coefficient (FPCC)-based Feature/Gene Selection 

method to reduce the higher feature dimensionality problem. Once the features/genes are 

selected, the proposed Ladybug Beetle Optimized Universum Learning-based Twin 

Boosted Adaptive Support Vector Machine (LBO-ULTBASVM) classifier detects the 

disease with reduced model complexity and error rates. LBO-ULTBASVM is developed 

by improving the Twin Support Vector Machine (TSVM) classifier by integrating the 

Universum Learning, Ladybug Beetle Optimization (LBO), and XGBoost for solving 

the class imbalance problem, reducing training time and improving disease accuracy. 

Experiments are conducted using PIMA Indians Diabetes and GSE9476 Leukemia 

datasets and the outcomes indicated that the LBO-ULTBASVM-based model increases 

the diabetes and leukemia detection accuracy with reduced model complexity and 

processing time. 

Keywords: Biological data analysis, Diabetes, Leukemia, Modified Z-Score, Firefly 

Pearson’s Correlation Coefficient, Ladybug Beetle Optimization, Universum Learning, 

Twin Boosted Adaptive Support Vector Machine. 
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1. INTRODUCTION  

Biological data analysis for disease detection is a multidisciplinary effort that 

integrates expertise from biology, bioinformatics, computational biology, statistics, and 

clinical medicine to improve the understanding of disease mechanisms and develop more 

effective strategies for diagnosis, treatment, and prevention. Biological data analysis involves 

the application of various computational and statistical techniques to interpret large-scale 

biological datasets with the goal of identifying patterns, biomarkers, or signatures associated 

with specific diseases [1]. Initially, the diverse biological data types, such as genomic, 

transcriptomics, proteomic, metabolomics, or clinical data are collected. These data may be 

obtained from patient samples, and cell lines. These raw datasets are cleaned and pre-

processed by applying quality control, data imputation, batch correction and denoising 

methods to remove noise, correct errors, and normalize the data for ensuring consistency. 

Then, the relevant features from these pre-processed biological data are extracted and the 

dimensionality is reduced using suitable statistical or feature selection techniques. Finally, the 

statistical tests or ML algorithms are used to analyze the processed data and identify the 

patterns that are associated with the disease. The results of the analysis are used to identify 

potential biomarkers, genetic variants, gene expression signatures, or other molecular features 

associated with disease presence, progression, or response to treatment. These biomarkers 

may serve as diagnostic tools, prognostic indicators, or therapeutic targets for the disease. 

These findings are translated to the clinical practice by developing diagnostic assays, 

prognostic tests, or personalized treatment strategies based on the identified biomarkers. 

In this paper, Diabetes Mellitus (DM), commonly called diabetes, and leukemia, two 

of the serious medical conditions faced by a considerable population in the modern world, are 

considered. DM is a common non-communicable chronic metabolic disorder characterized by 

elevated blood sugar levels over an extended time, resulting from inadequate insulin 

secretion. Type 1 diabetes mellitus (T1DM) and Type 2 diabetes mellitus (T2DM) are the 

two common types, with T2DM contributing to almost 90% of all diabetes cases. While 

T1DM, also called juvenile diabetes, is caused mostly by an autoimmune reaction of the body 

where the pancreas stops producing insulin, T2DM is caused by inadequate insulin 

absorption or the body’s resistance to insulin. According to the World Health Organization 

(WHO), 422 million people have diabetes globally in all income countries, and 1.5 million 

deaths are caused directly by diabetes each year. T2DM has been found to cause diabetic 

kidney disease, retinopathy, pancreatic failure, joint failures, and immunosuppression, which 

might increase the risks of other chronic diseases like heart disease and cancers. The 

terrifying side effects of T2DM also include malfunctioning and permanent damage to body 

organs [2]. India has recorded 700000 deaths related to direct and indirect complications of 

diabetes in 2020. Recent studies have shown that T2DM patients have a 20% higher risk of 

incurring blood cancers such as leukemia, anemia, and thalassemia. Among them, leukemia is 

another serious health condition in the bone marrow and blood where abnormal white blood 
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cells (WBC) are produced in large quantities, crowding the normal cells in the immune 

system due to immunosuppression [3]. Acute lymphocytic Leukemia (ALL), acute myeloid 

Leukemia (AML), chronic lymphocytic Leukemia (CLL), and chronic myeloid Leukemia 

(CML) are the four types of leukemia. ALL and AML are common in children and adults, 

respectively, while CLL and CML are diagnosed commonly in older adults [4]. According to 

WHO reports, 311594 leukemia deaths have been recorded in 2020, of which 33383 

constituting 0.39% of total national deaths have occurred in India. While there is no direct 

link between diabetes and leukemia, there might be shared risk factors. The diseases have 

several indirect connections and shared risk factors, such as multifactorial genetic mutations, 

chronic inflammation, and immunosuppression. Additionally, individuals with diabetes might 

have a slightly higher risk of certain infections, potentially impacting the immune system and 

indirectly influencing leukemia risk [5].  

Early detection of diabetes and leukemia is commonly performed using clinical 

decision-making methods that employ advanced data processing approaches. By using gene 

expression profiles leukemia is learnt accurately and by using the standard clinical data 

diabetes is learnt. For multiple detection of disease studies have been done by the researchers 

using DL and ML methods [6]. Although efficient results have been achieved, various factors 

still negatively impact the real-time analysis for disease detection. The effective analyses 

have often degraded by class imbalance and high dimensionality problem for disease 

detection of clinical dataset. In gene expression analysis this is a major issue for classification 

is to learn many characteristics which creates an impact in accuracy for detection of leukemia 

[7]. Therefore, it is important to develop a clinical decision support system in advanced to 

degrade the class imbalance and dimensionality issues and to identify and learn the 

characteristics of diabetes and leukemia. This paper creates a meta-heuristic method to ensure 

and enhance the disease detection by considering the limitation and issues as the objective to 

develop a ML-optimized classifier. 

The input dataset are collected from the public repositories. For improving the 

synthetic class sample, preprocessing step along with data augmentation is executed as the 

process of outlier detection. For the removal and detection of outlier, MZS parameter along 

with MAD is utilized. FPCC-based feature/gene selection method is used for selecting and 

extracting the features after the outlier is removed. By integrating the firefly algorithm and 

PCC method the hybrid method of FPCC is created as a wrapper method. The diabetes and 

leukemia dataset ha many features which lead to dimensionality issues, so that the FPCC 

helps in selecting and extracting only the important features related to the classification for 

detection of disease. Finally, the proposed LBO-ULTBASVM classifier is used for final 

classification and disease detection. This LBO-ULTBASVM is a combination of many ML 

concepts and metaheuristic algorithms. The TSVM classifier is used as the base model, and it 

is enhanced by including the Universum Learning for class distinction, XGBoost for 

performance boosting and LBO [8] for parameter tuning. The Adaptive parameter 𝜃 is varied 

to obtain different loss functions for the Twin SVMs. This classifier model is intended to 

reduce the model complexity and training time by tuning the parameters using LBO, solving 

the class imbalance problem by Universum learning, improving the classifier accuracy, and 
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reducing the error rates by embedding XGBoost as a Boosting Technique. Experiments are 

performed on the above-specified benchmark datasets to assess the performance of the 

presumed LBO-ULTBASVM-based approach for accurate diabetes and leukemia disease 

detection. The following sessions are documented as follows Section 2 delves into existing 

diabetes and leukemia detection methods and their limitations. The proposed LBO-

ULTBASVM-based approach is explained in Section 3. Section 4 introduces the performance 

analysis and findings. Section 5 provides concluding remarks of the work with opportunities 

for future enhancement. 

2. RELATED WORKS 

Many recent studies have been directed in recent years for the detection of diabetes 

and leukemia disease using advanced ML and DL methods on biological data. Kumari et al. 

[9] proposed an Ensemble Soft Voting Classifier that combined random forest, Logistic 

Regression, and Naive Bayes for diabetes prediction using the PIMA Indian Diabetes Dataset 

(PIDD). The ensemble classifier achieved the best performance with 79.04% accuracy, 

73.48% precision, 71.45% recall and 80.6% F1 score on the diabetes dataset. Yet, the model 

is not robust enough to handle and analyze additional datasets with more features. García-

Ordás et al. [10] proposed a pipeline model using Variational Autoencoder (VAE) for Data 

Augmentation, Sparse Autoencoder (SAE) for feature augmentation, and CNN classifier to 

predict diabetes from PIDD. This VAE-SAE-CNN model achieved a level of accuracy of 

92.31%, outperforming individual ML models. Naz et al. [11] presumed a two-phase 

classification module using the Synthetic Minority Oversampling Technique (SMOTE) and 

Sequential Minimal Optimization (SMO) for predicting diabetes. Evaluated on PIDD, this 

model achieved 93.07% accuracy but consumed more time. Suyanto et al. [12] developed a 

new framework called KMC-AE-MVMCNN for diabetes detection using K-Means 

Clustering (KMC), Autoencoder (AE) for dimensionality reduction, and Multi Voter Multi 

Commission Nearest Neighbor (MVMCNN) for classification. For binary-class PIDD, this 

model achieved the highest accuracy of 99.13%, while only 95.24% for the Multi-class 

Diabetes Type. However, this model still has a high dimensionality problem. 

Olisah et al. [13] proposed a custom Twice-Growth Deep Neural Network (2GDNN) 

model for improving the prediction and diagnosis of diabetes mellitus. The framework 

applied Spearman Correlation and Polynomial Regression for the intents of feature selection 

and missing values handling. 2GDNN model yields 97.34% precision, 97.24% sensitivity, 

97.26% F1-Score, 99.01% training accuracy, 97.25% testing accuracy on the PIDD, and 

97.28% precision, 97.33% sensitivity, 97.27% F1-Score, 99.57% Train accuracy and  97.33 

Test accuracy on LMCH diabetes datasets. However, this model has increased the model 

complexity. Annamalai et al. [14] proposed an Optimal Bi-directional LSTM (OBLSTM) 

model with predictive analysis and severity estimation (PASE) for diabetes detection and 

staging. The OBLSTM model leverages bidirectional LSTM units and is tuned via the Salp 

Swarm Algorithm (SSA). The two-stage OBLSTM-PASE approach achieved an accuracy of 

99.53% for PIDD with a reduced false discovery rate of 0.0258 and a false positive rate of 

0.0392. However, the model has a slightly increased dimensionality problem. Reza et al. [15] 
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proposed an improved non-linear kernel function integrating RBF and RBF city block kernels 

for Support Vector Machine classification of type 2 diabetes. This RBF-SVM classifier 

achieved precision, F1-score, accuracy and recall values of 85.5%, 83.4%, 87% and 85.2%, 

respectively, for PIDD. However, the model limitations exist regarding eliminating missing 

data in pre-processing. Al-Hameli et al. [16] proposed an Enhanced Hidden Naïve Bayes 

(EHNB) classifier using discretization for predicting diabetes. This model achieved 81.82% 

accuracy, outperforming standard HNB and other classifiers, but suffers from a slight 

increase in the dimensionality.  

Lee et al. [17] proposed MERGE, a novel method of computational for identification 

of the gene expression by integrating priority information on genes' for drug sensitivity 

potential to drive cancer. The model is applied to gene expression and drug screening data 

from 30 AML patient samples across 160 chemotherapy agents and obtained a higher 

accuracy of 86%. However, the model has limitations in data sparsity handling. Vasighizaker 

et al. [18] developed a One-Class SVM (OCSVM) for predicting leukemia-causing genes. 

The model utilized the Gene expression data for AML and achieved 93.6% precision, 95.7% 

recall and 97.6% F-measure. However, the model’s performance cannot be fully quantified 

since negative validation data is unavailable. Li et al. [19] introduced a computational 

framework integrating Monte Carlo Feature Selection (MCFS) and SVM to distinguish about 

the gene expression signatures distinguishing AML. The model selected an optimal 1159 

gene feature set for evaluation and attained an accuracy of 91.6% on the AML dataset. Yet, 

this model has complexity limitations. Mosquera Orgueira et al. [20] proposed a random 

forest machine learning model called ST-123 for personalized survival prediction in AML 

gene expression data. Evaluated on KDM5B and LAPTM4B gene datasets, ST-123 achieved 

high accuracy, with c-indexes of 0.7228 and 0.6988 on the training and validation sets. 

However, this model has longer processing times due to class imbalances. 

Karim et al. [21] proposed a novel ensemble model called LDSVM by combining 

Logistic regression, Decision tree, and SVM to classify leukemia cancer types accurately. 

Evaluated on the GSE9476 dataset containing 22285 genes, this LDSVM ensemble classifier 

achieved 89.8% accuracy using a hybrid approach of soft voting and 93% using hard voting, 

but it suffered from a high dimensionality problem. Mallick et al. [22] developed a DNN 

model to classify gene expression data for leukemia diagnosis. It achieved 98.21% testing 

accuracy, 96.59% sensitivity and 97.9% specificity, outperforming SVM, KNN and Naive 

Bayes classifiers. The model limitations include the high-dimensional problem leading to 

increased computational complexity. Angelakis et al. [23] developed a ML model called 

CatBoost26 to diagnose AML. The dataset that the model trained on 2177 gene expression 

profiles and achieved exceptionally high performance with 0.99 sensitivity, 0.99 specificity, 

0.95 F1-score and 0.99 AUC. However, the model has limitations in handling the class 

imbalance problem. Ilyas et al. [24] developed a linear programming-based computational 

technique for classifying leukemia subtypes. Evaluated on the CuMiDa leukemia dataset, the 

model achieved 95.44% accuracy and mitigated the dimensionality curse. However, this 

model suffers from the poor handling of the class imbalance problem. 
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Analyzing the detection methods in the literature has shown that the models have 

been developed with higher objectives. Still, the model and computational complexities were 

prevalent in many models, along with the longer training and processing times, mainly due to 

the elevated dimensionality and imbalance in class problems. Thus, this study is performed to 

progress an efficient clinical decision-making approach using an advanced ML classifier to 

detect diabetes and leukemia accurately.  

3. METHODOLOGY 

The proposed LBO-ULTBASVM model aims to manage the challenges of improper 

feature learning, dimensionality, and imbalance in class for the detection of diabetes and 

leukemia accurately. Fig.1 illustrates the steps performed in the proposed approach. 

 

Fig.1. Proposed LBO-ULTBASVM-based model. 

The proposed LBO-ULTBASVM approach integrates data pre-processing, feature 

selection and classification. The input biological datasets encounter issues associated with an 

uneven distribution of classes. A data augmentation technique is selectively utilized to 

mitigate the challenge of class imbalance. The initial phase of the proposed approach 

encompasses pre-processing the input datasets related to diabetes and leukemia disease for 

outlier detection and elimination. Then, the features are selected using FPCC, and the 

classification is performed using LBO-ULTBASVM. 
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3.1. Dataset Description 

Biological data for disease detection includes the usage of clinical, gene expression 

and physiological datasets. This study utilizes two benchmark biological datasets, namely 

PIDD and GSE9476, to estimate the interpretation of the proposed approach.  

PIMA Indian Diabetes Dataset (PIDD): This dataset, sourced from the National Institute of 

Diabetes and Digestive and Kidney Diseases (NIDDK), aims to predict diabetes likelihood 

based on diagnostic measurements. It includes 768 samples, 8 features, and a target variable. 

268 samples are diabetic, while 500 samples are normal patient samples.  

GSE9476: This dataset is included in the Curated Microarray Database (CuMiDa), which 

comprises 78 meticulously selected cancer microarray datasets. It includes 38 healthy donors 

and leukemic blasts from 26 AML patients with 22283 gene features. Normal hematopoietic 

samples included CD34+ selected cells (N = 18), unselected bone marrows (N = 10), and 

unselected peripheral blood (N = 10) comprise the entire dataset. 

3.2. Data Pre-processing 

For diabetes and leukemia datasets, pre-processing involves cleaning, transforming, 

and organizing the dataset to enhance its quality and compatibility with the classifiers. Tasks 

such as handling missing values, scaling features and addressing outliers are in the data pre-

processing steps. The goal is to create a refined and standardized dataset that improves the 

model's accuracy and detection. The diabetes dataset is relatively small, containing many 

instances with limited observations in the positive class. This dataset may pose challenges for 

robust model training and generalization compared to the leukemia dataset. So Data 

Augmentation technique is applied to the diabetes datasets. The augmentation is performed 

by introducing random variations to the numeric features of each row. The function iterates 

over each column in a given row. To count the augmented variable in each row in the dataset, 

the augmentation factor variable is utilized. The data augmentation function is applied to each 

row of dataset and the process is repeated based on the specific augmentation factor. The 

random factor is used for order of rows and then the shuffle function is applied to the 

augmentation dataset. Finally the original dataset and the augmented dataset are combined on 

a subset of the data augmentation to make a diverse dataset for the ML models and 

specifically for the data where the positive class is under-represented. For more robust 

variations in the data model applying the factor namely augmentation factor, combining 

values and shuffle techniques are used for numerical features in the CSV dataset. 

3.3. Outlier detection 

Data cleaning in data pre-processing for diabetes and leukemia datasets involves the 

identification and resolve of issues like Outlier detection values. The Modified Z-Score 

method using Median Absolute Deviation (MAD) provides a robust measure of the spread of 

the data, making it less sensitive to extreme values than traditional Z-Score methods. Outliers 
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are identified by comparing the Modified Z-Scores (MZS) to a predetermined threshold, 

allowing for the effective detection and handling of outliers in a dataset. 

MAD quantifies the variability within a dataset by considering the median of the 

absolute deviations from the dataset's median. The MAD is calculated as: 

𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑋 − 𝑚𝑒𝑑𝑖𝑎𝑛(𝑀)|)      (1) 

Here, 𝑋 refers to the data point and 𝑀 refers to the median of the dataset. 

The MZS algorithm calculates a moving average and standard deviation from the time 

series data, leveraging these metrics to determine a Z-score for individual data points. The Z-

score quantifies the number of standard deviations by which a data point deviates from the 

mean of the time series. The formula for calculating the Z-score is: 

𝑀𝑍𝑆 = 0.6745 ×  (
𝑋−𝑚𝑒𝑑𝑖𝑎𝑛(𝑀)

𝑀𝐴𝐷
)       (2) 

Here, 𝑋 is the data point, 𝑀 is the median of the dataset. 

Determining a threshold beyond which data points are identified as outliers. The 

threshold value used is 3.7, according to the unique characteristics of the dataset. Any data 

point 𝑋 exhibiting a 𝑀𝑍𝑆 surpassing the established threshold is classified as an outlier. 

The MZS method using MAD provides a robust measure of the spread of the data, 

making it less sensitive to extreme values than traditional Z-Score methods. Outliers are 

identified by comparing the MZS to a predetermined threshold, allowing for the effective 

detection and handling of outliers in a dataset. 

3.4. Feature Selection using Firefly Pearson’s Correlation Coefficient 

The Firefly algorithm is a meta-heuristic inspired by the flashing behaviour of real 

fireflies. The algorithm relies on light intensity and attractiveness, where light intensity 

corresponds to the brightness of a firefly, calculated using a fitness function, and determines 

the degree of attractiveness between fireflies. 

Firefly Pearson’s Correlation Coefficient method is a hybrid approach for feature 

selection that combines the Firefly Algorithm with Pearson’s Correlation Coefficient. This 

technique aims to identify and rank features based on their correlation with the target variable 

using Pearson's Correlation Coefficient, and then optimize the selection of these features 

using the Firefly Algorithm.  

Calculate Pearson’s Correlation Coefficient for each feature in the dataset to the target 

variable. This measures the linear relationship between each feature and the target. 

𝑟𝑥𝑦 =  (
∑ (𝑥− 𝑥̅) (𝑦− 𝑦̅)𝑛

𝑥=1  

√∑ (𝑥− 𝑥̅)2𝑛
𝑥=1   ∑ (𝑦− 𝑦̅)2𝑛

𝑦=0

)       (3) 
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Consider, 𝑟𝑥𝑦 as the correlation coefficient, 𝑥 𝑎𝑛𝑑 𝑦 are the data points, 𝑥̅ 𝑎𝑛𝑑 𝑦̅ are 

the mean values and 𝑛 is the number of data points. 

In the Firefly Algorithm, the initialization of the firefly population involves randomly 

placing fireflies within the search space, ensuring that their positions fall within the specified 

bounds. The initial population of the firefly are generated and the features are assigned to the 

firefly. The parameter for the light intensity (attractiveness) is initialized in the initial path. 

The population of the firefly is initialized as {𝑓1, 𝑓2, ⋯ , 𝑓𝑁}. The initialization step of the 

Firefly Algorithm is to randomly place fireflies within the search space while ensuring that 

their positions fall within the specified bounds defined by 𝑈𝐵𝑗𝑎𝑛𝑑 𝐿𝐵𝑗 

𝑓 =  𝐿𝐵𝑗 + 𝑟𝑎𝑛𝑑 × (𝑈𝐵𝑗 −  𝐿𝐵𝑗)       (4) 

where, 𝑓 is the position of firefly, 𝑈𝐵𝑗𝑎𝑛𝑑 𝐿𝐵𝑗 is the upper and lower bounds solution in 𝑗𝑡ℎ 

dimension and 𝑟𝑎𝑛𝑑 is a distributed random variable between the range [0, 1]. 

After this initialization, the fireflies undergo the attraction and movement phases to 

search for the optimal solution within the specified search space. The Firefly algorithm 

depends on key factors such as light intensity and the mutual attractiveness among fireflies. 

The movement of firefly towards another firefly is determined by the light intensity and the 

distance between fireflies. 

Each source's light intensity is determined by the brightness of the respective firefly, 

computed through a specific fitness function. The brightness, linked to light intensity, 

governs the level of attractiveness or light intensity. The attractiveness or light intensity of 

each firefly is assessed using the following equation: 

𝛽(𝑑) =  𝛽0𝑒−𝛾𝑑2
        (5) 

Here, 𝛽 is denoted for the light intensity, 𝛽0 is the attractiveness constant when the distance 

between the two fireflies are zero (i.e.𝑑𝑢 𝑣 = 0), 𝛾 is light intensity Co-efficient, 𝑑 is the 

distance between the fireflies at different position. To calculate the distance between the 

fireflies, Euclidean distance is used: 

𝑒𝑑𝑢 𝑣 =  √∑ (𝑓𝑢 ,𝑔 −  𝑓𝑣,𝑔)
2𝐷

𝑔=1        (6) 

Here, 𝑒𝑑𝑢 𝑣 refers to the Euclidean distance between firefly 𝑢 and firefly 𝑣, 𝐷 refers to the 

total number of dimensions in the problem, representing the dimensionality of the space, 𝑔 

refers to the component value of position in a multi-dimensional space of the firefly along the 

𝐷, 𝑓𝑢 ,𝑔 is the position of firefly 𝑢 in the 𝑔𝑡ℎ component and 𝑓𝑣 ,𝑔 is the position of the firefly 

𝑣 in the 𝑔𝑡ℎ component. After computing the distance between two fireflies, if firefly 𝑢 is 

less bright than firefly 𝑣, a light intensity takes place, resulting in the movement of firefly 𝑢 

toward firefly 𝑣. The movement of the firefly is represented by the following formula: 
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𝑓𝑢(𝑡 + 1) =  𝑓𝑢(𝑡) +  𝛽𝑒−(𝛾𝑑𝑢,𝑣
2 )  ∗  (𝑓𝑣(𝑡) −  𝑓𝑢(𝑡)) +  𝛼𝜖    (7) 

Here, 𝑓𝑢(𝑡 + 1) is the position update of firefly 𝑢 at 𝑡 + 1 iterations, 𝑓𝑢(𝑡) is the position of 

firefly 𝑢 at iteration 𝑡, 𝑓𝑣(𝑡) is the position of firefly 𝑣 at iteration 𝑡,  𝛼 randomized parameter 

with 0 ≤  𝛼 ≤ 1 and 𝜖 refers to the random vector ranges between (0, 1).  

Apply the Firefly Algorithm to optimize the selection of features. The algorithm 

iteratively adjusts the positions of fireflies (representing features) in a search space, seeking 

an optimal configuration that maximizes a defined objective function. 

Combining the Firefly Algorithm (FA) with Pearson's correlation coefficient for 

feature selection involves using the FA to search for an optimal subset of features based on 

their correlation with the target variable 

The objective function (𝐹) for the Firefly Pearson’s Correlation Coefficient is tailored 

to the feature selection task and formulated as maximizing the sum or average of the ranked 

for the selected features. 

𝐹 =  (
∑ (𝑥− 𝑥̅) (𝑦− 𝑦̅)𝑛

𝑥=1  

√∑ (𝑥− 𝑥̅)2𝑛
𝑥=1   ∑ (𝑦− 𝑦̅)2𝑛

𝑦=0

) + 𝛽𝑒−(𝛾𝑑𝑢,𝑣
2 )    ∗  (𝑓𝑣(𝑡) −  𝑓𝑢(𝑡)) +  𝛼𝜖   (8) 

The Firefly Pearson’s Correlation Coefficient method combines the information from 

Pearson’s Correlation Coefficient to rank features along with the position update and the 

optimization capabilities of the Firefly Algorithm to select an optimal subset of features, 

enhancing the efficiency of feature selection diabetes and leukemia detection tasks. 

Algorithm 1 illustrates the feature selection using FPCC technique 

Algorithm 1: Feature Selection using FPCC 

1) The population of the firefly is generated 

2) The parameters are initialized  

3) The position of the firefly is assigned  

4) Pearson’s Correlation Coefficient is calculated for each feature by using (3) 

5) Evaluate fitness of each firefly based on correlation with target. 

6) The light intensity and distance of each firefly are calculated. 

7) Initializing the distance = 0 and calculating the light intensity for the movement of the 

firefly 

8) While (loop < no of iterations): 

i) If 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 (𝑓𝑢) <   𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦(𝑓𝑣) 

ii) Calculate the distance between the 𝑓𝑢𝑎𝑛𝑑  𝑓𝑣. 

iii) Calculate the light intensity (attractiveness) between the fireflies. 

iv) The intensity coefficient is generated. 

v) The optimal solution using Pearson’s Correlation coefficients is calculated. 

vi) Check for the position of a firefly in the search space, and update if you get a 

better position. 
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vii) Rank the fireflies according to the intensity 

9) End while 

10) Return the optimal solution 

 

3.5. Ladybug Beetle Optimized Universum Learning-based Twin Boosted Adaptive Support 

Vector Machine (LBO-ULTBASVM) Classifier 

SVM is a versatile algorithm, and the choice of the kernel and parameters depends on 

the characteristics of the data. SVM possess good mapping and which can also take high-

dimensionality feature space to map the data. Support vector machine possesses good non-

linear mapping and linear regression can be performed in the feature space, which can also 

take high-dimensionality feature space to map the data. The SVM is given as: 

𝑆𝑉𝑀 = min𝑤,𝑏  
1

2
 ‖𝑤‖2  𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖 (𝑤. 𝑥𝑖 + 𝑏) ≥ 1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖    (9) 

Here, 𝑤 is the weight vector, 𝑦𝑖   is the class label, 𝑥𝑖 is the feature vector and 𝑏 is the bias 

parameter. 

In traditional SVM, the slack variables and the margin parameter (C) is used to indirectly 

address misclassification by balancing the trade-off between maximizing the margin and 

accurately classifying the data. The SVM with the parameter is given by: 

𝑆𝑉𝑀 = min𝑤,𝑏  
1

2
 ‖𝑤‖2 + 𝐶 ∑ 𝜀𝑖

𝑛
𝑖=1       (10) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖 (𝑤. 𝑥𝑖 + 𝑏) ≥ 1 −  𝜀1𝑖 , 𝜀1𝑖 ≥ 0  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 

Here, 𝐶 is the Parameter that controls the trade-off between maximizing the margin. 

Adaptive Support Vector Machine (ASVM) is an extension of the traditional SVM that 

incorporates adaptability to evolving data. An Adaptive Support Vector Machine Classifier is 

developed to learn and adapt to the ambiguity of the data. The adaptation term involves an 

additional parameter 𝛿𝑖, which controls the model's adaptability. The function for 𝐴𝑆𝑉𝑀 can 

be written as: 

𝐴𝑆𝑉𝑀 = 𝑚𝑖𝑛𝑤,𝑏,𝛿,𝐶  
1

2
 ‖𝑤‖2 + ∑ 𝛿𝑖

𝑛
𝑖=1       (11) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑦𝑖 (𝑤. 𝑥𝑖 + 𝑏) ≥ 1 − 𝛿𝑖, 𝛿𝑖  ≥ 0      

Here, 𝑤 is the weight, 𝛿𝑖 is the Adaptive variable, 𝑦𝑖   is the class label, 𝑥𝑖  is the feature 

vector. 

ASVM does not use margin parameters or slack variables in its formulation. ASVM 

prioritizes the identification of an optimal decision boundary without explicitly addressing 

margins or classification errors. The adaptation variable (𝛿𝑖) introduced in enables ASVM to 
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adapt to evolving data patterns without directly correlating with margin or classification 

errors and empowers to navigate changing data distributions while maintaining its 

effectiveness in classification tasks. 

The primary objective of TSVM is to find two optimal hyperplanes that separate the positive 

and negative instances while maximizing the margin and minimizing classification errors. 

The two parallel hyperplanes (𝐻1) and  (𝐻2) are given by: 

𝐻1: 𝑤1. 𝑥 + 𝑏1 = 1         (12) 

𝐻2: 𝑤2. 𝑥 + 𝑏2 = −1         (13) 

The marginal values for the two hyperplanes are given as: 

𝐶 =  
2

‖𝑤1− 𝑤2‖
          (14) 

In TSVM, the objective function incorporates margin and slack variables to ensure that the 

positioning of the hyperplanes is adjusted to accurately align with the distribution of the data 

points. The function of twin support vector machine (𝑇𝑆𝑉𝑀) can be formulated as 

𝑇𝑆𝑉𝑀 =  𝑚𝑖𝑛𝑤,𝑏1,𝑏2,𝜀1𝑖,𝜀2𝑖 
1

2 
 (‖𝑤1‖2 +  ‖𝑤2‖2) + 𝐶 ∑ (𝜀1𝑖 +  𝜀2𝑖)

𝑛
𝑖=1   (15) 

Subject to 𝑦𝑖 (𝑤1. 𝑥𝑖 + 𝑏1) ≥ 1 − 𝜀1𝑖, 𝜀1𝑖  ≥ 0 𝑎𝑛𝑑  𝑦𝑖 (𝑤1. 𝑥𝑖 + 𝑏2) ≥ −1 + 𝜀2𝑖, 𝜀2𝑖  ≥ 0 

Here, 𝜀1𝑖 𝑎𝑛𝑑 𝜀2𝑖 are the slack variables for representing the classification error for each 

hyperplane, 𝑤1 𝑎𝑛𝑑 𝑤2 are the weights, 𝑏1 𝑎𝑛𝑑 𝑏2 are the biases.  

A kernel function is used to map the input data into a higher-dimensional feature space where 

a linear decision boundary can effectively separate the classes. The major Kernel functions 

are linear, polynomial, radial basis function (RBF) and sigmoid functions. The polynomial 

kernels are formulated for input (𝑥, 𝑥𝑖) as follows: 

Polynomial kernel: 𝐾𝑃(𝑥, 𝑥𝑖) =  (𝜂 × (𝑥. 𝑥𝑖) + 𝜎)𝑑𝑝    (16) 

Here, 𝐾𝑃(𝑥, 𝑥𝑖) is the Polynomial kernel function for  𝑥 𝑎𝑛𝑑 𝑥𝑖 inputs data points, 𝜂 is a 

parameter representing the coefficient or weight, 𝜎 is the kernel parameter and 𝑑𝑝 is the 

kernel parameters for degree of the polynomial. 

By combining 𝑇𝑆𝑉𝑀 and 𝐴𝑆𝑉𝑀 along with the kernel parameter formulation integrates the 

concepts of twin hyperplanes for multi-class classification with the adaptability of ASVM to 

handle changing data distributions and a kernel function to map the input data into a higher-

dimensional feature space. The optimization process involves finding the parameters that 

define the twin hyperplanes, the adaptive term, kernel parameters and the decision rule 

involves a voting mechanism to classify new instances. The Function of Twin Boosted 

Adaptive Support Vector Machine (𝑇𝐵𝐴𝑆𝑉𝑀) along with the kernel parameter is given by: 
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𝑇𝐴𝑆𝑉𝑀 =  𝑚𝑖𝑛𝑤1,2,𝑏1,2,𝐶,𝜀𝑖,𝛿𝑖 
1

2 
 (‖𝑤1‖2 +  ‖𝑤2‖2) + 𝐶 ∑ (𝜀1𝑖 +  𝜀2𝑖)

𝑛
𝑖=1 + 𝛿𝑖 +  𝐾𝑝(𝜂 ×

(𝑥. 𝑥𝑖) + 𝜎)𝑑𝑝           (17) 

Subject to 𝛿𝑖  ≥ 0  𝑓𝑜𝑟 𝑖 = 1,2, . . . , 𝑁,  𝑦𝑖 (𝑤1. 𝑥𝑖 + 𝑏1) ≥ 1 − 𝜀1𝑖, 𝜀1𝑖  ≥ 0 𝑎𝑛𝑑  𝑦𝑖 (𝑤1. 𝑥𝑖 +

𝑏2) ≥ −1 + 𝜀2𝑖, 𝜀2𝑖  ≥ 0 

The Universum instances are denoted as: 

𝑈 = min
𝑤,𝑏,𝜉𝑢

1

2
‖𝑤‖2 + 𝐶𝑢 ∑ 𝜉𝑢

𝑚
𝑢=1       (18) 

Here, 𝐶𝑢 is the parameter that represents the soft-margin for unlabelled data which minimizes 

the classification error for 𝑚 variables and 𝜉𝑢 slack variables representing the errors for 

unlabelled data. 

The hybrid of 𝑇𝐴𝑆𝑉𝑀 and Universum Learning forms ULTASVM, a complex approach that 

aims to handle uncertainty and boost classifiers. The specific implementation details, tuning 

mechanisms, and boosting strategy would depend on the problem's characteristics and the 

learning process's goals. ULTASVM aims to adaptively adjust its parameters during training, 

allowing it to handle better changing conditions or uncertainties in the data. The hybrid 

models with Universum learning are formulated as 

𝑈𝐿𝑇𝐴𝑆𝑉𝑀 = 𝑚𝑖𝑛𝑤1,2,𝑏1,2,𝐶,𝜀𝑖,𝛿𝑖,𝜉𝑢 
1

2 
 (‖𝑤1‖2 +  ‖𝑤2‖2) + 𝐶 ∑ (𝜀1𝑖 +  𝜀2𝑖)

𝑛
𝑖=1 + 𝛿𝑖 +

𝐶𝑢 ∑ 𝜉𝑢
𝑚
𝑢=1 + 𝐾𝑝(𝜂 × (𝑥. 𝑥𝑖) + 𝜎)𝑑𝑝        

 (19) 

Subject to 𝛿𝑖  ≥ 0  𝑓𝑜𝑟 𝑖 = 1,2, . . . , 𝑁,  𝑦𝑖 (𝑤1. 𝑥𝑖 + 𝑏1) ≥ 1 − 𝜀1𝑖, 𝜀1𝑖  ≥ 0 𝑎𝑛𝑑  𝑦𝑖 (𝑤1. 𝑥𝑖 +

𝑏2) ≥ −1 + 𝜀2𝑖, 𝜀2𝑖  ≥ 0 

ULTBASVM is designed to provide a flexible and robust solution for boosted classification 

tasks with an adaptive regularization mechanism for best performance using XGBoost to 

improve the ULTASVM model. The output from ULTASVM is provided as input to the 

XGBoost, which involves exploring the combinations of optimum hyperparameters that 

resultant to produce the best performing model. The process typically includes defining a 

parameter grid, performing cross-validation, and selecting the parameters that maximize the 

chosen evaluation metric. The objective function in XGBoost consists of a loss function that 

quantities the difference between predicted and true values and a regularization term that 

penalizes complexity. The objective function (𝑂𝑏𝑗) is formulated as: 

𝑂𝑏𝑗(𝜃) =  ∑ Ỻ(𝑦𝑙. 𝑦𝑙̂) +  Ὠ(𝑝𝑡)𝑛
𝑖=1       (20) 

Here, 𝑛 is the training instances number, 𝜃 is the model set parameter, 𝑦𝑙  is the true label, 𝑦𝑖̂ 

is the value predicted Ỻ is defined as the loss function and Ὠ(𝑝𝑡) is the complexity penalty in 

the regularization. 
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The XGBoost uses various hyperparameters for parameter tuning for the model. The 

hyperparameters include Learning Rate, Maximum Depth, estimators, subsample and the 

random state. Therefore, the proposed ULTBASVM becomes 

ULTBASVM =  𝑚𝑖𝑛𝑤1,2,,𝑏1,2,𝐶,𝜀𝑖,𝛿𝑖,𝜉𝑢 
1

2 
 (‖𝑤1‖2 +  ‖𝑤2‖2) + 𝐶 ∑ (𝜀1𝑖 +  𝜀2𝑖)𝑛

𝑖=1 + 𝛿𝑖 +

𝐶𝑢 ∑ 𝜉𝑢
𝑚
𝑢=1 + 𝐾𝑝(𝜂 × (𝑥. 𝑥𝑖) + 𝜎)𝑑𝑝 +  ∑ Ỻ(𝑦𝑙. 𝑦𝑙̂) + Ὠ(𝑝𝑡)𝑛

𝑖=1     

 (21) 

LBO: It is the inspired by the coordinated movement of ladybugs in nature to find a location 

with the most heat. The algorithm also helps to avoid the local minimum problems and 

speeds up the flow of the algorithm. The algorithm is used to optimize the ULTBASVM 

parameters namely marginal parameters and the kernel function. The algorithm involves 

evaluating and sorting the population. The population undergoes position updates and is re-

evaluated. This cycle of updating the population and evaluating is repeated until the optimal 

solution is identified. Let p be the position of the ladybug and the population parameter as 

{𝑙1, 𝑙2, ⋯ , 𝑙𝑁}. The population is composed of 𝑙𝑚𝑎𝑥 ladybugs, with the condition 𝑙(0)  ≥  𝑙𝑚𝑎𝑥 

and the optimal objective function is determined. The position of ladybug is obtained by: 

𝑙𝑝 =  𝑙𝑟(ℎ) +  𝑟𝑎𝑛𝑑 ×  ( 𝑙𝑠(ℎ) −  𝑙𝑟(ℎ))  +  𝑟𝑎𝑛𝑑 × ( 𝑙𝑠(ℎ) −  𝑙𝑠−1(ℎ)) ×  |𝑇𝐶|
− 

ℎ

𝑙(ℎ) ×

𝑙𝑠(ℎ) (22) 

Here, 𝑙𝑝 refers to the position of the ladybug, 𝑙𝑟(ℎ) represents the current position of the 𝑟𝑡ℎ 

ladybug in the ℎ iteration, 𝑙𝑠(ℎ) represents the position of 𝑠𝑡ℎ ladybug in the ℎ iteration, 

𝑙𝑠−1(ℎ) refers to the position of the second neighbour ladybug in the ℎ iteration and 𝑟𝑎𝑛𝑑 is a 

random number uniformly distributed between 0 and 1, 𝑇𝐶 represents the ratio of the total 

cost of the ladybird.  

The TC function measures the attractiveness of a specific location in the search space for a 

ladybug based on the objective function value at that location. It calculates the ratio of the 

objective function value at the current position (𝑙𝑟(ℎ)) of a ladybug to the sum of objective 

function values at the positions of all ladybugs within its neighbourhood. The Total cost (𝑇𝐶) 

function is given as 

𝑇𝐶 =  
𝑓𝑖𝑡(𝑙𝑟(ℎ))

∑ 𝑓𝑖𝑡(𝑙(ℎ))𝑁ℎ
𝑁=1

        (23) 

Here, 𝑓𝑖𝑡(𝑙𝑟(ℎ)) refers to the objective function value at the current position of the 𝑟𝑡ℎ 

ladybug, 𝑁ℎ refers to the total number of ladybug at  ℎ iteration and  ∑ 𝑓𝑖𝑡(𝑙(ℎ))𝑁ℎ

𝑁=1  refers to 

the Sum of objective function values at the positions of all ladybugs within the 

neighbourhood of the ladybug 𝑙𝑝. 

The TC function evaluates the attractiveness of a ladybug's current position relative to its 

neighbourhood based on the objective function values, guiding the ladybugs towards 

promising areas of the search space during the optimization process. 
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Instead of using the TC function from LBO, the ULTBASVM objective function is employed 

to evaluate the attractiveness of ladybugs' positions for optimization. Ladybugs move towards 

positions that possess maximum accuracy for the ULTBASVM objective function, 

effectively optimizing the margin parameters (𝐶, 𝐶𝑢) and the polynomial kernel function. The 

position of ladybug along with ULTBASVM is obtained by: 

𝑙𝑝 = 𝑙𝑟(ℎ) +  𝑟𝑎𝑛𝑑 ×  ( 𝑙𝑠(ℎ) −  𝑙𝑟(ℎ))  +  𝑟𝑎𝑛𝑑 × ( 𝑙𝑠(ℎ) −  𝑙𝑠−1(ℎ)) ×

 |ULTBASVM|
− 

ℎ

𝑙(ℎ) × 𝑙𝑠(ℎ)          

 (24) 

The equation is derived from the replacing  𝑇𝐶 in (22) by ULTBASVM from (21). By 

exchanging the total cost function with the ULTBASVM objective function, the LBO 

algorithm guides the search towards regions of the parameter space that lead to improved 

classification performance and model complexity control. 

The ULTBASVM objective function captures the performance and complexity aspects of the 

ULTBASVM classifier, incorporating margin parameters (𝐶, 𝐶𝑢) and the polynomial kernel 

(𝐾𝑝) function. By employing the ULTBASVM objective function, ladybugs are guided 

towards positions in the search space that lead to maximum accuracy and optimal model 

complexity, as determined by the ULTBASVM classifier. 

In the process of searching for a warm place, it's common for ladybugs to become disoriented 

and vanish. They might stray from the group and perish due to the cold. In the LBO 

algorithm, this phenomenon of updating population size of ladybugs disappearing during the 

search is mathematically modelled and the number of ladybugs present at each step of the 

search is determined as follows: 

𝑙𝑟(ℎ + 1) =  (𝑙𝑟(ℎ)  − 𝑟𝑎𝑛𝑑 × 𝑙(ℎ) (
𝑁𝐹𝐸

𝑁𝐹𝐸𝑚𝑎𝑥
))     (25) 

Here, 𝑙𝑟(ℎ + 1) represents the new position of the 𝑟𝑡ℎ ladybug in the (ℎ + 1) iteration, 𝑁𝐹𝐸 

denotes the function evaluations number, and 𝑁𝐹𝐸𝑚𝑎𝑥 represents the maximum allowable 

number of function evaluations.  

Thus,  (22) is used if the termination condition for LBO algorithm is based on the number of 

function evaluations 

If the number of iterations serves as the termination condition for the algorithm, the algorithm 

proceeds to calculate the new number of ladybugs in each iteration using the following 

method: 

𝑙𝑟(ℎ + 1) =   (𝑙𝑟(ℎ) − 𝑟𝑎𝑛𝑑 × 𝑙(ℎ) (
ℎ

ℎ𝑚𝑎𝑥
))     (26) 
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Here, 𝑙𝑟(ℎ + 1)represents the new position of the 𝑟𝑡ℎ ladybug in the (ℎ + 1) iteration, 𝑙𝑟(ℎ) 

represents the current position of the 𝑟𝑡ℎ ladybug in the ℎ iteration, ℎ denotes the current 

iteration number and ℎ𝑚𝑎𝑥 represents the maximum number of iterations. Algorithm 2 

summarizes the LBO for tuning ULTBASVM. 

Algorithm 2: LBO for tuning ULTBASVM 

Start 

1) The parameters are initialized for the ULTBASVM: Margin parameters (𝐶, 𝐶𝑢, )Kernel 

parameters 𝜂, 𝜎 and 𝑑𝑝 

2)     Initialize the ladybug population positions 

3)     Set the maximum margin threshold 𝑙𝑚𝑎𝑥 

4) For 𝑟𝑡ℎ position for the number of the ladybug: 

(a) Calculate the ULTBASVM objective function with the sum of ladybugs 

(b) A random number is created 

(c) If 𝑟𝑎𝑛𝑑 >  𝑙𝑟,  

(i) Update the ladybug position, in comparison to the other ladybug 

(ii) Calculate the ULTBASVM objective function sum for the updated 

position 

(iii)Update the objective function sum for the updated position. 

(iv) Update the position of the 𝑟𝑡ℎ ladybug 𝑙𝑟(ℎ + 1) 

(v) Calculate the function for the new population 

(d) End if 

(e) If 𝑙𝑟(0) ≥  𝑙𝑚𝑎𝑥 𝑑𝑜 

1. 𝑙𝑟(ℎ + 1) =  𝑙𝑚𝑎𝑥 

(f) End if 

5) End for 

Stop 

 

Therefore, the cost function for the proposed model is calculated based on the margin, kernel 

and kernel parameters of the ULTBASVM classifier. Algorithm 3 summarizes the proposed 

classifier. 

Algorithm 3: ULTBASVM classifier 

Start 

Initialize Parameters: 

    Set ULTBASVM and XGBoost parameters 

    Initialize population of ladybugs with random positions 

    Set termination conditions- ℎ𝑚𝑎𝑥, 𝑁𝐹𝐸𝑚𝑎𝑥 

ULTBASVM Training with XGBoost: 

Train ULTBASVM model using XGBoost. 
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Explore combinations of optimum hyperparameters using XGBoost for parameter tuning. 

Formulate the function in XGBoost, consisting of a loss function and a regularization term 

Evaluate model performance  

LBO Optimization: 

Evaluate and sort population of ladybugs based on ULTBASVM model performance. 

Repeat until termination condition is met: 

Update the position of each ladybug using the movement strategy: 

if termination condition based on 𝑁𝐹𝐸: 

Calculate new position using (25) 

else if termination condition based on iterations: 

Calculate new position using (26) 

Final Model Configuration: 

    Determine optimal parameters obtained from LBO optimization 

    Configure ULTBASVM classifier with optimized parameters 

    Return final configuration of ULTBASVM classifier 

Stop 

 

The algorithm aims to find the optimal solution for the best parameter tuning. The 

parameters are adjusted for the exploitation and exploration characteristics. Ladybugs 

iteratively adjust their positions based on the attractiveness of their current positions relative 

to their neighbourhoods, as assessed by the ULTBASVM objective function. Positions that 

result in improved classification performance and well-controlled model complexity are 

favoured, and ladybugs move towards such positions during the optimization process. This 

approach allows for more effective exploration of the parameter space and facilitates the 

discovery of solutions that yield superior performance and accuracy in classification tasks. 

This returns the final configuration of the ULTBASVM classifier for implementing the 

clinical decision-making model for diabetes and Leukemia classification. 

4. RESULT AND DISCUSSION 

The suggested LBO-ULTBASVM-based model for the disease detection problem is 

assessed using benchmark biological datasets. The implementations use Python programming 

on a PyCharm tool on a system with an Intel Core i5 processor, Windows 10 OS with 8GB 

RAM and 512GB SSD. Accuracy, Precision, Recall, F-Measure, and Processing Time are 

used for the evaluation. The attained results of the interpreted framework are equated with the 

different existing approaches. Table 1 presents the results for the proposed approaches 

obtained by performing step-by-step derivations for both the PIDD and GSE9476 biological 

datasets. 
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Table.1. Accuracy of Proposed Approach in Each Step of Modification 

 Algorithm PIDD GSE9476 

SVM 89.45 84.23 

TSVM 90.99 86.51 

ASVM 91.33 88.02 

TASVM 92.90 88.78 

ULTASM 93.71 90.88 

ULTBASVM 94.95 92.30 

LBO-ULTBASVM 96.68 94.36 

 

The above table shows the accuracy of the proposed LBO-ULTBASVM is higher 

when compared to prior classification models. The model performance has been increased by 

1%-2% and has shown the best results in both datasets. Therefore, the performance of the 

proposed model is justified. 

To evaluate the suggested methodology further, they are equated with the methods 

used in the previous studies. Since the previous methods have used different datasets for 

diabetes and leukemia in different experimental conditions, directly equating the results will 

not be ideal. Hence, for an equal comparison, the methods depicted in these studies are 

executed in the same environment as the presumed approach over the PIDD and GSE9476 

datasets. All the methods in the related works section are utilized for both diabetes and 

leukemia disease datasets to evaluate their diversity. Table 2 lists the results of the suggested 

approach against the literature review obtained for PIDD. 

Table.2. Performance of LBO-ULTBASVM vs. literature methods for diabetes-PIDD 

Methods/ Metrics Dataset Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

Processing 

time (s) 

Ensemble Soft Voting [9] PIDD 79.04 73.48 71.45 80.6 144.34 

VAE-SAE-CNN [10] PIDD 92.31 89.45 87.34 88.38 140.11 

SMOTE–SMO [11] PIDD 96.07 90.22 89.98 90.1 150.32 

KMC-AE-MVMCNN [12] PIDD 94.13 91.29 91.90 91.59 144.32 

2GDNN [13] PIDD 95.25 97.34 90.23 97.26 145.79 

OBLSTM-PASE [14] PIDD 95.53 83.12 86.81 84.92 143.72 

RBF-SVM [15] PIDD 85.5 83.4 87 85.2 145.63 

EHNB [16] PIDD 81.82 93.67 91.98 92.82 139.82 

LBO -ULTBASVM PIDD 96.68 98.28 97.79 98.03 138.16 
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From Table 2, the LBO-ULTBASVM model outperforms existing models and 

achieves higher accuracy, recall, and f1-measure, along with efficient processing time. An 

evaluation of individual, hybrid, and fusion models in the literature indicates that the FPCC 

and LBO–ULTBASVM model surpasses other models. The proposed model LBO – 

ULTBASVM increased accuracy by 17.64%, 4.37%, 0.61%, 2.55%, 1.43%, 1.15%, 11.18% 

and 14.86% for Ensemble Soft Voting, VAE-SAE-CNN, SMOTE-SMO, KMC-AE-

MVMCNN, 2GDNN, OBLSTM-PASE, RBF-SVM and EHNB respectively. The Processing 

time is reduced by 4.48%, 1.41%, 8.78%, 4.47%, 5.54%, 4.02%, 5.40% and 1.20% for 

Ensemble Soft Voting, VAE-SAE-CNN, SMOTE-SMO, KMC-AE-MVMCNN, 2GDNN, 

OBLSTM-PASE, RBF-SVM and EHNB respectively. Overall, LBO - ULTBASVM shows 

an increase of approximately 9.32% in accuracy and decrease of approximately 4.36% in 

processing time. A detailed analysis of various Classification models, both individual and 

hybrid, on diabetes datasets confirms the significantly superior performance and advantages 

of the proposed FPCC and LBO–ULTBASVM model, boasting accuracy and a reduced 

processing time. 

Similarly, Table 3 shows the results of the suggested technique against the literature 

review obtained on Gene expression datasets for Leukemia disease detection. 

Table.3. Performance of LBO-ULTBASVM vs. literature methods for Leukemia datasets 

Methods/ 

Metrics 

Dataset Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F-measure 

(%) 

Processing 

time (s) 

MERGE [17] GSE108004 90.76 93.6 95.7 97.6 378.23 

OCSVM [18] GSE9476 85.18 99.06 95.7 97.6 355.12 

ST-123 [19] GSE45249 94.06 92.00 90.46 91.22 343.67 

MCFS- SVM [20] GSE37642 72.28 80.83 83.55 82.17 392.84 

LDSVM [21] GSE9476 94.08 90.88 88.01 89.42 390.04 

DNN [22] GSE32474 93.21 89.92 89.14 89.53 377.45 

CatBoost26 [23] GSE26312 93.76 90.34 90.05 99.69 402.34 

Linear 

Programming [24] 

GSE9476 93.44 91.11 89.99 90.55 433.5 

LBO -

ULTBASVM 

GSE9476 94.36 99.73 99.70 99.71 333.06 

 

The results in Table 3 show that the LBO–ULTBASVM model outperforms existing 

models and achieves higher accuracy, recall, and f1-measure, along with efficient processing 

time. The proposed FPCC and LBO–ULTBASVM model increased accuracy by 3.6%, 

9.18%, 0.3%, 22.08%, 0.28%, 1.15%, 0.6% and 0.92%  for MERGE, OCSVM, ST-123, 

MCFS-SVM, LDSVM, DNN, CatBoost26 and Linear Programming respectively and reduced 

processing time by 11.92%, 6.21%, 3.09%, 15.19%, 14.63%, 11.78%, 17.23%  and 23.17% 

for MERGE, OCSVM, ST-123, MCFS-SVM, LDSVM, DNN, CatBoost26 and Linear 

Programming respectively. Utilizing Universum learning with performance-boosting and the 

FPCC has greatly reduced the class imbalance and high dimensionality issues and contributed 

to this performance improvement. Overall, detailed analysis of various hybrid Classification 
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models, on Leukemia datasets confirms the significantly superior performance and 

advantages of the proposed FPCC and LBO–ULTBASVM model, boasting accuracy and a 

reduced processing time. 

5. CONCLUSION 

This paper presented a hybrid LBO-ULTBASVM-based approach for diabetes and 

leukemia disease detection through biological data analysis. The proposed approach includes 

MZS for outlier detection, FPCC for feature/gene selection and LBO-ULTBASVM model for 

classification processes. The LBO-ULTBASVM classification model presents a promising 

approach by combining the power of the LBO metaheuristic, Universum Learning, and 

XGBoost to improve the Twin Adaptive SVM classifier. This integrated model reduces the 

high dimensionality and class imbalance problems and accurately detects diabetes and 

leukemia. LBO-ULTBASVM model achieves higher accuracy, precision, recall, F1-measure, 

and less processing time. It achieved an accuracy of 96.68% for diabetes detection with 

138.16 seconds processing time and 94.36% accuracy for leukemia detection with 333.06 

seconds processing time. Thus, the LBO-ULTBASVM classification model provides 

promising results for detecting diabetes and leukemia by solving the high dimensionality and 

class imbalance problems. The proposed LBO-ULTBASVM has identified the AML 

accurately; therefore, the adaptability of the proposed approach for classifying other types of 

leukemia from diverse biological datasets will be examined in the future. 
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