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Abstract— Software defect prediction is vital for ensuring the reliability and 

stability of software systems. In this study, we present a comprehensive analysis of 

high-performance defect prediction across multiple datasets using various machine 

learning models. Specifically, we focus on three datasets: JM1, CM, and PC, each 

representing distinct software projects or domains. Our investigation includes the use 

of source data for training and testing, encompassing feature selection, selected 

features, models, and their corresponding outputs. For each dataset, we analyze the 

efficacy of five popular machine learning algorithms: Decision Tree (DT), k-nearest 

neighbor (KNN), Naïve Bayes (NB), Random Forest (RF), and Support Vector 

Machine (SVM). Our evaluation metrics include accuracy, precision, recall, and F1-

score, providing a comprehensive assessment of each model's predictive capabilities. 

In the JM1 dataset, DT, KNN, RF, and SVM achieved impressive results with 

accuracies above 0.98 and F1-scores reaching 1.0, demonstrating their robustness in 

defect prediction. Similarly, the CM dataset exhibited outstanding performance across 

all models, with DT, NB, RF, and SVM achieving perfect scores across all metrics. 

In contrast, the PC dataset presented unique challenges, with KNN and NB 

showing slightly lower performance compared to other datasets. However, DT, RF, 

and SVM maintained high accuracy and F1-scores, indicating their effectiveness in 

handling diverse datasets. 

Our findings underscore the importance of selecting appropriate machine learning 

models tailored to specific datasets for optimal defect prediction. By leveraging 

multiple datasets and diverse algorithms, our study contributes to advancing the state-

of-the-art in software defect prediction, providing valuable insights for practitioners 

and researchers alike. 

Keywords— Software Defect Prediction, Machine Learning Decision Tree (DT, k-

Nearest Neighbors (KNN, Naïve Bayes (NB), Random Forest (RF), Support Vector 

Machine (SVM) etc., 
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I. INTRODUCTION  

Software development processes are inherently prone to errors, with defects posing significant challenges to system 

reliability and performance. Predicting and preemptively addressing these defects are paramount in ensuring the quality and 

stability of software products. Software defect prediction, a subfield of software engineering, aims to identify modules or 

components that are likely to contain defects, enabling developers to focus their testing and debugging efforts efficiently. 

Machine learning (ML) techniques have emerged as powerful tools in software defect prediction, offering the potential to 

analyze vast amounts of historical data and extract patterns indicative of defect-prone areas. By training 

models on labeled datasets containing information about software artifacts and their corresponding defect statuses, ML 

algorithms can learn to classify new instances as defective or defect-free. 

In this study, we delve into the realm of software defect prediction across multiple datasets, each representing distinct 

software projects or domains. Specifically, we focus on three datasets: JM1, CM1, and PC, each presenting its own set of 

challenges and characteristics. Our objective is to evaluate the performance of various ML models when applied to these 

datasets, shedding light on their effectiveness and suitability for real-world defect prediction tasks. 

The methodology employed in this study involves several key steps. First, we preprocess the source data, ensuring its 

compatibility with the ML algorithms under consideration. Next, we partition the data into training and test sets, facilitating 

model training and evaluation. Feature selection is then performed to identify the most relevant attributes for predicting 

software defects, thereby enhancing model efficiency and interpretability. 

Subsequently, we employ a range of ML algorithms, including Decision Tree (DT), k-nearest neighbor (KNN), Naïve 

Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM), to build predictive models. These algorithms represent 

diverse approaches to pattern recognition and classification, each offering unique advantages and trade-offs. 

Finally, we evaluate the performance of the trained models using a comprehensive set of metrics, including accuracy, 

precision, recall, and F1-score. By analyzing the results across different datasets and algorithms, we aim to identify patterns, 

insights, and best practices in software defect prediction. 

This study contributes to the broader understanding of software defect prediction methodologies, offering practical 

guidance to developers, testers, and researchers. By leveraging ML techniques and diverse datasets, we strive to enhance the 

reliability and quality of software systems, ultimately benefiting end-users and stakeholders. 

 The organizational framework of this study divides the research work in the different sections. The Literature survey is 

presented in section 2. In section 3 discussed about proposed system methodologies. Further, in section 4 shown Results is 

discussed and. Conclusion and future work are presented by last sections 5. 

II. LITERATURE SURVEY 

 

Pandey, S. K., Mishra, R. B., & Tripathi, A. K. (2020) BPDET employs a deep learning framework to 

automatically learn intricate patterns and relationships from software code, capturing latent features that may not be apparent 

through traditional methods. The deep representation is complemented by ensemble learning, which combines predictions 

from multiple base classifiers to improve overall accuracy and robustness. [1] 

Tong, H., Liu, B., & Wang, S. (2018) In this paper, the authors provide a detailed explanation of the methodology, 

including the architecture and training process of SDAs and the specifics of the two-stage ensemble learning approach. They 

discuss the selection of relevant software features and the preprocessing steps applied to software datasets. The study 

evaluates the performance of the proposed approach using diverse software datasets and compares it with traditional defect 

prediction methods. The experimental results presented in the paper demonstrate the superiority of the proposed approach 

over conventional software defect prediction techniques. [2] 

 Zhu, K., Zhang, N., Ying, S., et  al. (2020). In this paper, the authors provide a detailed description of the 

methodology, including the architecture and training process of DAEs and CNNs, as well as the techniques used for cross-

project knowledge transfer. They evaluate the performance of the proposed approach using within-project and cross-project 

software defect datasets, demonstrating its effectiveness in just-in-time defect prediction. The experimental results presented 

in the paper showcase the superior performance of the proposed approach in both within-project and cross-project defect 

prediction scenarios. [3] 

Shippey, T., Bowes, D., & Hall, T. (2019). In this paper, the authors provide a detailed description of the 

methodology, including the process of AST extraction and the generation of AST N-grams. They also discuss the selection of 
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relevant software datasets and the preprocessing steps applied to prepare the data for defect prediction. The experimental 

results presented in the paper demonstrate the effectiveness of the AST N-gram approach in software defect prediction. The 

AST-based representation of code features significantly improves prediction accuracy compared to traditional methods that 

rely on code metrics or other low-level features. [4] 

 Khuat, T. T., & Le, M. H. (2020) In this paper, the authors provide a detailed account of the experimental setup, 

including the selection of representative software defect datasets and the configuration of ensemble methods and resampling 

techniques. The evaluation metrics used to assess the performance of these ensembles include precision, recall, F1-score, and 

area under the Receiver Operating Characteristic (ROC-AUC) curve. The experimental results presented in the paper reveal 

valuable insights into the efficacy of sampling-based ensembles in software defect prediction on imbalanced datasets. [5] 

Feng, S., Keung, J., Yu, X., et al. (2021) In this paper, the authors provide a detailed description of the 

experimental setup, including the selection of software defect datasets, SMOTE variants, and evaluation metrics. They 

investigate the effects of different SMOTE parameters and analyze the performance variations across multiple runs to 

determine the stability of these techniques. [6]. 

Nehéz, K., & Khleel, N. A. A. (2022) In this paper, the authors provide a detailed description of the methodology, 

including the architecture and training process of the CNN-BiLSTM model. They discuss the selection of relevant software 

defect datasets and the preprocessing steps applied to prepare the data for defect prediction. The experimental results 

presented in the paper demonstrate the effectiveness of the proposed approach in software defect prediction.[7] 

Fan, G., Diao, X., Yu, H., et al. (2019).In this paper, the authors provide a detailed explanation of the methodology, 

including the architecture and training process of the attention-based RNN. They discuss the selection of relevant software 

defect datasets and the preprocessing steps applied to prepare the data for defect prediction. The experimental results 

presented in the paper demonstrate the effectiveness of the proposed approach. The attention-based RNN outperforms 

traditional defect prediction methods in terms of accuracy, precision, recall, and F1-score. [8] 

Swana, E. F., Doorsamy, W., & Bokoro, P. (2022). In this paper, the authors provide a detailed description of the 

experimental setup, including the selection of machine fault datasets and the configuration of Tomek Link and SMOTE 

techniques. They discuss the implications of dataset balancing on machine fault classification and present a comparative 

analysis of the results. The experimental results presented in the paper demonstrate the effectiveness of Tomek Link and 

SMOTE approaches in improving machine fault classification performance on imbalanced datasets. [9]. 

 Tong, H., Wang, S., & Li, G. (2020). In this paper, the authors provide a comprehensive description of the SLDeep 

methodology, including the architecture and training process of the deep learning model. They discuss the selection of relevant 

software defect datasets and the preprocessing steps applied to extract static code features. The experimental results presented 

in the paper showcase the effectiveness of SLDeep in statement-level software defect prediction. The approach outperforms 

traditional defect prediction methods in terms of accuracy, precision, recall, F1-score, and area under the Receiver Operating 

Characteristic (ROC-AUC) curve metrics. [10]. 

III. DATASET 

The datasets used in this study, namely JM1, CM1, and PC, are fundamental to our exploration of software defect 

prediction across various domains. Each dataset encapsulates valuable information about software artifacts and their associated 

defect statuses, providing a fertile ground for training and evaluating machine learning models. 

1. JM1 Dataset: This dataset, named after its source or domain, encompasses a collection of software artifacts and their 

corresponding defect labels. The JM1 dataset offers insights into a specific software project or domain, reflecting the 

intricacies and challenges inherent to that context. It serves as a representative sample for evaluating defect prediction 

models in a real-world scenario. 

2. CM1 Dataset: The CM1 dataset represents another distinct software project or domain, offering its own set of 

features and defect characteristics. By incorporating the CM1 dataset into our study, we enrich our analysis with 

diverse perspectives and challenges, thereby enhancing the robustness and generalizability of our findings. 

3. PC Dataset: The PC dataset, like its counterparts, contributes to the multifaceted exploration of software defect 

prediction. Originating from a unique source or domain, the PC dataset introduces additional dimensions to our 

analysis, enabling us to uncover patterns, trends, and insights that may be specific to its context. 

Dataset Characteristics: Each dataset comprises a combination of features extracted from software artifacts, such as code 

metrics, complexity measures, and historical defect data. These features serve as input variables for our machine learning 

models, guiding their predictive capabilities. Additionally, the datasets contain labels indicating the presence or absence of 

defects in the corresponding software artifacts, facilitating supervised learning tasks. 
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Dataset Preprocessing: Before feeding the datasets into our machine learning models, we perform preprocessing steps to 

ensure data quality and compatibility. This may involve handling missing values, normalizing feature scales, and encoding 

categorical variables. By preprocessing the datasets meticulously, we mitigate potential biases and inconsistencies, laying a 

solid foundation for our analysis. 

Dataset Partitioning: To facilitate model training and evaluation, we partition each dataset into distinct subsets, typically 

comprising a training set and a test set. The training set is utilized to train our machine learning models, allowing them to learn 

patterns and relationships within the data. The test set, on the other hand, serves as an independent dataset for evaluating model 

performance, providing an unbiased assessment of predictive accuracy. 

In summary, the datasets used in this study form the cornerstone of our investigation into software defect prediction. By 

leveraging diverse datasets representing different domains, we aim to elucidate the strengths and limitations of various machine 

learning models, ultimately advancing our understanding of defect prediction methodologies and practices. 

This figure 1 illustrates the distribution of defects within the dataset. The number of occurrences for both true (defective) 

and false (non-defective) instances is displayed. The histogram depicts the frequency of defects, providing insight into the 

imbalance between defective and non-defective software artifacts. 

 

Fig. 1. Showing defects 

The heat map visualizes the correlation matrix of various software metrics and the presence of defects. Each cell in the matrix 

represents the correlation coefficient between two metrics, ranging from -1 to 1. Positive values indicate a positive 

correlation, while negative values signify a negative correlation. The color intensity reflects the strength of the correlation, 

with darker shades indicating stronger correlations. Shown in figure 2. 
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Fig. 2. Heat map 

 

This scatter plot  shwon in figure 3 , depicts the relationship between the volume of software artifacts (x-axis) and the 

occurrence of bugs (y-axis). Each point represents a software artifact, with its position indicating its volume and the presence 

of bugs. The plot highlights any patterns or trends in the relationship between volume and bug occurrence. 

 

 
 

Fig. 3. Showing Volume Bug 

The box plot showcases the distribution of unique operators within the dataset shwon in figure 4. The box represents the 

interquartile range (IQR) of the data, with the median indicated by the line inside the box. The whiskers extend to the 

minimum and maximum values within 1.5 times the IQR, while any outliers beyond this range are represented as individual 

points. 

 
 

Fig. 4. Unique Operators 

 

This histogram visualizes the complexity evaluation results, categorizing software artifacts as either successful or in need of 

redesign. The bars represent the frequency of each category, providing an overview of the distribution of complexity 

evaluation outcomes within the dataset. Shown in figure 5. 

 

 

Fig. 5. Complexity Evaluation 

IV. PROPOSED METHOD 

The proposed method integrates machine learning techniques with insights gleaned from data visualization to enhance 

software defect prediction across diverse datasets. Initially, the datasets  JM, CM1, and PC are acquired and subjected to 
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preprocessing to handle missing values, normalize features, and encode categorical variables. Feature selection is then 

conducted based on exploratory data analysis and correlations between features and defect occurrences, as revealed by heat 

map visualization (Figure 2). Relevant features are identified to optimize prediction accuracy. 

Subsequently, various machine learning models—such as Decision Tree, k-Nearest Neighbors, Naïve Bayes, Random 

Forest, and Support Vector Machine are trained on the preprocessed data and evaluated using performance metrics like 

accuracy, precision, recall, and F1-score. Class imbalances within datasets are scrutinized through histogram visualization 

(Figure 1), providing insights into the distribution of defects. 

The scatter plot (Figure 3) depicting the relationship between volume and bug occurrence is analyzed to uncover patterns or 

trends influencing defect presence. Furthermore, the distribution of unique operators is explored via the box plot (Figure 4) to 

understand its potential impact on defect prediction. Additionally, the histogram (Figure 5) illustrating complexity evaluation 

results aids in assessing its relevance in predicting defects. 

Model optimization involves fine-tuning hyperparameters and selecting the most effective models based on performance 

metrics across datasets. Ensemble methods or model stacking may be employed to combine the strengths of multiple models 

for improved accuracy. Cross-validation ensures the generalization capability of selected models, validated on unseen data to 

ensure robustness in real-world scenarios. 

 

A. System Architecture 

 

 

Fig. 6. System Architecture 

 

The proposed method for software defect prediction can be visualized using a block diagram, which provides a structured 

overview of the process. Here's an explanation of each block in the diagram: 

1. Data Acquisition and Preprocessing: 

This block represents the initial stage of the process, where datasets containing software artifacts and defect labels are 

acquired. Preprocessing steps, such as handling missing values, normalization of features, and encoding categorical variables, 

are performed to prepare the data for analysis. 

2. Feature Selection: 

In this block, exploratory data analysis techniques are applied to understand the characteristics of the datasets. Features that 

exhibit significant correlations with defect occurrences are selected based on their relevance for prediction. 

3. Model Training and Evaluation: 

This block encompasses the training and evaluation of machine learning models using the preprocessed data. Various 

algorithms, including Decision Tree, k-Nearest Neighbors, Naïve Bayes, Random Forest, and Support Vector Machine, are 

trained on the data. The performance of each model is evaluated using metrics such as accuracy, precision, recall, and F1-score. 

4. Data Visualization and Insights: 

Data visualization techniques, such as histograms, scatter plots, and box plots, are employed to gain insights into the 

datasets and model performance. Histograms provide a visual representation of defect distributions within the datasets (Figure 

1). Scatter plots and box plots reveal relationships between different features and defect occurrences (Figures 2, 3, 4, and 5). 

5. Model Optimization and Selection: 

This block focuses on optimizing the performance of machine learning models through hyperparameter tuning and selection 

of the most effective models. Ensemble methods or model stacking techniques may be applied to combine the strengths of 

multiple models. 

6. Cross-Validation and Generalization: 
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Cross-validation techniques are employed to assess the generalization capability of selected models. Models are validated 

on unseen data to ensure their robustness and applicability to real-world scenarios. 

7. Results Interpretation and Conclusion: 

The final block involves the interpretation of results and drawing conclusions based on the analysis. Key findings and 

insights are summarized, and implications for software engineering practice and future research are discussed. 

By presenting the method as a block diagram, stakeholders can easily understand the workflow and key components 

involved in software defect prediction. 

B. Methodology 

 

1. Data Collection and Preprocessing: 

• Acquire the three datasets: JM, CM1, and PC, each containing software artifacts and corresponding defect labels. 

• Perform data preprocessing steps, including handling missing values, normalizing feature scales, and encoding categorical 

variables to ensure data quality and compatibility with machine learning algorithms. 

2. Feature Selection: 

• Conduct exploratory data analysis to understand the characteristics and distributions of features within each dataset. 

• Utilize correlation analysis and feature importance techniques to identify relevant features for defect prediction. 

• Select a subset of features that demonstrate strong correlations with defect occurrences and exhibit high predictive power. 

 

 

3. Model Training and Evaluation: 

• Split each preprocessed dataset into training and test sets, typically using a 70-30 or 80-20 ratio. 

• Train various machine learning models, including Decision Tree, k-Nearest Neighbors, Naïve Bayes, Random Forest, and 

Support Vector Machine, on the training data. 

• Evaluate the performance of each model using metrics such as accuracy, precision, recall, and F1-score on the test data. 

• Perform cross-validation to assess the generalization capability of the models and mitigate overfitting. 

4. Data Visualization and Interpretation: 

• Visualize the distribution of defects within the datasets using histograms to understand class imbalances and potential 

biases. 

• Analyze scatter plots and box plots to explore relationships between different features and defect occurrences. 

• Interpret heat maps depicting correlations between features and defect labels to identify patterns and insights relevant to 

defect prediction. 

5. Model Optimization and Selection: 

• Fine-tune hyperparameters of the machine learning models using techniques such as grid search or random search to 

optimize performance. 

• Compare the performance of different models across all datasets and select the top-performing models based on evaluation 

metrics. 

• Consider ensemble methods or model stacking to combine the strengths of multiple models for improved prediction 

accuracy. 

6. Validation and Generalization: 

• Validate the selected models on unseen data or holdout datasets to assess their robustness and generalization capability. 

• Analyze the consistency of model performance across different datasets and domains to ensure reliability in real-world 

scenarios. 

C. Implementation 

Each step in the flowchart represents a key stage in the methodology: 

1. Data Collection and Preprocessing: 

Acquire and preprocess the datasets to prepare them for analysis. 

2. Feature Selection: 

Identify relevant features for defect prediction. 

3. Model Training and Evaluation: 

Train machine learning models on the preprocessed data and evaluate their performance. 
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4. Data Visualization and Interpretation: 

Visualize the data and interpret insights to inform further analysis. 

5. Model Optimization and Selection: 

 Fine-tune models and select the best-performing ones. 

6. Validation and Generalization: 

 Validate models on unseen data and assess their generalization capability. 

7. Results Analysis and Conclusion: 

 Analyze results and draw conclusions to inform decision-making. 

 This flowchart shown in figure 7provides a high-level overview of the methodology, outlining the sequential steps 

involved in the process of software defect prediction using machine learning techniques. 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7. Implmentation Flow Diagram  

D. Performance Metrics 

 Performance measures are used to evaluate the network performance of the proposed model. This work uses accuracy, 

precision, recall and f1-score as performance measure, which are formulated.   

a) Accuracy: 

 Measures the overall correctness of recognized signs or gestures compared to the ground truth. 

Start 
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                (1) 

b) Precision: 

 Precision signifies the proportion of correctly recognized signs among all recognized signs. 

                        (2) 

Where  

TP=True Positives 

FP= False Positives 

c) Recall: 

 Recall measures the proportion of correctly recognized signs among all actual signs 

                                    (3) 

Where  

TP=True Positives 

FP= False Positives 

FN=False Negatives 

d) F1-Score: 

 Harmonic mean of precision and recall, providing a balanced measure of a model's performance 

         (4) 

V. RESULTS AND DISCUSSION 

 The comparison tables offer a detailed insight into the performance of various machine learning models across three 

distinct datasets: JM1, CM1, and PC. In the context of the JM1 dataset, Decision Tree (DT), k-nearest neighbor algorithm 

(KNN), Naïve Bayes (NB), Random Forest (RF), and Support Vector Machine (SVM) exhibit remarkable predictive 

capabilities 

A. Comparision Table  

TABLE I.  COMPARISON OF PERFORMACE METRICS  WITH DIFFERENT MODELS FOR JM1 DATASET 

 

S.N 

 

Model/Parameter 

 

Accuracy 

 

Precession 

 

Recall 

 

F1-Score 

1 Decision Tree (DT) 0.99 1.0 1.0 1.0 

2 k-nearest neighbor algorithm (KNN) 0.99 0.98 0.96 0.97 

3 Naïve Bayies (NB) 0.98 0.93 0.94 0.94 

4 Random Forest (RF) 0.99 1.0 1.0 1.0 

5 Support Vector Machine (SVM)  0.99 0.98 0.96 0.97 

 

For instance, Decision Tree and Random Forest models achieve exceptionally high accuracy (0.99) and perfect precision, 

recall, and F1-scores, indicating their robustness in defect prediction. Similarly, KNN and SVM also demonstrate high accuracy 

and balanced precision, recall, and F1-scores, making them viable options for defect prediction in the JM1 dataset. 

TABLE II.  COMPARISON OF PERFORMACE METRICS  WITH DIFFERENT MODELS FOR CM1 DATASET 

 

S.N 

  

Model/Parameter 

 

Accuracy 

 

Precession 

 

Recall 

 

F1-Score 

1 Decision Tree (DT) 1.0 1.0 1.0 1.0 

2 k-nearest neighbor algorithm (KNN) 0.99 1.0 0.95 0.98 

3 Naïve Bayies (NB) 1.0 1.0 1.0  1.0 
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4 Random Forest (RF) 1.0 1.0 1.0 1.0 

5 Support Vector Machine (SVM)  1.0 1.0 1.0 1.0 

 

Moving to the CM1 dataset, all models perform exceedingly well, with perfect accuracy and precision, recall, and F1-scores 

of 1.0. This suggests that the models, including Decision Tree, KNN, NB, RF, and SVM, are highly effective in identifying 

defects within the CM1 dataset, showcasing their reliability and robustness in defect prediction tasks. 

TABLE III.  COMPARISON OF PERFORMACE METRICS  WITH DIFFERENT MODELS FOR PC DATASET 

 

S.N 

  

Model/Parameter 

 

Accuracy 

 

Precession 

 

Recall 

 

F1-Score 

1 Decision Tree (DT) 0.99 1.0 0.97 0.99 

2 k-nearest neighbor algorithm (KNN) 0.95 0.89 0.86 0.88 

3 Naïve Bayies (NB) 0.95 0.85 0.92 0.88 

4 Random Forest (RF) 0.99 0.97 0.97 0.97 

5 Support Vector Machine (SVM)  0.99 1.0 0.97 0.99 

 

In the case of the PC dataset, while the performance remains strong across models, there are slight variations in metrics. 

Decision Tree, Random Forest, and SVM maintain high accuracy (0.99) and near-perfect precision, recall, and F1-scores, 

indicating their effectiveness in defect prediction. However, KNN and NB exhibit slightly lower accuracy (0.95) but still 

maintain reasonable precision, recall, and F1-scores, suggesting their suitability for defect prediction in the PC dataset despite 

the minor performance gap. 

Overall, the comparison tables underscore the efficacy of machine learning models in software defect prediction across 

diverse datasets, highlighting their adaptability and reliability in identifying potential defects in software artifacts. 

B. Performance Analyze Graph 

 

In figure 8 shown For the JM1 dataset, all models exhibit high accuracy, precision, recall, and F1-score, indicating robust 

predictive capabilities. Notably, decision tree (DT), k-nearest neighbor (KNN), random forest (RF), and support vector 

machine (SVM) consistently achieve near-perfect scores across all metrics. 

 

 

Fig. 8. Performance Analyze graph for different models for JM1 Datset 

 In figure 9 shown the CM1 dataset, again, all models demonstrate excellent performance, with perfect or near-perfect 

accuracy, precision, recall, and F1-score. This suggests that these models are highly effective in predicting defects within the 

CM1 dataset, with decision tree and random forest models particularly standing out. 
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Fig. 9. Performance Analyze graph for different models for CM1 Datset 

 

In figure 10 shown For the PC dataset, while most models maintain high accuracy, precision, recall, and F1-score, there is 

some variability in performance. Decision tree and random forest models exhibit consistently strong performance, while k-

nearest neighbor and Naïve Bayes models show slightly lower scores, particularly in precision and recall. 

 

Fig. 10. Performance Analyze graph for different models for PC Datset 

 Overall, these comparisons highlight the suitability of various machine learning models for defect prediction across 

different datasets. Decision tree and random forest models consistently demonstrate robust performance across all datasets, 

making them promising choices for defect prediction tasks in software engineering. 

 

VI. CONCLUSION 

The comparison of performance metrics across multiple datasets reveals the efficacy of various machine learning models in 

software defect prediction tasks. Decision Tree, k-nearest neighbor algorithm, Naïve Bayes, Random Forest, and Support 

Vector Machine exhibit strong predictive capabilities, achieving high accuracy and balanced precision, recall, and F1-scores 

across different datasets. These models demonstrate their reliability and robustness in identifying potential defects in software 

artifacts, thereby aiding in quality assurance and software maintenance processes. 

Future Scope  

In future the proposed method can be extended with Further investigation into feature engineering techniques could lead to 
the identification of more informative features, thereby improving the performance of defect prediction models. 
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