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ABSTRACT:  
 

This research proposes a comprehensive approach for the early 

detection and mitigation of Distributed Denial of Service (DDoS) 

attacks in Software-Defined Networking (SDN) environments 

integrated with Internet of Things (IoT) devices. The objectives 

encompass the development of an entropy-based detection 

mechanism, enhancement of detection rates for various DDoS attack 

types, creation of a mitigation algorithm using stochastic techniques, 

implementation of adaptive control for dynamic network response, 

and integration of energy optimization to enhance overall network 

security and performance. Our proposed model introduces an 

Entropy-based DDoS Detection Algorithm (EDDA) leveraging 

entropy metrics to analyze traffic patterns and identify anomalies 

indicative of DDoS attacks, with strategies tailored for detecting 

UDP, TCP, and ICMP SYN flood DDoS attacks. To augment 

traditional methods, we incorporate a novel approach as Integrated 

DDoS Detection, Mitigation, and Energy Optimization Algorithm 

(IDMEOA). This method enhances the resilience of the detection 

system against evolving attack strategies, maintaining high accuracy 

while minimizing false positives. Through the integration of dynamic 

thresholding, our model aims to provide a robust defense mechanism 

against DDoS attacks in SDN_IoT environments, offering a 

comprehensive framework for enhancing network security and 

resilience without relying on machine learning or deep learning 

techniques. 
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1. Introduction 

 

The incorporation of SDN with the IoT has ushered in a new era of connectivity and innovation. 

This convergence promises unparalleled flexibility and efficiency in managing network 

resources, enabling seamless communication and orchestration of complex operations. 

However, this integration also amplifies the vulnerability of IoT devices to DDoS attacks, 

posing significant challenges to network availability and performance. 

The escalating threat posed by DDoS attacks in SDN_IoT environments underscores the 

urgency of developing resilient defense mechanisms. These attacks not only disrupt critical 

network services but also jeopardize the economic viability and reputation of organizations and 

service providers. Addressing this challenge requires innovative approaches that can 

effectively detect and mitigate DDoS attacks, while ensuring minimal disruption to network 

operations. 

Against this backdrop, this research endeavors to develop a IDMEOA for the early detection 

and mitigation of DDoS attacks in SDN_IoT environments. By leveraging entropy-based 

detection mechanisms, stochastic mitigation algorithms, adaptive control mechanisms, and 

energy optimization techniques, the proposed model aims to enhance network security, 

resilience, and performance. Through these efforts, this research seeks to contribute to the 

development of robust defense mechanisms capable of safeguarding SDN_IoT environments 

against the evolving threat landscape. 

 

2. Related Works 

 

Liatifis et al. [1] proposed a method for mitigating Syn Flood attacks and other DDoS attacks 

in SDN environments using an entropy-based algorithm. Their approach achieved an accuracy 

of 85% in detecting attacks, albeit within a small window of limited traffic. However, 

scalability remains a concern, as the method's efficacy may diminish under high traffic loads. 

Ali et al. [2] addressed DDoS attacks in SDN by employing an Intrusion Detection System 

(IDS) enhanced with machine learning techniques. Their system demonstrated high accuracy 

in identifying TCP and UDP attacks by considering network traffic patterns. Although 

effective, the reliance on machine learning may pose challenges in deployment and 

maintenance, particularly regarding model updates and scalability. 

Misra et al. [3] proposed a tailored analytics algorithm for detecting DDoS attacks in SDN 

environments. Their approach exhibited promising results in detecting limited attack packets 

while reducing CPU utilization. However, the algorithm's performance under sustained or 

multi-vector attacks warrants further investigation. Rahman et al. [4] explored the use of 

Blockchain techniques in SDN_IoT environments for mitigating DDoS attacks, leveraging 

Network Function Virtualization (NFV) and mitigation protocols. While their approach 

showed potential in providing good throughput, concerns arose regarding network controller 

overhead and an increase in false positives, particularly with high traffic volumes. 

Cherian et al. [5] developed a counter-based approach for detecting SYN Flood attacks in SDN 

IoT environments. Their method relied on real-time packet analysis and demonstrated effective 

detection based on packet counts entering the network. However, scalability and adaptability 

to varying attack scenarios may pose challenges in practical deployment. Aladaileh et al. [6] 

addressed volumetric DDoS attacks in SDN environments using NFV and process-based 

virtualization. While their approach showed promise in achieving good throughput, concerns 

were raised regarding its high energy consumption. Balancing performance with energy 

efficiency remains a crucial consideration for sustainable network operation. 

Changati et al. [7] revisited Syn Flood attacks and other DDoS attack vectors in SDN 

environments, focusing on scalability and the limitations of their entropy-based algorithm. 
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While effective in detecting attacks, scalability and the algorithm's reliance on limited traffic 

present challenges in real-world deployment scenarios. Addressing these limitations is 

essential for ensuring the robustness and scalability of DDoS defense mechanisms in SDN 

environments. Aldaej et al. [8] proposed a multi-faceted approach for detecting and mitigating 

IP, TCP, and HTTP-based attacks, incorporating techniques such as monitoring resource 

utilization, anomaly detection, and traffic filtering. While effective initially, the detection 

accuracy of the system degrades over time, particularly when faced with new threats and attack 

patterns. Addressing this limitation is crucial for maintaining the system's efficacy in 

dynamically evolving threat landscapes. 

Bhushan et al. [9] addressed a range of attacks including SSH brute-force, ICMP, DNS 

flooding, reflection, and TCP SYN attacks, employing both supervised and unsupervised 

detection techniques. However, performance degradation occurs due to the detection of threats 

at the destination device, highlighting the need for distributed detection mechanisms to 

alleviate the burden on individual network nodes. Lima Filho et al. [10] focused on securing 

communications by analyzing IP, TCP, UDP, and ICMP traffic using clustering, machine 

learning, and online detection approaches. While their method achieved high accuracy in 

detecting normal network behavior, it fell short in identifying abnormal attacks. Enhancing the 

system's ability to detect and respond to anomalous activities is imperative for comprehensive 

threat mitigation. 

Jaafar et al. [11] explored detection techniques for flooding attacks targeting OSI layers 3, 4, 

and 7, employing signature-based, anomaly-based, and machine learning approaches. Notably, 

their anomaly-based detection method exhibited high computational efficiency but may require 

further refinement to effectively detect sophisticated attacks with nuanced patterns. Zekri and 

El Kafhali [12] focused on HTTP-based attacks, utilizing supervised classification techniques 

for detection. However, their method faced challenges in identifying new and unknown attack 

patterns, underscoring the importance of continuous model updates and adaptability to 

emerging threats. 

Velliangiri et al. [13] employed deep learning, cloud computing, and artificial neural networks 

for detecting TCP and UDP attacks in SDN environments. Despite leveraging advanced 

technologies, the classifier's efficiency was compromised, particularly in scenarios involving 

multicasted log file requests, highlighting the need for robust and scalable detection 

mechanisms. Mikail Mohammed Salim et al. [14] utilized deep learning techniques 

implemented using the TensorFlow framework to detect TCP, UDP, and ICMP attacks. 

However, the accuracy of the system diminished when feature selection was based on random 

search methods, suggesting the importance of optimizing feature selection processes for 

improved detection performance. 

Cvitić et al. [15] addressed TCP, UDP, and HTTP GET-based attacks through classification 

techniques. However, their method overlooked the time stability of send and receive data 

features, potentially leading to inaccuracies in detecting congestion occurrences. Ensuring the 

robustness of feature selection processes is essential for mitigating the risk of false positives 

and improving detection accuracy. Aamir et al. [16] focused on classifying DDoS attacks using 

the UCLA dataset, employing classification techniques. Their method encountered reduced 

accuracy when feature selection was based on random search methods. Optimizing feature 

selection processes to identify relevant attack indicators is crucial for enhancing the 

effectiveness of DDoS detection mechanisms. 

Galeano-Brajones et al. [17] investigated TCP-based attacks, including GET/POST methods, 

utilizing classification techniques. However, their method faced challenges such as switches 

becoming unresponsive when the window size was increased, limiting scalability. Overcoming 

such limitations is essential for deploying detection mechanisms in diverse network 

environments effectively. Meejoung Kim et al. [18] employed Multilayer Perception and 
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Support Vector Machine with an RBF kernel classifier for detecting attacks. However, their 

method primarily detected low-rate attacks, potentially overlooking high-intensity attacks. 

Enhancing the sensitivity of detection algorithms to different attack magnitudes is critical for 

comprehensive threat mitigation. 

N. Ravi et al. [19] utilized Support Vector Machine with RBF kernel classifiers for detecting 

UDP, TCP, and ICMP-based attacks. While their algorithm achieved detection by comparing 

with pre-existing datasets, its effectiveness may be limited in identifying novel or previously 

unseen attack patterns. Continuously updating datasets and refining detection algorithms can 

enhance adaptability to emerging threats. Y. Liu et al. [20] proposed the Server-Initiated Router 

Throttle (Sirt) Algorithm for mitigating DDoS attacks, achieving good accuracy in mitigation. 

However, reliance on pre-trained datasets in routers may restrict the algorithm's effectiveness 

in responding to dynamic attack scenarios. Developing mechanisms for real-time adaptation 

and learning can improve the agility and responsiveness of mitigation strategies in combating 

evolving DDoS threats. 

 

Proposed Model 

The proposed IDMEOA offers a comprehensive approach for the early detection and mitigation 

of DDoS attacks in SDN environments integrated with IoT devices. It encompasses the 

development of an entropy-based detection mechanism to analyze traffic patterns and identify 

anomalies indicative of DDoS attacks, with tailored strategies for detecting UDP, TCP, and 

ICMP SYN flood attacks. Additionally, the model incorporates dynamic thresholding 

techniques for real-time analysis of network traffic behavior, adaptively adjusting threshold 

values to distinguish between normal and abnormal activities. To mitigate detected attacks, a 

stochastic mitigation algorithm is developed to minimize false positives and efficiently 

mitigate DDoS attacks. Adaptive control mechanisms enable dynamic network response and 

decision-making, while integration of energy optimization techniques enhances overall 

network security and performance.  An overall workflow of proposed model is shown in fig 1. 

 

Idmeoa 

The Integrated DDoS Detection, Mitigation, and Energy Optimization Algorithm (IDMEOA) 

offer a comprehensive solution for managing network security and efficiency in SDN 

environments with IoT devices. IDMEOA employs an entropy-based detection mechanism to 

identify anomalies indicative of DDoS attacks by monitoring and calculating the entropy of 

network traffic. Upon detecting an anomaly, the algorithm uses stochastic techniques to 

mitigate the attack, leveraging rules of stochastic process representation, stationarity, and 

entropy rate calculation to determine mitigation probability and implement rate-limiting 

measures. Simultaneously, IDMEOA optimizes network energy consumption by adjusting 

device states based on current load and routing traffic through energy-efficient paths, ensuring 

robust defense against attacks while maintaining optimal network performance and energy 

efficiency. 
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Figure 1: Overall Workflow of Proposed model 
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Entropy is a measure of uncertainty or randomness in a random variable. In the context of 

network traffic analysis, entropy is used to quantify the unpredictability of packet distributions. 

The equation for entropy calculation is: 

𝐻(𝑋) = −∑𝑃(𝑥𝑖)𝑙𝑜𝑔2𝑃(𝑥𝑖)      (1) 
H(X): Entropy of the random variable X, P(xi): Probability of occurrence of the ith event xi, 

log2: Logarithm base 2. 

A stochastic process is a collection of random variables indexed by time or space. In IDMEOA, 

network traffic data is represented as a stochastic process to capture the temporal dynamics of 

traffic patterns. The stochastic process representation equation is: 

𝑋(𝑡) = {𝑋(𝑡1), 𝑋(𝑡2), . . . , 𝑋(𝑡𝑛)}       (2) 
X(t): Stochastic process at time t, X(ti): Random variable at time ti. 

Entropy rate measures the average rate of information production per unit time in a stochastic 

process. It provides insights into the complexity and predictability of the process over time. 

The entropy rate calculation equation is: 

𝐻(𝑋) = 𝑙𝑖𝑚𝑛 → ∞
1

𝑛
𝐻(𝑋1, 𝑋2, . . . , 𝑋𝑛)      (3) 

H(X): Entropy rate of the stochastic process X, n: Number of observations in the stochastic 

process. 

Mitigation probability determines the likelihood of successfully mitigating an attack based on 

the observed characteristics of the traffic data. It helps IDMEOA make informed decisions 

about whether to implement rate-limiting measures. The mitigation probability equation is: 

𝑃 = 1 − 𝑒 − 𝜆𝛥𝑡      (4) 
P: Mitigation probability, λ: Mitigation rate parameter, Δt: Time interval. 

IDMEOA optimizes network energy consumption by dynamically adjusting the states of 

network devices based on their current load. This adjustment ensures that devices operate 

efficiently while maintaining network performance. The equation for adjusting device state is: 

𝑛𝑒𝑤_𝑠𝑡𝑎𝑡𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑠𝑡𝑎𝑡𝑒 − 𝑎𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡_𝑓𝑎𝑐𝑡𝑜𝑟 × 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑙𝑜𝑎𝑑      (5) 
new_state: Updated state of the device, current_state: Current state of the device, 

adjustment_factor: Predefined adjustment factor, current_load: Current load on the device. 

IDMEOA selects energy-efficient routing paths to optimize energy consumption in the 

network. It utilizes algorithms improved energy optimize algorithm to find the shortest and 

most energy-efficient paths between network devices. The equation for energy-efficient 

routing is: 

𝑅𝑜𝑢𝑡𝑖𝑛𝑔_𝑃𝑎𝑡ℎ𝑠 =  𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑_𝑒𝑛𝑒𝑟𝑔𝑦_𝑜𝑝𝑡𝑖𝑚𝑖𝑧𝑒_𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 (𝐺, 𝑠, 𝑡)     (6) 
Where, Routing_Paths: Selected routing paths. G: Network topology, s: Source node, t: 

Destination node. 

 

Algorithm IDMEOA 

Input: Source_IP, Destn_IP, Sport, Dport, ∆t, S_config(S), δ, Traffic(T), Θ, Energy(E) 

Output: Detect illegitimate packets, mitigate attacks, optimize network energy 

consumption 

Procedure IDMEOA 

Initialize Parameters: 

Pc ← 0 

baseline_entropy ← initial_baseline_entropy 

adjustment_factor ← predefined_adjustment_factor 

historical_data ← load_historical_data() 

network_topology ← define_network_topology() 

traffic_demand ← define_traffic_demand() 

threshold_load ← predefined_threshold_load 
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While network is operational do 

# Traffic Monitoring and Entropy Calculation 

Pc ← Pc + 1 

Delay(∆t) 

packet_distribution ← get_packet_distribution(network_traffic) 

current_entropy ← calculate_entropy(packet_distribution) 

 

If dynamic_threshold_adjustment(current_entropy, baseline_entropy, adjustment_factor) 

then 

# Anomaly detected 

Report "Anomaly detected" 

update_flow_rules(sdn_controller, malicious_sources) 

 

# Mitigation Phase Using Stochastic Techniques 

T ← collectTrafficStatistics() 

If detectAttack(T, Θ) then 

F ← getAffectedFlows(T) 

S ← getAffectedSwitches(F) 

For each switch in S do 

# Rule 1: Stochastic Process Representation 

stochastic_process ← stochastic_process_representation(T, range(len(T))) 

# Rule 2: Stationarity of Stochastic Process 

If assume_stationarity(stochastic_process) then 

# Rule 3: Entropy Rate of Stochastic Process 

entropy_rate ← calculate_entropy_rate(stochastic_process) 

P ← mitigation_probability(stochastic_process, adjustment_factor, entropy_rate) 

R ← generate_random_number() 

If R ≤ P then 

Drop the attack packets 

Configuration ← RateLimitingConfiguration(S, F, Θ) 

Else 

Continue normal operations 

# Energy Optimization Phase 

F ← getAffectedFlows(T, Θ) 

S ← getAffectedSwitches(F, Θ) 

For each device in network_devices do 

current_load ← device.get_current_load() 

adjust_device_state(device, current_load, threshold_load) 

routing_paths ← energy_efficient_routing(network_topology, traffic_demand) 

Configuration ← routing_paths 

# Monitoring and Evaluation 

Calculate(Dacc, Mt, FPR, Util, E) 

End Procedure 

 

From the above algorithm, IDMEOA enhances network security and performance in SDN-IoT 

environments by integrating three key phases: detection, mitigation, and energy optimization. 

Initially, the algorithm monitors network traffic and calculates entropy to detect anomalies 

indicative of DDoS attacks, adjusting thresholds dynamically. Upon detecting an anomaly, it 

employs stochastic techniques to mitigate the attack by representing traffic data as a stochastic 
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process, assuming its stationarity, and calculating entropy rates to determine the mitigation 

probability, subsequently applying rate-limiting measures if necessary. Concurrently, 

IDMEOA optimizes energy consumption by adjusting device states based on current load and 

routing traffic through energy-efficient paths, ensuring robust defense against attacks while 

maintaining optimal network performance and energy efficiency. 

 

3. Results and Discussions 

 

The performance of the IDMEOA algorithm in detecting DDoS attacks is evaluated using 

metrics such as True Positives (TP), True Negatives (TN), and False Positives (FP). Entropy 

measures the randomness and unpredictability in network traffic, serving as a key indicator of 

potential anomalies. Energy efficiency is a critical aspect of IDMEOA, especially in IoT 

environments where resource constraints are prevalent. The algorithm's impact on CPU 

utilization is crucial for assessing its overhead on network resources. The controller's ability to 

handle additional processing tasks without significantly affecting overall network performance 

is vital. 

The IDMEOA algorithm has demonstrated substantial benefits in enhancing network security 

and efficiency in SDN environments with IoT devices. The entropy-based detection 

mechanism effectively identifies anomalies indicative of DDoS attacks with high true positive 

rates and low false positives. This accuracy ensures that legitimate traffic is minimally 

disrupted while malicious activities are promptly mitigated. 

 

Table 1: Comparison of Performance Evaluation 

Metric 

SIRT 

Algorithm 

[20] 

Kernel 

method [19] 

Entropy-

Based 

Approach [6] 

IDMEOA 

(Proposed) 

True Positives 

(TP) 
89% 90% 92% 97% 

True Negatives 

(TN) 
90% 92% 95% 98% 

False Positives 

(FP) 
10% 8% 5% 2% 

Entropy 

Deviation 
45% 30% 20% 5% 

Energy 

Utilization 
1500 kWh 1400 kWh 1300 kWh 1125 kWh 

CPU Utilization 50% 48% 36% 15% 

Controller 

Overhead 
15% 14% 13% 10% 

 

The table 1 compares four algorithms—SIRT Algorithm, Kernel method, Entropy-Based 

Approach, and IDMEOA (the proposed method)—across various performance metrics. 

IDMEOA shows the highest efficacy with a True Positive (TP) rate of 97%, outperforming the 

others (SIRT: 89%, Kernel: 90%, Entropy-Based: 92%). Similarly, IDMEOA excels in True 

Negatives (TN) at 98%, with the lowest False Positives (FP) at 2%, indicating superior 

accuracy in both detecting and rejecting cases compared to the other methods. The proposed 

algorithm also demonstrates the lowest entropy deviation at 5%, suggesting more stable and 

predictable performance. In terms of resource efficiency, IDMEOA is the most energy-

efficient, utilizing only 1125 kWh, significantly lower than the others (SIRT: 1500 kWh, 

Kernel: 1400 kWh, Entropy-Based: 1300 kWh). It also has the lowest CPU Utilization at 15%, 
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indicating less computational demand, and the lowest Controller Overhead at 10%, reflecting 

reduced system strain and improved overall efficiency. 

 
Figure 2: Performance Comparison of TP and TN 

 

From the fig 2, the IDMEOA demonstrates the highest performance with a TP rate of 97%, 

indicating its superior ability to correctly identify positive cases. Similarly, IDMEOA also 

achieves the highest TN rate at 98%, reflecting its effectiveness in correctly identifying 

negative cases. It shows IDMEOA as the most effective algorithm in accurately classifying 

both positive and negative cases, surpassing the performance of the other three methods. 

 
Figure 3: Comparison of Entropy Deviation 

 

From the fig 3, IDMEOA shows the lowest entropy deviation at 5%, indicating that it produces 

the most stable and predictable results. This is significantly lower compared to the Entropy-

Based Approach at 20%, the Kernel method at 30%, and the SIRT Algorithm at 45%. The data 

clearly highlights that IDMEOA is the most reliable and consistent algorithm, as it minimizes 

variability and maintains a higher degree of order in its operations compared to the other 

methods. 
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Figure 4: CPU Utilization 

 

 
Figure 5: Controller Overhead Comparison 

 

Fig 4 and 5 compares the CPU Utilization and Controller Overhead of four algorithms: the 

SIRT Algorithm, Kernel method, Entropy-Based Approach, and IDMEOA (the proposed 

method). In terms of CPU Utilization, which measures the percentage of CPU capacity used, 

the IDMEOA is the most efficient, utilizing only 15% of CPU resources. This is a substantial 

improvement over the Entropy-Based Approach at 36%, the Kernel method at 48%, and the 

SIRT Algorithm at 50%. Regarding Controller Overhead, which indicates the additional 

processing burden placed on the system controller, the IDMEOA again demonstrates superior 

performance with the lowest overhead at 10%. This compares favorably to the Entropy-Based 

Approach at 13%, the Kernel method at 14%, and the SIRT Algorithm at 15%. These metrics 

underscore IDMEOA's efficiency and minimal impact on system resources, making it the most 

resource-efficient among the algorithms evaluated. 
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4. Conclusion 

 

DDoS attacks pose a significant threat to network security, necessitating the development of 

more advanced techniques for their detection and mitigation. Special attention is required to 

identify and neutralize attack nodes within the network effectively. The EDDA plays a crucial 

role in this endeavor, achieving high detection rates for attack nodes. Upon detection, these 

attack nodes are mitigated using stochastic techniques, leading to a notable enhancement in 

network performance. Furthermore, energy optimization techniques are employed to improve 

the overall efficiency of the network, synergizing with the enhanced detection and mitigation 

capabilities. Comparative analysis reveals that the proposed approaches outperform existing 

methods, with notable achievements in detection accuracy, mitigation time reduction, and 

optimization control. The IDMEOA outperforms the other algorithms in several key areas. It 

has the highest True Positive (TP) rate at 97% and the highest True Negative (TN) rate at 98%, 

indicating superior accuracy in correctly identifying both positive and negative cases. 

Additionally, it has the lowest False Positive (FP) rate at 2%, the lowest entropy deviation at 

5%, and the most efficient energy utilization at 1125 kWh. IDMEOA also demonstrates 

remarkable efficiency in terms of resource usage, with the lowest CPU Utilization at 15% and 

the least Controller Overhead at 10%. These metrics collectively highlight IDMEOA as the 

most effective and efficient algorithm among those evaluated, excelling in both accuracy and 

resource management. 
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