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Abstract:  

Every system naturally has nonlinear dynamics. We classify 

nonlinearity based on whether it's inherent or intentionally added. 

Inherent nonlinearity which is unavoidable, appears as dead zones, 

saturation, and friction. Intentional nonlinearity purposely added, 

alters system performance. Accurate system parameter estimation is 

crucial for modeling and control design. It allows us to develop 

models that closely mimic actual system behavior and design 

control strategies. Initial conditions, system dynamics, and input 

and output data are vital in identifying system parameters. The 

accuracy of identified models relies on high-quality data and an 

understanding of system dynamics. The proposed survey aims to 

highlight the importance of parameter estimation in nonlinear 

biological control systems. It introduces a symbolic method to 

characterize system inputs. Nonlinear observability and extended 

Lie theory are used to analyze and determine structural 

identifiability. A suitable methodology integrates these methods to 

assess structural identifiability. It involves deriving mathematical 

expressions and designing input profiles to enhance identifiability. 

MATLAB and SIMULINK are used for simulation and analysis. 

Keywords: Nonlinear biological control systems, Adaptation law, 

Online Parameter estimation, Online Parameter identification. 
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Introduction 

To approximate the behavior of a nonlinear system, we often turn to linearized system 

approaches. These models are handy for analyzing system behavior under small perturbations 

around a nominal operating point. However, real-world systems frequently exhibit nonlinear 

behavior due to changes in parameters, external disturbances, or inherent nonlinear dynamics. 

Nonlinear biological control systems are systems in which the relationship between the input and 

output is not a simple linear function. These systems are prevalent in biological organisms due to 

the complex interactions and feedback mechanisms involved in maintaining homeostasis and 

adapting to changing environments. Nonlinear phenomena like bifurcations, chaos, and 

hysteresis are common in such systems, beyond the scope of linear models. Therefore, nonlinear 

models are essential to fully understanding and analyzing system behavior. Unlike linear models, 

which can often be described by linear ordinary differential equations (ODE), nonlinear models 

may involve nonlinear equations, differential or difference equations, or even partial differential 

equations. Analyzing these models typically requires numerical methods such as simulation or 

approximation techniques. Yet, the benefits of nonlinear models include better understanding 

and prediction of system behavior, improved control strategies, and optimization of performance. 

Linear systems, described by linear ODEs, often yield solutions expressed as linear combinations 

of exponential or trigonometric functions. Analyzing linear systems is facilitated by techniques 

like Laplace transforms, transfer functions, and eigenvalue analysis. Linear systems possess 

advantageous properties like superposition and homogeneity, making them easier to analyze and 

control. However, linear models may not capture the full range of system behavior under 

nonlinear conditions or large perturbations from the nominal operating point. Although 

mathematical tools like Laplace and z-transforms aid in linear system analysis, no such tools 

exist for the wide variety of nonlinear systems and phenomena. Thus, qualitative analysis plays a 

crucial role in predicting system behavior in the absence of closed-form solutions. 

Parameter estimation is vital in the measurement, diagnosis, and modeling of nonlinear systems 

(Astrom, J. K., et al., 2014). State space modeling is crucial in various fields, including control 

engineering, system identification, and machine learning. However, identifying state space 

models can be challenging due to unknown noise terms and state variables. An online adaptive 

estimation algorithm can estimate unknown parameters of dynamic or real-time systems by 

collecting information from system inputs and outputs. Therefore, identifying and synthesizing 
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unknown nonlinearities can enhance the dynamic or real-time performance of plants or systems 

(Friedland, B., 2016). 

1. Advancements and Challenges in Parameter Estimation for Nonlinear Biological 

Control Systems 

Control systems are generally nonlinear, and nonlinearity may stem from system parameter 

variations over time. System parameter identification is crucial for achieving the desired 

response. Optimal experiment design (OED) is a classical technique used in parameter 

identification, system identification, and control engineering. It involves designing experiments 

to collect data efficiently for estimating model parameters or identifying system dynamics. OED 

aims to obtain valuable information for reliable parameter identification by carefully selecting 

inputs and corresponding measurements. This approach streamlines parameter estimation using 

advanced statistical and optimization techniques, optimizing data collection while minimizing 

effort, time, or cost. However, parameter identification and optimal input design are separate 

from parameter estimation (Ljung, L., 1999). Nonlinear systems with multiple variables can be 

effectively studied using tools like online parameter estimation and coupled closed-loop optimal 

experiment design. These tools maximize information from experiments and enhance parameter 

estimation accuracy, considering the system's non-linearity and multi-variable nature. The Fisher 

information matrix (FIM) is fundamental in online parameter estimation and coupled closed-loop 

optimal experiment design approaches. It quantifies the information content of data for 

estimating unknown parameters, especially in nonlinear multivariable systems. By continuously 

updating estimates based on measurements, the Kalman filter accurately represents system 

behavior at steady-state conditions. Model Predictive Control (MPC) or Receding Horizon 

Control (RHC) is common in control systems, where control inputs are computed by solving 

optimization problems over finite time horizons. MPC depends on managing computational 

complexity, real-time constraints, accurate modeling, dynamic environments, and economic 

objectives alongside system constraints for feasibility. Economic Model Predictive Control 

(EMPC) incorporates economic considerations into control optimization, minimizing costs while 

satisfying constraints. The extended Kalman filter (EKF) and parameter adaptive extended 

Kalman filter (PAEKF) handle nonlinear systems by linearizing dynamics and estimating system 

states and parameters (Liu, Z., et al., 2015) (Nagy, K. Z., et al., 2007). Differential geometry, 

heuristic black-box control, and hybrid dynamical systems provide tools for understanding and 

controlling complex and nonlinear systems (Friedland, B., 2016). An Additional Actuating 
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Signal (AAS) can enhance control over the system's output in its working environment by 

improving the normal actuating signal (Datta, B., et al., 2022). The Additional Actuating Signal 

(AAS) is an extra signal added to a control system alongside the primary actuating signal. 

Adaptive control with a parameter estimator enhances system performance by continuously 

updating model parameters, even with unknown and time-varying parameters (Imran, H. I., et al., 

2020). Adaptive control focuses on developing systems that adapt to changing dynamics, 

optimize performance, and achieve stable control in various situations (Zhu, Y., et al., 2011; 

Netto, M., et al., 2006). Changes in adaptation gain influence the adaptation mechanisms and 

affect the results, especially in Model Reference Adaptive Control (MRAC) strategies, as seen 

through the lens of parameter estimation (Das, A., et. al., 2021; Das, A., et. al., 2022). 

In real-time systems, proper identification of model parameters is essential for stable and optimal 

performance. Several mathematical and computer-based models exist for parameter estimation in 

nonlinear biological control systems. However, a gap remains between theoretical advancements 

and practical applications. 

2. Discussion 

Simple examples can demonstrate the significance of adaptive control in parameter estimation. 

After examining the characteristics of the plant or system and taking into account performance 

needs, we can suggest employing adaptive control. 

 

Scalar plant with an unknown parameter: Consider a scalar plant or system as 

𝑥 = 𝑎𝑥 + 𝑢                                            (1) 

where u, x, and a, define the control input, the scalar state of the system, and one unknown 

parameter, respectively. In any system, we expect the state variable x to remain bounded and 

approach zero over time. This can be achieved by making a suitable choice of the plant input, u. 

Let, the linear control law as 

𝑢 = −𝑘𝑥                                               (2) 
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where, 𝑘 >  𝑎  ,  which can fulfill the control objective by considering a known parameter a. 

Though it can also meet the control objective for the known upper bound as 𝑎 ≥  𝑎  , and the 

specified linear control law with 𝑘 > 𝑎 , 

i.e. the closed-loop system or plant will be unstable for 𝑎 > 𝑘 > 0. In conclusion, the plant can 

achieve stabilization through a linear controller when the known upper bound of the plant 

parameter ensures that the state variable x converges to zero over time. To stabilize the plant, it 

is necessary to use a linear controller with 𝑘 >  𝑎  . Otherwise, online parameter estimators 

coupled with switching designs are recommended. 

The adaptive control law we can establish or represent as 

𝑢 = −𝑘𝑥                                            (3a) 

𝑘 = 𝑥 2,                                               (3b) 

The value of the unknown parameter a is not crucial, but it does ensure that all signals within the 

system or plant remain bounded, and the state variable x converges to zero. 

Parameter estimation and adaptation in adaptive control entail continuously updating model 

parameters using real-time measurements to enhance the controller's performance and adjust to 

evolving system dynamics. Therefore, when linear controllers struggle to manage parametric 

uncertainty effectively, an adaptive control approach emerges as a suitable alternative. 

Scalar plant with an unknown parameter and an external bounded disturbance: By 

considering the same example with a bounded external disturbance d, it can be defined that 

adaptive control law properties may be more effective than the traditional linear schemes:  

𝑥 = 𝑎𝑥 + 𝑢 + 𝑑 ,                              (4) 

The unknown disturbance, d can be approximated as  

𝑑 =  𝑁
𝑖 =1 𝜃 𝑖

∗ 𝜙 𝑖 (𝑡 , 𝑥 ),                             (5) 

where, 𝜃𝑖
∗  are unknown constant parameters and 𝜙𝑖 (𝑡 ,𝑥 ) are known functions. For considering 

the linear control law 

𝑢 = −𝑘𝑥 ,                                          (6) 
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by, 𝑘 > 𝑎 ≥  𝑎  , we can construct that x is bounded at a steady-state as 

 𝑥  ≤
𝑑 0

𝑘 −𝑎
,                                          (7) 

where 𝑑 0 defined as an upper bound for  𝑑  . 

To meet our requirement, we can achieve a decrease in the steady-state value of x by increasing 

the controller gain k, as indicated in our approximation (Ioannou, P., et al. 2007). However, 

using a high-gain controller is undesirable when dealing with high-frequency unmodified 

dynamics. Additionally, for a nonlinear system with any finite control gain, there is no guarantee 

that the steady-state value of x will converge to zero over time, as discussed in reference 

(Ioannou, P., et al. 2007).  

It can be guaranteed by using the following adaptive control law by online estimation and 

canceling the effect of uncertainty via the closed-loop feedback process: 

𝑢 = −𝑘𝑥 − 𝑑                                (8a) 

𝑑 =  𝑁
𝑖 =1 𝜃 𝑖

∗ 𝜙 𝑖 (𝑡 , 𝑥 )                        (8b) 

𝜃𝑖 = 𝑥 𝜙 𝑖 (𝑡 ,𝑥 )                              (8c) 

where, the controller gains 𝑘 > 𝑎 ≥  𝑎  , for simplicity assuming that 𝑎  is known; else 

estimation of k is also required. 

Adaptive control techniques are highly valuable for improving the performance of nonlinear 

systems in various conditions, and overcoming the limitations of linear control methods 

(Ioannou, P., et al. 2007). Nonlinear systems often exhibit complex behaviors beyond the 

capabilities of linear models, and their performance can vary under different operational 

conditions. 

However, it's essential to recognize that adaptive control may only sometimes be the optimal 

choice for parameter estimation in every control problem. In some cases, continuous learning 

processes can gather valuable information about unknown parameters or utilize it for parameter 

estimation. 

Adaptive control algorithms analyze transient response data obtained by exciting the plant or 

system, extracting valuable information about its dynamics, parameter values, and other 
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characteristics (Ioannou, P., et al. 2007). This information is then used for parameter estimation 

or adaptation, allowing the adaptive control system to update and adjust its parameters to achieve 

performance objectives continuously. 

However, when sufficient information about system parameters is readily available, linear, 

robust control techniques may be more suitable than online learning (Liu, Z., et al. 2015). Robust 

adaptive control techniques are designed to handle uncertainties and disturbances in system 

dynamics, ensuring stable and effective control even in changing and uncertain operating 

conditions. The primary goal of robust adaptive control is to develop control systems capable of 

delivering stable and robust performance without requiring precise knowledge of the system 

dynamics. 

3. Conclusions 

The future demands complex systems, presenting both a critical need and an exciting challenge 

to maintain the desired response. This has sparked increasing interest in the research field of 

nonlinear biological control systems, which find applications in diverse domains such as energy, 

robotics, healthcare, biology, and big data analysis. This interest drives the rapid development of 

advanced theories and innovations. 

Designing controllers capable of handling uncertainty and unknown system parameters is crucial, 

especially for nonlinear systems. This involves addressing modeling errors, parameter 

uncertainties, and external disturbances. To determine the most appropriate control approach and 

parameter estimation techniques in such cases, conducting a comprehensive analysis of the 

system dynamics and uncertainties is essential. 

The state space model offers a powerful and versatile framework for designing, analyzing, and 

optimizing control systems. Its capabilities include capturing the complete system dynamics, 

managing multivariable and time-varying systems, and facilitating model-based control design. 

Consequently, it is found to be widespread in control engineering. The state space model 

provides a mathematical representation of the system dynamics, enabling the design and 

implementation of advanced control techniques like optimal control, adaptive control, and robust 

control. These techniques utilize the state space model to incorporate uncertainties, estimate 

unknown parameters, and optimize control actions to achieve the desired system performance. 
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Adaptive control can attain or sustain the desired system response level by employing specific 

techniques. These systematic approaches enable the automatic adjustment of system controllers 

in real-time or following the reference signal. Designing a disturbance-free plant model using an 

adaptive scheme is an effective technique when dealing with a time-varying dynamic system or a 

real-time plant model with unknown parameters. 

Parameter estimation is crucial in biological systems to ensure model accuracy, understand 

underlying mechanisms, and inform personalized medicine by optimizing drug dosing. It aids in 

designing effective control strategies and interventions in public health and reveals system 

robustness and stability. Additionally, it is essential in experimental design and interdisciplinary 

applications like synthetic and systems biology for constructing new biological circuits. 
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