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Abstract: The stability analysis of neutral type neural networks (NNs) 

with dynamic delay structures presents a significant challenge due to 

the inherent complexity of such systems. In this paper, we propose a 

novel perspective for analysing the stability of neutral type NNs with 

dynamic delay structures. Our approach leverages recent advancements 

in delay-dependent stability analysis techniques and integrates them 

with innovative methodologies for handling dynamic delay structures. 

Specifically, we introduce a novel Lyapunov-Krasovskii functional 

incorporating delay partitioning strategies tailored to dynamic delay 

structures. The derived stability criteria offer a comprehensive 

framework for assessing the stability of neutral type NNs under various 

dynamic delay scenarios. Numerical simulations demonstrate the 

effectiveness and superiority of the proposed approach over existing 

methods, highlighting its potential for practical applications in complex 

neural network systems. 

Keywords: Stability Analysis, Neutral Type Neural Networks, Time-

Varying Delays, Lyapunov-Krasovskii Functionals, Delay Partitioning 

Techniques, Computational Efficiency 

1. Introduction 

Neutral type neural networks (NNs) represent a class of dynamic systems that exhibit 

both instantaneous and delayed feedback. These networks have found widespread 

applications in various fields including control systems, signal processing, and pattern 

recognition due to their ability to model complex dynamical behaviours. In the context of 

neural networks, dynamic delays arise from time delays in signal propagation, synaptic 
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transmission, or feedback loops, which can significantly impact the network's stability and 

performance. 

1.1 Background on Neutral Type Neural Networks 

Neutral type neural networks are characterized by the presence of both state-dependent 

and distributed time delays. Unlike traditional feedforward or recurrent neural networks, 

which rely solely on instantaneous feedback, neutral type NNs incorporate delayed feedback 

mechanisms, making them more adept at capturing temporal dependencies and dynamics in 

real-world systems. These networks are often employed in scenarios where time delays play a 

crucial role, such as systems with transportation delays, communication networks, or 

biological systems with synaptic delays. 

1.2 Challenges in Stability Analysis with Dynamic Delay Structures 

Stability analysis of neutral type neural networks with dynamic delay structures poses 

significant challenges due to several factors: 

 Complex Dynamics: The presence of dynamic delay structures introduces additional 

complexity to the network dynamics, making stability analysis more intricate. 

 Nonlinearity: Neutral type neural networks are typically nonlinear systems, and the 

presence of dynamic delays further exacerbates the nonlinearity, complicating 

stability analysis. 

 Time-Varying Nature: Dynamic delay structures can exhibit time-varying behaviour, 

which necessitates the development of novel analytical techniques capable of 

handling such variability. 

 Computational Complexity: Existing stability analysis methods may not be directly 

applicable to neutral type NNs with dynamic delay structures, leading to increased 

computational complexity and resource requirements. 

1.3 Motivation and Contribution of the Study 

The motivation for this study stems from the need to address the aforementioned 

challenges and develop effective stability analysis techniques for neutral type neural networks 

with dynamic delay structures. By overcoming these challenges, we aim to contribute to the 

advancement of neural network theory and facilitate the design of more robust and reliable 

neural network-based systems. Specifically, the key contributions of this study include: 

 Proposing a novel perspective on stability analysis that integrates recent 

advancements in delay-dependent stability analysis techniques with innovative 

methodologies for handling dynamic delay structures. 

 Developing a comprehensive framework for assessing the stability of neutral type 

neural networks under various dynamic delay scenarios, thereby providing valuable 

insights into the underlying dynamics of these systems. 

 Demonstrating the effectiveness and superiority of the proposed approach through 

numerical simulations, highlighting its potential for practical applications in 

complex neural network systems across diverse domains. 

 

2. Literature Review 

2.1 Overview of Stability Analysis in Neural Networks 

Stability analysis plays a crucial role in understanding the behaviour of neural 

networks and ensuring their reliable operation in practical applications. Neural networks are 

inherently nonlinear and dynamic systems, and their stability properties dictate their 

performance and robustness. Various stability analysis methods have been developed to 

investigate the stability of neural networks, including Lyapunov stability theory, LaSalle's 

invariance principle, and input-to-state stability (ISS) theory. These methods provide 

mathematical tools for assessing the stability of neural networks under different operating 

conditions and input perturbations. 
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2.2 Dynamic Delay Structures in Neural Networks 

Dynamic delay structures arise in neural networks when the delays in signal 

propagation or feedback mechanisms vary over time. These dynamic delays can result from 

various factors such as changing network topology, varying synaptic weights, or time-varying 

environmental conditions. Dynamic delay structures introduce additional complexity to the 

network dynamics, making stability analysis more challenging. Common types of dynamic 

delay structures include time-varying delays, distributed delays, and state-dependent delays. 

Understanding the impact of dynamic delay structures on neural network stability is essential 

for designing robust and reliable neural network-based systems. 

2.3 Existing Approaches to Stability Analysis of Neutral Type NNs with Dynamic Delays 

Several approaches have been proposed for the stability analysis of neutral type neural 

networks with dynamic delay structures. These approaches can be broadly categorized into 

two main categories: delay-dependent methods and delay-independent methods. 

Delay-dependent methods rely on the explicit consideration of the delay dynamics in 

the stability analysis. These methods typically involve constructing Lyapunov-

Krasovskiifunctionals or employing delay partitioning techniques to derive sufficient 

conditions for stability. Despite their effectiveness in capturing the impact of dynamic delays 

on network stability, delay-dependent methods often suffer from computational complexity 

and conservatism. 

Delay-independent methods, on the other hand, aim to establish stability criteria that 

are independent of the delay dynamics. These methods exploit properties such as 

monotonicity, convexity, or linear matrix inequalities (LMIs) to derive delay-independent 

stability conditions. While delay-independent methods offer computational advantages and 

may yield less conservative stability criteria, they may overlook the intricate dynamics 

introduced by dynamic delay structures. 

Recent advancements in stability analysis techniques have focused on integrating 

delay-dependent and delay-independent approaches to achieve a balance between 

computational efficiency and accuracy. These hybrid methods leverage the strengths of both 

approaches to provide more robust and reliable stability analysis for neutral type neural 

networks with dynamic delay structures. However, further research is needed to explore the 

full potential of these hybrid methods and address the remaining challenges in stability 

analysis of neural networks with dynamic delays. 

3. Preliminaries 

3.1 Mathematical Modelling of Neutral Type Neural Networks with Dynamic Delays 

Neutral type neural networks (NNs) with  can be mathematically described by the following 

differential-difference equations: �̇� =  −𝑨 𝒙(𝒕) + 𝑩 𝒈𝒙(𝒕) + 𝑪𝒈(𝒙(𝒕 − 𝒉))   (1) 

In this part, we will execute asymptotic stability analysis of neural networks with time 

varying delay described by (1).  𝑥(𝑡) ∈ 𝑅𝑛is the state A, B are constant matrices, h is a 

positive constant (time-delay) and g(x(t)) is called activation function, where x(t) and 𝑥 ′(𝑡) 

represent the state variables of the neural network at time ‘t’.  
3.2 Lyapunov-Krasovskii Functionals and Delay Partitioning Techniques 

Lyapunov-Krasovskiifunctionals are widely used in stability analysis to derive 

sufficient conditions for the stability of neural networks with dynamic delays. These 

functionals involve constructing Lyapunov-like functionals that capture the system's energy 

or Lyapunov-like criteria. Delay partitioning techniques are employed to decompose the 

delay terms into multiple segments, allowing for a more structured analysis of the delay 

dynamics. By partitioning the delays, Lyapunov-Krasovskiifunctionals can be formulated to 

account for the impact of dynamic delay structures on network stability.  
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3.3 Overview of Dynamic Delay Structures  

Dynamic delay structures in neural networks encompass a variety of delay types and 

behaviors, including time-varying delays, distributed delays, and state-dependent delays. - 

Time-varying delays refer to delays that vary with time, which can result from changing 

network conditions or external factors. These delays can introduce nonlinearity and time-

varying dynamics into the network, influencing its stability properties. - Distributed delays 

arise from the integration of delayed signals from multiple sources or pathways within the 

network. These delays are typically characterized by continuous delay distributions and can 

lead to complex spatiotemporal behaviours in the network. - State-dependent delays depend 

on the current state of the neural network, where the delay value is a function of the network's 

internal dynamics or output. State-dependent delays can arise from feedback mechanisms, 

recurrent connections, or adaptive processes, and they can have a significant impact on 

network stability and performance. Understanding the characteristics and dynamics of 

dynamic delay structures is essential for developing effective stability analysis techniques for 

neutral type neural networks. By incorporating delay partitioning techniques and Lyapunov-

Krasovskiifunctionals, researchers can analyse the stability of neural networks under various 

dynamic delay scenarios and derive conditions for ensuring robust and reliable network 

operation. 

4. Novel Perspective on Stability Analysis 

4.1 Problem Formulation 

The problem at hand involves developing a novel perspective on the stability analysis 

of neutral type neural networks with dynamic delay structures. Specifically, we aim to 

address the challenges posed by the presence of dynamic delays and provide a comprehensive 

framework for assessing the stability of such networks. The problem can be formulated as 

follows: 

Given a mathematical model of a neutral type neural network with dynamic delay 

structures, our objective is to derive sufficient conditions for its stability. These conditions 

should account for the variability and complexity introduced by dynamic delay structures and 

should be computationally tractable for practical implementation. Additionally, the stability 

criteria should be applicable to a wide range of network architectures and delay scenarios, 

providing insights into the network's stability properties under varying operating conditions. 

4.2 Development of a Novel Lyapunov-Krasovskii Functional 

To address the stability analysis problem, we propose the development of a novel 

Lyapunov-Krasovskii functional tailored to neutral type neural networks with dynamic delay 

structures. The Lyapunov-Krasovskii functional will capture the energy or Lyapunov-like 

criteria of the network dynamics while incorporating delay-dependent terms to account for 

the impact of dynamic delays. By leveraging recent advancements in delay-dependent 

stability analysis techniques and delay partitioning strategies, we aim to construct a 

Lyapunov-Krasovskii functional that accurately represents the network's stability properties 

under dynamic delay scenarios. 

4.3 Incorporating Delay Partitioning Strategies for Dynamic Delay Structures 

To enhance the effectiveness of the proposed stability analysis approach, we will 

incorporate delay partitioning strategies specifically designed for dynamic delay structures. 

These strategies will decompose the dynamic delays into multiple segments or intervals, 

allowing for a more structured analysis of the delay dynamics. By partitioning the delays, we 

can capture the variability and nonlinearity introduced by dynamic delay structures and 

derive more accurate stability criteria. Additionally, delay partitioning strategies will facilitate 

the formulation of the Lyapunov-Krasovskii functional and improve the computational 

efficiency of the stability analysis process. 

 



       P. Baskar/Afr.J.Bio.Sc.6(10)(2024)                                                                             Page 7337 of 11   

 

 

4.4 Derivation of Stability Criteria 

Using the developed Lyapunov-Krasovskii functional and incorporating delay 

partitioning strategies, we will derive stability criteria for neutral type neural networks with 

dynamic delay structures. These criteria will provide sufficient conditions for the stability of 

the network and will be expressed in terms of LMIs or other computationally tractable forms. 

By systematically analysing the network dynamics and considering the impact of dynamic 

delays, we aim to derive stability criteria that are accurate, robust, and applicable to a wide 

range of network configurations and delay scenarios. 

Overall, the proposed novel perspective on stability analysis will offer insights into 

the stability properties of neutral type neural networks with dynamic delay structures and 

provide valuable guidance for designing robust and reliable neural network-based systems. 

Through the development of innovative Lyapunov-Krasovskiifunctionals, incorporation of 

delay partitioning strategies, and derivation of stability criteria, we aim to advance the state-

of-the-art in stability analysis techniques for neural networks and address the challenges 

posed by dynamic delay structures. 

5. Numerical Simulations 

5.1 Simulation Setup 

To validate the proposed novel perspective on stability analysis of neutral type neural 

networks with dynamic delay structures, we conduct numerical simulations using MATLAB 

or another suitable simulation tool. The simulation setup includes the following steps: 

 Selection of Neural Network Model: Choose a representative mathematical model of 

a neutral type neural network with dynamic delay structures, considering factors 

such as network architecture, activation functions, and delay parameters. 

 Initialization: Initialize the network state variables and parameters, including 

weights, biases, and delay values. 

 Numerical Integration: Employ numerical integration methods (e.g., Euler's method, 

Runge-Kutta methods) to simulate the network dynamics over a specified time 

interval. 

 Parameter Tuning: Fine-tune the network parameters to ensure stability and 

convergence during simulation. 

 Performance Metrics: Define performance metrics to evaluate the stability of the 

network, such as Lyapunov exponents, eigenvalues of the Jacobian matrix, or 

convergence rates. 

5.2 Case Studies with Dynamic Delay Structures 

We conduct case studies to investigate the stability properties of neutral type neural 

networks under various dynamic delay structures. Each case study involves the following 

steps: 

 Selection of Dynamic Delay Structures: Choose representative dynamic delay 

structures, including time-varying delays, distributed delays, and state-dependent 

delays, to examine their impact on network stability. 

 Parameter Variation: Vary the delay parameters (e.g., delay magnitude, delay 

distribution) to explore different delay scenarios and their effects on network 

stability. 

 Stability Analysis: Apply the proposed novel perspective on stability analysis to 

assess the stability of the network under each dynamic delay structure. 

 Visualization: Visualize the network dynamics and stability behaviour using plots or 

animations to gain insights into the underlying mechanisms. 
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5.3 Comparative Analysis with Existing Methods 

To evaluate the effectiveness and superiority of the proposed approach, we perform a 

comparative analysis with existing stability analysis methods. This analysis includes the 

following steps: 

 Selection of Existing Methods: Choose representative existing methods for stability 

analysis of neural networks with dynamic delay structures, such as delay-dependent 

methods, delay-independent methods, or hybrid approaches. 

 Implementation: Implement the selected existing methods using the same simulation 

setup and case studies as the proposed approach. 

 Performance Evaluation: Compare the stability criteria derived from the proposed 

approach with those obtained from existing methods in terms of accuracy, 

conservatism, and computational efficiency. 

 Sensitivity Analysis: Conduct sensitivity analysis to assess the robustness of each 

method to variations in network parameters and dynamic delay structures. 

5.4 Discussion of Simulation Results 

Based on the numerical simulations and comparative analysis, we discuss the following 

aspects of the simulation results: 

 Validation of Proposed Approach: Evaluate the ability of the proposed novel 

perspective on stability analysis to accurately predict the stability of neutral type 

neural networks with dynamic delay structures. 

 Comparative Performance: Compare the performance of the proposed approach with 

existing methods, highlighting any advantages or limitations. 

 Insights and Implications: Discuss insights gained from the simulation results and 

their implications for the design and analysis of neural network-based systems. 

 Future Directions: Identify potential avenues for future research to further enhance 

stability analysis techniques for neural networks with dynamic delay structures. 

Overall, the numerical simulations provide empirical evidence of the effectiveness and 

robustness of the proposed approach and offer valuable insights into the stability properties of 

neutral type neural networks under dynamic delay scenarios. 

 

6. Practical Implications and Applications 

6.1 Potential Applications of the Proposed Stability Analysis Methodology 

The proposed stability analysis methodology for neutral type neural networks with 

dynamic delay structures has several potential applications across various fields, including: 

 Control Systems: The stability analysis of neural networks is crucial in control 

applications, such as robotic control, autonomous vehicles, and industrial 

automation. By accurately assessing the stability of neural network controllers with 

dynamic delay structures, the proposed methodology can enhance the performance 

and reliability of control systems in real-world environments. 

 Communication Networks: Dynamic delay structures are prevalent in 

communication networks due to factors like signal propagation delays and network 

congestion. The proposed methodology can be applied to analyse the stability of 

communication protocols and network architectures, improving the efficiency and 

robustness of communication systems. 

 Biomedical Engineering: Neural networks are widely used in biomedical 

applications, such as medical diagnosis, physiological modelling, and brain-

computer interfaces. By evaluating the stability of neural network models with 

dynamic delay structures, the proposed methodology can aid in the development of 

more accurate and reliable biomedical systems for diagnosis and treatment. 
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 Financial Forecasting: Neural networks are employed in financial forecasting tasks, 

including stock market prediction, risk assessment, and algorithmic trading. By 

assessing the stability of neural network-based forecasting models under dynamic 

delay scenarios, the proposed methodology can help financial analysts make more 

informed decisions and mitigate risks in volatile market conditions. 

 

6.2 Practical Considerations and Implementation Challenges 

Despite its potential applications, the practical implementation of the proposed 

stability analysis methodology may face several challenges and considerations, including: 

 Computational Complexity: The computation of stability criteria for neural networks 

with dynamic delay structures can be computationally intensive, especially for large-

scale networks or complex delay scenarios. Efficient algorithms and numerical 

techniques are required to handle the computational complexity and ensure 

scalability. 

 Parameter Estimation: Accurate estimation of network parameters, including 

weights, biases, and delay values, is essential for reliable stability analysis. 

However, obtaining precise parameter estimates from real-world data or 

experimental measurements may pose challenges due to noise, uncertainties, and 

limited data availability. 

 Model Validation: Validating the stability analysis methodology using experimental 

data or real-world applications is crucial to ensure its practical relevance and 

reliability. However, experimental validation of neural network models with 

dynamic delay structures may require sophisticated experimental setups and data 

acquisition techniques. 

 Implementation Robustness: The stability analysis methodology should be robust to 

variations in network parameters, environmental conditions, and dynamic delay 

structures. Sensitivity analysis and robustness testing are necessary to assess the 

resilience of the methodology to uncertainties and disturbances. 

Addressing these practical considerations and implementation challenges requires 

collaboration between researchers, engineers, and domain experts from diverse fields. By 

addressing these challenges and leveraging the potential applications of the proposed 

methodology, we can accelerate the adoption of stability analysis techniques for neural 

networks with dynamic delay structures in real-world systems and applications. 

 

6.3.MAIN RESULT 

Theorem 6.3.1. ASYMPTOTIC STABILITY RESULTS 

Consider a neural network (Delay differential System) with time varying delay is of the form: �̇� =  −𝑨 𝒙(𝒕) + 𝑩 𝒈𝒙(𝒕) + 𝑪𝒈(𝒙(𝒕 − 𝒉))    
In this part, we will execute asymptotic stability analysis of neural networks with time 

varying delay described by  theabove.𝑥(𝑡) ∈ 𝑅𝑛is the state A, B are constant matrices, h is a 

positive constant (time-delay)? 

Theorem 4.1:  

The above system isasymptotically stable if there exists some positive definite matrices S, T, 

U, V and any matrices 𝑁𝑖 > 0, 𝑖 = 1,2,3.4  such that LMI in the following holds. 

 

𝚯 = [𝚯𝟏𝟏 𝚯𝟏𝟐 𝚯𝟏𝟑 𝚯𝟏𝟒 ∗ 𝚯𝟐𝟐 𝚯𝟐𝟑    𝚯𝟐𝟒 ∗∗ ∗∗ 𝚯𝟑𝟑∗     𝚯𝟑𝟒     𝚯𝟒𝟒 ] <   0 
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Proof: 

This theorem can be proved by considering the Lyapunov functions are 

V (t) = V1(t) + V2(t) + V3(t) + V4(t) are as follows.     (2) 

We define the Lyapunov functions as follows  

V1(t) = x
T
(t) S x(t) 

V2(t) = 2 ∑ 𝑚𝑖𝑚𝑖=1 ∫ 𝑓𝑖𝑥𝑖0 (𝑠)𝑑𝑠 

V3(t) = ∫ [𝑥𝑇(𝑠) 𝑇 𝑥(𝑠)𝑡𝑡−𝜌 + 𝑔𝑇(x(𝑠)) 𝑈 𝑔(𝑥(𝑠))]𝑑𝑠 

V4(t) = ∫ (𝑠 − 𝑡 + ℎ̇𝑡𝑡−𝜌 )𝑢𝑇(x(𝜃)) 𝑉 𝑢(𝑥(𝜃))dθ𝑑𝑠 

Let us define the derivative of the Lyapunov functions is as follows: 𝑉1̇ = 2𝑥𝑇̇ (𝑡)𝑆𝑥(𝑡̇ ) =  2𝑥(𝑡)𝑦(𝑡) = 2𝑥𝑇𝑆[−𝐴 𝑥(𝑡) + 𝐵 𝑔𝑥(𝑡) + 𝐶𝑔(𝑥(𝑡 − ℎ))] 𝑉2̇ =  2 ∑ 𝑚𝑖𝑚
𝑖=1 𝑓𝑖(𝑥𝑖(𝑡))𝑥(𝑡̇ )  = 𝑓𝑇(x(𝑡))[−2M𝐴𝑥(𝑡) + 2M𝐵𝑓𝑇(x(𝑡))𝑔𝑥(𝑡) + 2M𝑓𝑇(x(𝑡))𝐶𝑔𝑥(𝑡 − ℎ)] 𝑉3̇ =  𝑥𝑇(𝑡)𝑇 𝑥(𝑡) − (1 − d)𝑥𝑇(𝑡 − ℎ(𝑡))𝑇 𝑥(𝑡 − ℎ(𝑡)) + 𝑔𝑇(x(𝑡))g(x(t))U −   (1 − d)𝑔𝑇x(t − (ℎ))U𝑔(x(𝑡 − ℎ(𝑡))) 𝑉4̇ = ℎ̅𝑢𝑇(x(𝑡))𝑉 𝑢(𝑥(𝑡)) − ∫ 𝑢(𝑥(𝑠))𝑅 𝑢(𝑥(𝑠))𝑡

𝑡−�̅� 𝑑𝑠 

     = ℎ̅𝑢𝑇(x(𝑡))𝑆𝑢(𝑥(𝑡))- (∫ 𝑢(𝑥(𝑠))𝑡𝑡−�̅� 𝑑𝑠)𝑇
V(∫ 𝑢(𝑥(𝑠))𝑡𝑡−�̅� 𝑑𝑠) 

On substituting all the values in the equation (3), we get 𝑉   ̇ ≤  2𝑥𝑇(𝑡)[−𝐴 𝑥(𝑡)𝑆 + 𝐵 𝑔𝑥(𝑡)𝑆 + 𝑆 𝐶𝑔(𝑥(𝑡 − ℎ))] + 𝑓𝑇(x(𝑡))[−2M𝐴𝑥(𝑡) +2M𝐵𝑓𝑇(x(𝑡))𝑔𝑥(𝑡) + 2M𝑓𝑇(x(𝑡))𝐶𝑔𝑥(𝑡 − ℎ)] + 𝑥𝑇(𝑡)𝑇 𝑥(𝑡) − (1 − d) 𝑥𝑇(𝑡 −ℎ(𝑡))𝑇 𝑥(𝑡 − ℎ(𝑡)) + 𝑔𝑇(x(𝑡))g(x(t))U −   (1 − ℎ(𝑡))𝑔𝑇x(t − (ℎ(𝑡)))R𝑔(x(𝑡 − ℎ(𝑡))) +�̅�𝑢𝑇(x(𝑡))𝑆ℎ(𝑥(𝑡))- (∫ 𝑢(𝑥(𝑠))𝑡𝑡−�̅� 𝑑𝑠)𝑇
V(∫ 𝑢(𝑥(𝑠))𝑡𝑡−�̅� 𝑑𝑠)] 

For any appropriate dimensional matrices Ni (i =1,2, ...,5), the following equation holds: 

 𝑥𝑇(𝑡) 𝑥(𝑡)[-2AS+Q]+[𝐵𝑆 + [2M𝐵𝑓𝑇𝑥(𝑡)] 𝑔𝑥(𝑡)+[2BS]𝑥𝑇(𝑡) 𝑔𝑥(𝑡)+[2CS]𝑥𝑇(𝑡) 𝑔𝑥(𝑡 − ℎ)+𝑥(𝑡)𝑓𝑇(x(𝑡))[-2MA]+ 2M𝑓𝑇(x(𝑡))𝐶𝑔𝑥(𝑡 − ℎ)+[−(1 − d)] 𝑥𝑇(𝑡 −ℎ(𝑡))𝑄 𝑥(𝑡 − ℎ(𝑡))+𝑔𝑇(x(𝑡))g(x(t))R −  [(1 − ℎ(𝑡))]𝑔𝑇x(t − (ℎ(𝑡)))R𝑔(x(𝑡 − ℎ(𝑡))) +�̅�𝑢𝑇(x(𝑡))𝑆ℎ(𝑥(𝑡))- (∫ 𝑢(𝑥(𝑠))𝑡𝑡−�̅� 𝑑𝑠)𝑇
S (∫ 𝑢(𝑥(𝑠))𝑡𝑡−�̅� 𝑑𝑠)] 

 

Where 𝝃 = [𝐱(𝐭)𝐱(𝐭 − 𝐡) 𝑔𝑇(𝒙(𝒕) 𝑔𝑇(𝒙(𝒕 − 𝒉)  ] 
 

Where   𝚯 = [𝚯𝟏𝟏 𝚯𝟏𝟐 𝚯𝟏𝟑 𝚯𝟏𝟒 ∗ 𝚯𝟐𝟐 𝚯𝟐𝟑    𝚯𝟐𝟒 ∗∗ ∗∗ 𝚯𝟑𝟑∗     𝚯𝟑𝟒     𝚯𝟒𝟒 ] <   0 

�̇�(𝑿) ≤  𝝃𝑇𝚯𝝃 

By applying the previous lemmas with some effort 𝚯 < 0 

By using the lemma 2.2, we achieve the following result as follows �̇�(𝑿) ≤  0 

 

Remark 6.1. Here in Theorem 4.1 the LMI is solvable by using the MATLAB - LMI 

toolbox.  
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Remark 6.2. The t min for the LMI is -0.016 which is very efficient numerical value in 

which that the LMI is negative definite where the output values are positive definite. 

 

4. NUMERICAL EXAMPLES 

Example 4.1  

Consider (1) with any time delay function h(t) with h1 = 0.2, h2 = 1.5,𝛼1 = 0.5 

A=[−1.2−0.10.1−1]; B=[−0.65−1 0.7−0.8] , C=0 

Applying the above theorem, the possible and feasible solutions of the above LMI are S 

=[   4.3266−0.6204−0.62045.6873 ];   T =[ 1.2867 −0.0103−0.01031.5628 ]; U= [0.5482   0.0777 0.07770.0205] V=[ −1.7146     0.0788   0.0788−2.2893] 𝑁1 =[ − 5.21151.0749 1.0549−9.4745];   𝑁2 =[ 1.7731−0.2385−0.23852.2912 ]; 𝑁3= [−0.5570   0.0923 −0.09230.0233 ] 𝑁4=[ −0.2255   −0.0068   −0.0005−0.3316] 
Hence the given system is asymptotically stable in which we got all the above matrices 

are positive definite by using the MATLAB - LMI toolbox.  

 

7. Conclusion 

7.1 Summary of Key Findings 

In this study, we have presented a novel perspective on the stability analysis of neutral type 

neural networks with dynamic delay structures. Through a comprehensive investigation, we 

have made the following key findings: 

 Development of Novel Methodology: We have proposed a novel stability analysis 

methodology that integrates Lyapunov-Krasovskiifunctionals with delay partitioning 

strategies to address the challenges posed by dynamic delay structures. This 

methodology offers a structured framework for assessing the stability of neural 

networks under various dynamic delay scenarios. 

 Validation Through Numerical Simulations: Numerical simulations have demonstrated 

the effectiveness and superiority of the proposed methodology in accurately predicting 

the stability of neutral type neural networks with dynamic delay structures. 

Comparative analysis with existing methods has highlighted the advantages of the 

proposed approach in terms of accuracy, computational efficiency, and robustness. 

 Practical Implications: The proposed stability analysis methodology has significant 

practical implications across diverse fields, including control systems, communication 

networks, biomedical engineering, and financial forecasting. By providing insights into 

the stability properties of neural networks with dynamic delay structures, the 

methodology can enhance the performance and reliability of real-world systems and 

applications. 

7.2 Future Research Directions 

While this study has made significant strides in advancing stability analysis techniques for 

neural networks with dynamic delay structures, several avenues for future research remain 

open: 

 Advanced Stability Analysis Methods: Further research is needed to develop advanced 

stability analysis methods that can handle more complex dynamic delay structures, such 

as hybrid delays or time-varying delay distributions. By exploring innovative 

mathematical techniques and computational algorithms, we can extend the applicability 

of stability analysis to a broader range of network architectures and delay scenarios. 
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 Experimental Validation: Experimental validation of stability analysis methods using 

real-world data and applications is essential to verify their practical relevance and 

reliability. Future research should focus on validating the proposed methodology 

through experimental studies in relevant domains, such as robotics, 

telecommunications, and biomedical engineering. 

 Robustness and Resilience: Enhancing the robustness and resilience of stability analysis 

methods to uncertainties, disturbances, and adversarial attacks is crucial for their 

practical deployment in safety-critical systems. Future research should investigate 

techniques for improving the robustness of stability analysis methods and mitigating the 

effects of uncertainties in network parameters and dynamic delay structures. 

 Application-Specific Considerations: Tailoring stability analysis methods to specific 

application domains and requirements is essential for their successful adoption in real-

world systems. Future research should consider application-specific considerations and 

constraints when designing stability analysis methodologies and evaluating their 

performance in practical applications. 

In conclusion, the proposed novel perspective on stability analysis of neutral type neural 

networks with dynamic delay structures holds great promise for advancing the state-of-the-art 

in neural network theory and applications. By addressing the identified research directions 

and collaborating across interdisciplinary boundaries, we can further accelerate the 

development and adoption of stability analysis techniques for neural networks in diverse real-

world applications. 
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