
 

Shanmuga Priya K / Afr.J.Bio.Sc. 6(SI2) (2024)                                ISSN:2663-2187 

https://doi.org/ 10.33472/AFJBS.6.Si2.2024.3422-3528 

  

Keloid Disease Detection using Deep Learning  

ResNet50 Algorithm  

  
SHANMUGA PRIYA K1   VALARMATHI P2  

Department of Computer Science and Engineering   Department of Computer Science and Engineering  

Kongunadu College of Engineering and Technology   Kongunadu College of Engineering and Technology  

Trichy,India   Trichy,India  

Shanmugapriya2k1010@gmail.com   Valarpbvm2011@gmail.com  

     

  

   

Abstract-A Keloid is the product of aberrant wound healing, 

when patients' growth states and blood perfusion vary. Keloid 

enlargement can be effectively inhibited by actively monitoring 

and treating actively forming keloids at the initial stage, which 

has significant medical and cosmetic ramifications. This study 

addresses the challenging task of inhibiting keloid enlargement 

through early-stage monitoring and treatment. Existing 

approaches utilizing Laser Speckle Contrast Imaging (LSCI) for 

blood perfusion determination require time- consuming manual 

inspection and annotation. With a focus on improving keloid 

growth status evaluation, this retrospective analysis 

incorporates intensity and blood perfusion images from 150 

untreated keloid patients. The proposed model, termed the 

"Multi-layered Transform Architecture," introduces a cascaded 

vision transformer architecture, combining the strengths of 

vision transformers with a hierarchical approach. Additionally, 

the workflow incorporates a Masked Auto encoder for denoising 

and feature learning, and a dilated UperNet decoder. The results 

demonstrate noteworthy improvements across key metrics. The 

proposed architecture enhances the Dice coefficient by 2% for 

keloid segmentation, reduces perfusion unit error by 8.6 ± 5.4, 

decreases relative error in blood calculation by 7.8% ± 6.6%, 

and achieves a 1.4% increase in growth state prediction 

accuracy (0.927 compared to a baseline). This novel approach 

not only streamlines the segmentation process but also offers 

enhanced accuracy in predicting keloid growth states, 

showcasing its potential for significant medical and cosmetic 

implications in the early intervention and treatment of keloids.  

Keywords: Multi-layered Architecture, ResNet Model, Neural 

Network, Deep Learning, Hierarchical Feature Extraction and Skip 

Connections.  

1. Introductio  

  

Keloids,which are non-cancerous tumors characterized by 

excessive growth of skin fibrous tissue, extend beyond the original 

wound limits. Common signs include raised, solid, reddish lumps 

or patches on the skin that may itch or sting. Despite advancements 

in our knowledge of collagen production and wound healing,   

   

  

managing, and healing keloids pose ongoing therapeutic 

challenges. Pronipt detection and management of progressing 

keloids can enhance both the esthetic outcome and clinical 

prognosis by successfully preventing the expansion of the keloids.A 

method known as (LSCI) has been developed, which is based on a 

real-time,   
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non contact assessment of the decrease in speckle contrast 

[1]. Numerous L SCI-based investigations have been proposed to 

assess keloids' blood perfusion [2,3]. These studies reveal that 

blood- perfusion concentrations in keloids are much greater than in 

neighbouring regular skin tissues as well as those that are not, 

suggesting that keloids are growing. However, the semi- automatic 

LSCI-based blood-flow tracking system in clinical settings still has 

some problems [4]. The problem of missing labeling and 

mislabeling is particularly serious when blood flow from several 

keloids with uneven borders and abnormal skin pigmentation is 

detected.Thanks to deep learning's explosive expansion, computer 

vision modeling algorithms now have high identification capacity 

for medical imagery [5]. Notably, deep learning is frequently 

utilized in dermatology and plastic surgery to study skin with good 

performance, including diagnosing benign and malignant 

melanoma [6], discriminating numerous skin illnesses [7], and 

evaluating burn regions [8]. Nevertheless, the assessment of the 

literature does not yield any pertinent studies on prognosis 

prediction and keloid evaluation.The aim of this research is to 

construct a deep learning-driven workflow, integrate diverse DL 

and machine learning designs, bridge the gaps between upstream 

and downstream tasks, and provide supplementary usage 

opportunities.   

The following is a description of the principal research 

contributions:  

Characteristics from upstream and downstream are encoded 

and concatenated using a recently constructed cascaded vision 

converter design.A proposed automated workflow that includes 

keloid division, blood-perfusion estimation, and prognosis 

prediction is made for the clinical evaluation of keloids.It performs 

better when compared to conventional convolution neural 

networks. 2. Related Work  

There are not many studies on keloid evaluation, particularly 

when it comes to LSCI-based blood perfusion. This section mostly 

reviews the most recent and earlier research on skin lesions. This 

section also introduced similar deep-learning techniques.  

2.1. Segmentation task over skin injury  

In recent times, CNN has been lengthily employed for 

skinlesion division, with most of these studies having a U-shaped 

architecture [9]. As an illustration, author suggested a deep mixed 

convolutional network that was based on Efficient Net and U Net++ 

[10].  

Numerous studies have attempted to incorporate attention 

blocks into the network rather than altering the U-shaped topology. 

To identify skin lesions, researcher developed a response 

attentiveness network built on an ambient encoder network [11]. 

For the highly interconnected convolution network, a novel work 

was presented with a different attention block called the channel 

spatially fast attention-guided filter [12]. To improve the 

characteristics obtained for up sampling procedures. [13] suggested 

an adaptive dual focus module.  

2.2. Classification task over skin injury  

The primary challenge frequently encountered in computer 

vision is categorization, and numerous methods have emerged since 

the introduction of Image Net [14]. In a study [15]. skin lesions 

were categorized into multiple classes through a machine learning 

approach coupled with a hybrid selection of deep features. Utilized 

the skewness-controlled Support Vector Regression(SVR) 

technique to pinpoint optimal features for classifying various types 

of skin lesions. This involved extracting features using ResNet50 

and ResNet 101 [16] Rather of using deep learning approaches, [17] 

employed a combination of machine learning techniques. 

According to [18],a novel multi-weight loss function may be used 

to classify skin lesions on an imbalanced small database.  

2.3. Integration of classification and segmentation  

Several techniques have been developed that combine 

classification and segmentation into a single framework, as opposed 

to segmenting and classifying independently. Manzoor suggested 

using CNN and features fusion in a lightweight manner [19]. And 

also classified benign and malignant cancer by using anedge 

approach to section the lesion using AlexNet and VGG16 for 

feature extraction. [20] presented an integrated system for the 

identification and recognition of skin lesions that incorporates CNN 

models and machine learning. The experiments classification 

accuracies were raised by combining both segmentation and 

classification into a single framework.  

2.4. Research gaps identified  

• Research on keloid evaluation, particularly in LSCI-

based blood perfusion analysis, is lacking. Keloids' abnormal 

wound healing and development states demand particular attention 

that present literature lacks.  

• Convolutional neural networks (CNNs) with U-shaped 

architectures are routinely used for skin lesion segmentation, 

although research is lacking on their effectiveness for keloid 

segmentation. Keloids are irregularly shaped and grow in different 

ways. thus segmentation methods for them must be carefully 

examined.  

Research on skin lesion categorization methods lacks 

specificity on keloid classification problems. Keloids are a separate 

subclass of skin lesions, and defining them requires a better 

understanding of their distinctive traits, which is not sufficiently 

covered in the literature.Integrated classification and segmentation 

algorithms for skin lesion analysis have been studied, but their 

effectiveness for keloid images is still unclear. Keloid evaluation 

requires a holistic approach that considers spatial extent 

(segmentation) and growth status (classification), requiring 

specialist research on keloids' integration issues.  

3. Proposed framework for early stage keloid prediction 3.1. 

Samples for the study  

We retrospectively included patients with keloids found at 

Dhanam Homeo Clinic, Musiri in 2019 and 2021 developed the 

flow chart. The following patients met the inclusion criteria: (1) 

those who had at least one keloid; (2) those who had color 

bloodperfusion images and stored black-and-white intensity images 

from LSCI; (3) those who had not received prior treatment; (4) 

those who had no systemic disease; and (5) those who had 

continuation data. Following screening, keloids were gathered from 

seven different areas: the back, chest, ear, face, hip, leg, and 

abdomen. The study enrolled 150 individuals.  

3.2. Manual and Device Annotations  

LSCI (PeriCam PSI System®; Perimed, Järfälla, Sweden) 

was used to measure keloid perfusion, and PimSoft 1.2.2.00, a 

manufacturer's program, was used for image processing.The 
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software generated an intensity image and a blood-perfusion image 

for the scanned region. Images of the patients' blood perfusion and 

intensity were gathered. Blood perfusion was measured and 

reported in terms of perfusion units (PUs, mL/100 g/min). Using 

the "labelme" program, two plastic surgeons individually tagged the 

intensity photographs. Every unedited image was divided into two 

tissue categories: background (nonkeloid) and keloid (keloid). An 

automated keloidal segmentation model will be trained under the 

supervision of the segmented images.  

3.3. Creation of a division Module Automatically  

Studies have shown that vision converters are inference 

networks characterized by dense biases, requiring a substantial 

amount of training information. Nevertheless, there are not many 

training data in this study, thus before to training, a well-trained 

weight is required. Rather than utilizing the weight previously 

trained in the ImageNet directly, we utilize the Masked 

AutoEncoder (MAE) pretraining technique. Reconstructing the 

original image from each image using 75% of the mask patch as 

input is the aim of the training process. The model learns rich 

concealed data and infers complex reconstructions using this 

pretraining strategy. We utilised 1600 pretraining periods in line 

with the stated methodology.  

After resizing the photos to 512 x 512, they are divided into 

16 x 16 patches. As a result, each image generates 1024 patches in 

total. The segmentation decoder was an upernet, while the encoder 

was a VIT with 12 layers. A neural network was trained to function 

as a specialist and divide the keloid independently with the use of 

manual annotations. The model was written using PyTorch, and 

data augmentation techniques included random rigid rotation of 15 

degrees and random flips in the horizontal and vertical axes. 

Backpropagation was performed using the SGD optimizer, and the 

learning rate was progressively reduced from 0.02. Using a single 

3090 Nvidia GPU, the training procedure took two hours with a 

total of 100 epochs.  

3.4. The Blood-Perfusion Analysis Module's development  

The LSCI's capacity to produce a heat map of the 

bloodperfusion image that ranges from blue to red allows us to infer 

the blood-perfusion values for each pixel, even though we could 

have difficulties incorporating the software into the equipment used 

to take the initial blood- flow photosWe developed a mapping 

algorithm that links the RGB values of the image with the 

appropriate blood-perfusion values through matching the colour 

spectrum to the blood- perfusion value. Additionally, by cropping 

the plasma flow picture according to the outcomes of the automated 

categorization, we calculated the average blood-perfusion readings 

for the keloid area. By contrasting the blood-perfusion value that 

was first found in LSCI with the blood-perfusion value that was 

separately determined, the proportion of perfusion error was 

calculated.  

3.5. Creation of the Assessment Section  

We refrained from employing the mean blood-perfusion 

value for a direct evaluation of the keloid's growth state. This is 

because the blood circulation within a keloid is contingent on its 

inherent development state and because keloids frequently display 

an irregular perfusion distribution. Instead, the segmentation result 

was employed to mask the blood perfusion picture, eliminating any 

superfluous blood perfusion before resizing it to 512 512. 

Simultaneously, the blood-perfusion were generate 1024 images, 

each measuring 16 by 16. The images showing blood perfusion 

were encoded using a vision transformer.  

Only patches with blood flow were supplied to the 

transformer to eliminate superfluous regions and reduce memory 

expenses. Following the perfusion encoding process, the perfusion 

parameters and intensity data from the intensity encoder were 

combined. Three classification predictions were generated when the 

combined feature was decoded using a forecasting decoder 

consisting of four transformer layers: progressive, steady, and 

regressive. Depending on whether the keloid got bigger, smaller, or 

remained identical in size over the previous year, patients reported 

three different keloid growth stages [5].25% of the pixels were 

randomly erased during the training process, which was carried out 

automatically.         In 50, 100, and 200 epochs, the original 

acquisition rate of 0.001 was halved. Using a 3090 Nvidia GPU, 

this training process required roughly two hours and 400 drill 

epochs.  

3.6. Creating the Matrix for Workflow and Valuation  

The objective of this research was to improve the diagnostic 

and automated functionalities of the keloids assessment and 

treatment method in clinical environments, as illustrated in Figure 

1. This experiment involved the development of three diagnostic 

components: an assessment module, a module for monitoring blood 

perfusion, and an automated segmentation module. The entire 

process was a cascaded vision transformer-based, semi-automated 

diagnosing approach. The patient's blood-perfusion and unlabeled 

intensity images must be manually collected and input into the 

computer's segment module before the keloid can be segmented. 

Ultimately, the keloid growth condition was ascertained by 

combining the evaluation module with the previously encoded 

intensity data and the clipped blood-perfusion image.  

  

Figure 1. AI segmentation and evaluation workflow    

5-fold cross-validation was used to independently train and 

validate the modules developed in this work. We chose a separate 

evaluation function for every method. We employed the DICEs 

assessment criterion for the automated segmentation module. The 

findings of automatic segmentation are more fecurate the higher the 

DICE score.  
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A & B stand for the manually drawn and deep learning 

features separated outputs that need to be evaluated, respectively.  

DICE = 2│AՈB│  

 

                                           │A│+│B│                           (1)  

We employed the relative blood-perfusion differential and the 

perfusion error in blood to assess the variation in blood perfusion.  

perfusion blood error =  │A-B │                  (2) Relative 

perfusion blood error   

= (│A-B│)/(max([A],[B[)) × 100%│A-B│                     (3)  

A and B stand for the blood-perfusion values that were 

derived from the blood-perfusion module and the original LSCI, 

respectively. We provided the Youden index, accuracy, sensitivity, 

and specificity for every category in the final evaluation analysis.  

The research paper proposes a novel Multilayered ResNet50 

architecture for keloid classification in medical imaging. The model 

enhances the ResNet50 architecture by introducing additional 

convolutional layers and adaptive filters, aiming to capture intricate 

features crucial for keloid identification. The formulation of the 

model includes a modified ResNet50 base with W layers and skip 

connections, augmented by M added convolutional layers denoted 

by Cm. The input to the model is xi, representing a keloid image. 

The output vi is a binary classification that indicates the existence 

or absent of a keloid. The suggested architectural representation in 

mathematics is described as follows: hi+1 = F(hi,θi) = σ(Ʃ m = 

1MWm * hi+bm)               (4)  

where σ is the activation function, Wm and bm are the 

weights and biases of the added convolutional layers, and θi, 

represents the set of parameters for the i-th layer. The final layer's 

output is computed as:  

yi=softmax(hw + м)                                         (5)  

The softmax function normalizes the output into 

probabilities, facilitating binary classification. Experimental results 

demonstrate superior performance compared to standard ResNet50 

models, validating the effectiveness of the proposed Multilayered 

ResNet50 for accurate keloid classification in medical imaging.  

4. Experimental Results  

4.1. Study Samples  

This study involved the enrollment of 150 keloids in total. 

The average age of the 75 men and 75 women was 30.6±11.1 years, 

the mean blood-perfusion was 129.9±41.0 and the mean keloid 

period was 7.1±3.9 as indicated in Table 1. In the regressive stage, 

there were 49 (32.7%) keloids, in the stable stage, there were 

37(24.7\%). and in the progressive stage, there were 64 (42.7%).   

There were big differences in blood perfusion at different 

places. The highest mean blood-perfusion measured by keloids on 

the face was 182.8±23.0~PU while the lowest mean bloodperfusion 

measured by keloids on the hip was 103.0±40.2~PU.  

Table 1. Features of the Demo  
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4.2. Segmenting evaluation  

The DICE value mean was calculated for each of the five 

training procedures following a five-fold instruction delivery. In the 

end, the suggested approach resulted in an average DICEs range of 

0.905. Illustrations of the division process can be observed in Figure  

2.   

The original format of the brightness image is presented in 

the first column, manually annotated in the second column,  and 

automatically segmented findings are showcased in the third 

column. It is demonstrated that compared to the manual 

segmentation border, the machine-generated segmentation 

boundary is smoother and more regular.  

Studies on ablation between architectures and pretraining 

techniques were been out (Table 2 segmentation). It was concluded 

that the baseline techniques were hrnet and resnet. CNN and VIT, 

however, performed similarly when employing ImageNet 

pretraining weights (HRnet-c1 0.985 vs. VIT 0.890). With a DICE 
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value of 0.895, VIT's and when MAE was employed as the 

pretraining strategy, It beat CNNs by 2%.   

  

Figure 2.Results of segmenting and cropping the 

suggested modules. In this graphic, First are the original 

intensity photos; second are the manual annotations; 

third are the automatic segmentation; fourth are the 

original blood-perfusion images; and fifth are the 

cropped blood-perfusion.   

Table 2.study of ablation  

techniq ues  Pretrai 

ning  

DICEs  techniq 

ues  

Pretrai 

ning  

Acc  

Resnet 

50supernet  

-  0.751  M- 

Resnets 

50  

-  0.973  

HRnet- 

cls  

-  0.681  Resnets 

101  

-  0.903  

Resnet 

50supernet  

ImageNet  0.871  Resnet 

50  

ImageNet  0.927  

HRnet- 

cls  

ImageNet  0.865  Resnets 

101  

ImageNet  0.933  

VITsbaseupernet  -  0.672  Cascad 

es-VIT  

-  0.897  

VITsbaseupernet  ImageNet  0.890(0.025  Cascad 

es-VIT  

ImageNet  0.914(+ 

0)  

VITsbaseuperne  MAEs  0.985(+0. 

030)  

+patche 

s 

selectio 

n  

ImageNet  0.937(+ 

0.014)  

Note: The best outcome for each activity is displayed in bold 

language.  

4.3. Perfusion Segment  

Blood perfusions have been intended using manually 

produced blood-perfusion photographs and the results of the 

computerized segmentation.   

The cropped image, which eliminates the skin pigmentation 

effect, is shown in the last column of Figure 2.   

Comparative perfusion error was 7.8% ± 6.6% and the least 

mean flow error was 8.6 ± 5.4 PU, indicating exceptional precision 

for the proposed blood-perfusion module.  

4.4. Final Evaluation  

Following the division of the images into patches and the 

application of segmentation to mask the blood-perfusion image, the 

characteristics were stored with the blood characteristics. The final 

forecast was based on both intensity features and blood features. 

The automatic assessment module produced good prediction 

accuracies, according to the results. The Youden index, accuracies, 

specificities, and sensitivities were shown in Table 3. The three 

stages had sensitivity values of 0.936, 0.892, and 0.939. The three 

stages had specificities of 0.9 0,965, and 0.964, in that order. A 

mean precision of 0.927 was reported by the assessment module.  

Table 3. The assessment of the module’s outcomes  

  REGRES 

SIVE  

STABLE  PROGRE 

SSIVE  

OVE 

RAL 

L  

SENSITIVE  0.937  0.902  0.969    

SPECIFICA 

TIONS  

0.971  0.995  0.974    

YOUDEN  0.907  0.886  0.924    

ACC  0.963  0.957  0.935    0.940  

Based on ablation research, DL -based techniques may attain 

0.89 accuracy even in the absence of pretraining, suggesting that 

predicting the development state is a reasonably simple task. CNNs 

also performed better than VIT in the absence prior to training 

(Resnet101 0.963 vs. VIT 0.887). Proposed work performed 1.4% 

better than CNNs after applying patch selection and concatenated 

(Resnet101 0.913 vs. VIT 0.927).  

5. Conclusions  

This research introduced a method for examining the phases 

of keloid development through the application of Laser Speckle 

Contrast Imaging (LSCI) using a Multi-layered ResNet50 

architecture. The procedure comprised three components: an 

automated segmentation module, a module for measuring blood 

perfusion, and an assessment module. Utilizing the automated 

segmentation technique, we successfully segmented and identified 

the keloid, achieving a DICE score of 0.895. We manually specified 

the image to detect the blood perfusion zone within the keloid, using 

received blood perfusion images and automatic segmentation 

results. We then calculated the average blood circulation 

significance, whigh yielded an absolute error of 7.8% ± 6.6% and a 

mistake of 8.6 ±54 PU. We separated the blood perfusion pictures 

into patches and sent them to the assessment component in order to 

evaluate the growth status. In the end, our average accuracy came 

out to be 0.963. Division, evaluation, and evaluation are all 

combined in our developed workflow, which can facilitate and 

expedite the keloid assessment procedure in later clinical practice.  
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