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Abstract—  

In this paper, we are interested in the application of the theory of stochastic and 

mixed effects models on the Geometric Brownian Motion (GBM) with random 

effect, due to its importance in real studies. Actually, in many modelling studies, it 

is preferred to consider stochastic processes instead of deterministic, because the 

majority of real processes are always exposed to influences that are not 

completely understood or that it is impossible to model explicitly, and ignoring 

these phenomena in the modelling may affect the estimation result. Moreover, in 

order to take account of the all population comportment simultaneously, we 

incorporate two types of parameters in the model: fixed effects to capture general 

and common behavior for the whole population, and random effects varying 

between individuals to account for individual deviation. However, the obtained 

mixed-effects model with stochastic differential equations (SDEs), known by the 

Stochastic Differential Mixed Effects (SDME) model, is an extremely poorly 

estimated estimation problem. In fact, in general, the transition density of the 

stochastic process is usually unknown and therefore the likelihood function 

cannot be obtained in a closed form. Thus, many numerical approximation 

methods may be necessary to estimate model parameters. So, here, we consider a 

framework estimate for the Geometric Brownian Motion incorporating random 

effect under the Ito formula, by deriving its transition density from the solution of 

the Fokker-Planck equation. 

Index Terms— Stochastic process, stochastic differential equations, random 

effects, transition density, Brownian Motion, Fokker-Planck, likelihood 

function.  

 

I. INTRODUCTION 

  In many pharmacokinetic/pharmacodynamic (PK/PD) applications and in biomedical researches, the 

experiment requires data on an entire population and not only on a single individual to obtain complete 

information on the phenomenon, as well as several repeated measurements of a quantitative variable for 

each unit, in order to model correctly the progression and the development of a disease or an economic or 

a financial aggregate. Thus, for each individual, many repeated measurements are taken at different points 

of time, it allows, therefore, to model the global behavior of a phenomenon for a group of units and also its 

dynamic side. Thus, this kind of modelling leads to describe the common side of the phenomenon in a 

whole population and the specificity of each individual, which leads to an increasing popularity and an 

extreme need for stochastic models with mixed effects. It is often reasonable to consider that responses 

follow the same model structure for all experimental units, while model parameters vary randomly among 

individuals, and both variations within and between groups are modeled, leading to a more precise 

estimation of population parameters. So, mixed-effects models have become an increasingly popular 
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choice for modeling real processes, due to its inherent incorporation of uncertainty, allowing 

simultaneous representations of randomness in 

dynamics of real processes and variability between experimental units. 

See a rich and developed resources for mixed-effects models in [3], [4], [5], [6] and [7], also, see many 

applications in biomedical field in [8], [9] and [10] and in pharmacokinetic field in [11], [12], and [13]. 

So, all these points of advantage constituted a motivation to develop this article where we are interested in 

the estimation of the GBM containing a random effect. 

A SDME model is established from the SDEs with the incorporation of random effects and stochastic 

components driven by the Wiener process, which is an extension of an ordinary differential equation 

model. For a deterministic differential equation model, the solution is a deterministic function, while 

the solution of a SDE is a continuous time Markov process. The behavior of a diffusion process is 

governed by its transition density, that is in turn governed by the values of the parameters in the SDME 

model. In the theory, the stochastic differential equations (SDE)s have proved to be more useful than 

deterministic differential equations (ODE)s to describe the dynamic side of real processes in, e.g., the 

PK/PD phenomenon, finance studies [14], and other processes in different fields, See: [15], [16], [17], 

[18]. In [19], some examples of the application of the SDEs in the biomedical field are treated by the 

author, as well as other examples in pharmacokinetic field are discussed in [20]. However, statistical 

inference for SDME models is not straightforward, it provides a powerful modeling tool with 

immediate applications, since a closed form solution to many SDME models used in practice is not 

known, except for a few cases. Moreover, to obtain an explicit expression of the maximum likelihood 

estimators, we need to solve the integral in the marginal likelihood function of the parameters given the 

random effects. However, in general, it is not possible to solve analytically and explicitly this integral, 

and the more the dimension of random effects vector increases, the more the difficulties increase. So, a 

closed-form expression of the likelihood function is rarely available. Hence, exact maximum 

likelihood estimation is generally unrealizable. In this paper, we deal with a generic and feasible 

estimation approach based on maximum likelihood estimation, which can be implemented in the 

absence of a closed expression of the transition density. In the literature, we propose a review on 

estimation methods of SDME models in [21], [22] and [23]. Moreover, to strengthen knowledge on 

estimation methods of SDME models, we refer to [24] and [25] that propose an example of stochastic 

mixed effects model with random effects log-normally distributed with a constant diffusion term. Also, 

several solutions have been proposed to approximate the transition density and have shown their 

effectiveness despite certain limitations. For example, the transition density could be approximated by 

the solution of the partial differential equations of Kolmogorov [26]; or by the derivation of an Hermite 

expansion of closed form at the transition density [27], [28], [29], this method has been reviewed and 

applied for many known stochastic processes for one-dimensional [9] and multi-dimensional [30] 

timehomogeneous SDME model; or by simulating the process to Monte-Carlo integrate the transition 

density, see [31], [32], [33]. These techniques are very useful and can solve the problem, but 

unfortunately, they involve intense calculations which make the problem always complicated. 

In this work, we focus on two fundamental issues concerning the implementation of SDME models. The 

first is to incorporate mixed effects in the GBM model, and the second is about the estimation of the model 

parameters by deriving simulation issues. Then, many artificial data were generated using moderate and 

different values of M (the number of subjects) and n (the number of observations for each experimental 

unit data), and the obtained estimates are often close to the true values of the parameters. This is relevant 

to the proposed estimation methodology and its application in situations where large data are not 

available, e.g. in biomedical applications, where mixed effects theory is widely applied. 

II. THEORETICAL TOOLS 

A. Stochastic Differential Mixed-Effects Models 

For a N-multidimensional continuous stochastic process 

                                                      , evolving in M different exper-imental units, the SDME model in the 

sense of Ito is definedˆ as follows [34]: 
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 (1) 

Y0
i = y0

i, i = 1,...,M 

 

 

where θ ∈ Θ ⊂ Rp is the common p-dimensional parameters vector to all individuals and bi ∈ B ⊆ Rq is 

the qdimensional random effects vector of individual i distributed with a density PB depending on a 

population parameter Ψ specifying the marginal distributions of the components of bi, each 

component  may follows different distribution with a joint density function PB, the standard 

choice is a Gaussian distribution, but it could be any other continuous or discrete distribution such as 

Gamma distributions to ensure the positivity of the parameters: 

 
 (2) 

and (Wi(t))0≤i≤M are M independent Wiener process trajectories assumed mutually independent with bj 

for all i 6= j, the different realizations of the two vectors give different paths for each subject and 

describe the intra- and intervariability between different units of the population. Therefore, to ensure 

the existence of solution  to (1), the functions µ(·) : E ×R×Θ×B −→ R and Σ(·) : E ×Θ×B −→ R+, 

representing the drift and diffusion term respectively, are supposed to verify sufficient properties, see: 

[35], [36], [37], with E ⊆ RN is the space state of the process . Therefore, we assume that the 

solution  of (1) have a strict positive density with respect to the Lebesgue measure on E given (bi,θ) 

and Y i(s) = ys
0 , s < t, however, this assumption does not imply the existence of an explicit transition 

density: 

           (3) 

Also, the equation (1) can be understood under the following integral form: 

 
B. Maximum Likelihood Estimation in SDME Models 

Each subject is observed in several points of time ,  and the vector 

 yi =  is the repeated measurements vector for the responses of each subject i. The process Y 

could be observed directly or indirectly with measurement noise, which may be due to a test error or to the 

existence of a disturbance element. Here, we assume that (Yt)t≤0 is observed directly at discrete times 

t1,...,tni, in this case, the likelihood function is defined as follows: 

 

(4) 

where P(Y i|.) denote the density of yi given (θ,Ψ), and 

 

PY (y
i|.) is defined by the Markov property as the product of 

the transition densities for a given realization of the random effects and for a given θ: 

(5) 

 

where  and yj = ytj and the densities PY (.) are as in (3). As mentioned above, the density PB(.|Ψ) 

is often assumed to be multinormal but it could be any other density function. When the transition density 

is known explicitly, the likelihood (4) have a closed form and exact maximum likelihood estimators 

(MLEs) can be obtained, but this is possible in a few cases, otherwise, the transition density should be 

approximated. But, notice that even when the transition density is known, the explicit estimation 

equations for the MLEs may be difficult to compute, because the integral of (4) often has no solution or is 

difficult to solve and the degree of difficulty increases as the dimension of B is greater. In the theory, 
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several methods were proposed to approximate the transition density: by solving the Kolmogrov partial 

differential equations satisfied by the transition density [38]; or by using the approximate transition 

density based on Hermite expansion suggested by [39] and [40], see practical examples in [18] and [30]; 

or by using the Bayesian inference either for model with or without measurements errors; or by using an 

extension of the Kalman Filter; or by simulating the process to Monte-Carlo-integrate the transition 

density, see: [41], [42], [43], [44] and [45]. 

The MLEs obtained by maximizing (4) have usually good properties, and we assume that they are the 

unique maximum of the likelihood function in (4). Thus, after estimating the fixed effects, we generate the 

random effects using the standard method of the mixed effects theory by plugging the estimates of θ in the 

following individual likelihood function: 

bi = argminbi(−𝝨logqY (yji,∆ij|yji−1,bi,θb)) 

 

C. Closed-form transition density and likelihood approximation 

Let  be the approximate transition density of (5) when the exact 

formula is not known, so the approximate likelihood function of (1) is defined as: 

 

(6) 

In the literature, the likelihood function of a nonlinear SDME model could be approximated with the 

likelihood of a linear mixed-effects model [46] or by using Laplacian and Gaussian quadrature 

approximation, see: [47], [48] and [49]. Therefore, by maximizing (6) with respect to (θ,Ψ) we obtain the 

approximate estimators (θ,ˆ Ψ)ˆ . Moreover, as mentioned before, the integral has often no closed form 

solution and efficient numerical integration methods are required. See [50] and [51], for proposed and 

available approximation methods for multidimensional integrals for any random effects distribution, and 

see [18] and [30] where the integral in (6) was approximated using the Gauss-Hermite quadrature and 

Laplace approximation respectively. Thus, after approximating the transition density, the integration over 

the random parameters bi is obtained using the proposed methods, and finally, the approximate likelihood 

is obtained in its approximate closed form to optimize analytically or by using optimization tools. 

Here, we choose to approximate the transition density using the Risken approximation [1] based on the 

Fokker-Planck (FP) equation characteristics or the forward Kolmogrov equation. We notice that, a 

benchmark study was elaborate in order to evaluate the effectiveness of this approach using OU 

process, which is one of few processes with exact transition density, and that shows that this 

approximate transition lead to satisfactory results [2]. Let now describe the proposed methodology for 

approximating the transition density, which is based on the Kramers-Moyal expansion that represents a 

motion equation verified by the probability density. Under some assumptions, see [1], the probability 

density ϕ(y,t) of a N-dimensional SDME model obeys the Kramers-Moyal expansion: 

For special initial condition, the transition density of the process in (1) is the solution of the following 

Fokker Planck equation: 

 

(7) 

 

with: 

(8) 

The equation (7) represents the motion equation of the process Y verified by its transition probability 

PY (yj,∆j|yj−1,b,θ), and the resolution of this equation leads to obtain an explicit form for this density. For 

a small ∆j, we have: 

 
(9) 
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where δ is Fourier integral terms: δ(yj − yj−1)= .  

Then, after a classical computation we get the following: 

 
 

]) 

(10) 

We notice that the proposed approximate transition density can be applied to multidimensional SDME 

models having constant or non-constant and linear and non-linear diffusion term, with random effects 

following any continuous distribution. 

III. GEOMETRIC BROWNIAN MOTION WITH RANDOM  EFFECT 

A. Definition 

The Geometric Brownian process has relevant applications for modeling in pharmacokinetics as well 

as for modeling the growth of a population of bacterial or tumor cells, and is also used in mathematical 

finance to model stock prices. Here we include a random effect in the model in order to improve the real 

side of these processes, as already mentioned, which allows us to consider both system noise and 

individual differences. A SDME model of the Geometric Brownian motion is defined as follows: 

dYt
i = (β + βi)Yt

idt + σYt
idWt

i, Y0
i = y0

i, i = 1,...,M 

(11) 

where Ito solution is given as follows: 

 
with βi ∼ N(0,σβ

2), for this example we have: bi = βi, θ = (β,σ2) and ψ = σβ
2. We which to estimate (β,σ2,σβ

2) 

given a set y = (y1,y2,...,yM) of observations. 

B. Maximum Likelihood 

Assume equidistant observations and that each subject has the same number of observations, that is, 

assume  

and ni = n for all 1 ≤ i ≤ M,1 ≤ j ≤ ni. The likelihood function of (11) using (6) and (10) is reported in the 

Appendix. 

The integral in (14) is solved analytically using the gauss integral, and then, we obtain an exact estimator 

of the parameter β while we need a numerical optimization tool to obtain estimates of σ and σβ, see the 

following section: 

 
IV. IMPLEMENTATION ISSUES 

This section reports the results of applying our estimation method to geometric Brownian motion that we 

perturb with random effects. Using Matlab software, we generate for different sets of parameter values 

and for different choices of M and n, 1000 data sets of dimensions n × M from (12) using true values of 

parameters, i.e. for large data , or for small samples where we have a small number of subjects with a small 

number of repetitions of the experiment on each subject, as is often the case in biomedical applications. 

All the observations were generated by the following code algorithm: 

W = wienerproc(M ∗ n);  

for i = 1 : M 

Data(n ∗ (i − 1) + 1) = 100;  

for j = 2 : n 

Data(n∗(i−1)+j) = 100∗exp((β +βi −σ2/2)∗j +σ2 ∗ W(n ∗ (i − 1) + j));  

end  
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end 

So, we obtain 1000 sets of estimates of βˆ from (13). Then, for numerical optimization reasons, the 

approximated estimators σˆ and σˆβ are obtained by minimizing the negative log-likelihood function (14) 

giving βˆ using genetic algorithm (GA) see: [52], then we get 1000 estimates of σˆ and σˆβ. Note that there 

were no boundary input arguments or initial values when using the GA function: (σˆ2,σˆβ
2) = 

ga(@(β,σ2,σβ
2)(−log(L(σ2,σβ

2)(M,n,β,σ2,σβ
2,Data,∆)),2), and that the results were obtained by searching 

solutions on the set R. We repeat this for different possibilities of data size: (n;M) = (50; 10) and (10; 50). 

Then, we report the mean of each parameter in Table 1. 

 

A. TABLE I 

TABLE1: GEOMETRIC BROWNIAN MOTION MAXIMUM LIKELIHOOD 

ESTIMATES (MEAN AND STD()), FROM SIMULATIONS OF MODEL (11), 

SOLVING THE INTEGRAL ANALYTICALLY 

β 

Parameter 

values 

σ2 σβ2 

 

βˆ σˆ2 σˆβ2 

     M=10 

n=50 

 

-0.3 0.5 0.5 Mean -0.401 0.500 0.510 

   Std() (0.106) (0.023) (0.017) 

     M=50 

n=10 

 

-0.3 0.5 0.5 Mean -0.281 0.500 0.500 

   Std() (0.145) (0.011) (0.032) 

     M=10 

n=50 

 

-0.1 0.4 0.5 Mean -0.126 0.411 0.500 

   Std() (0.174) (0.003) (0.019) 

     M=50 

n=10 

 

-0.1 0.4 0.5 Mean -0.261 0.400 0.500 

   Std() (0.011) (0.045) (0.112) 

 

 

In all simulations we fixed  for all i. From I it is seen that the true parameter values are well 

identified using the exact maximum likelihood estimators of (14). The parameters σ2 and σβ
2 are well 

closed to the true value in particular in the cases (M, n) = (50, 10) where the estimates are better than the 

cases (M, n) = (10, 50), and that, in all cases β is well determined. 

CONCLUSION 

In this paper, we are interested in SDME models, because we believe that such a class of models will 

experience increasing popularity, because it combines the interesting features of mixed effects theory 

(within-subject and between-subject variation), with the ability to disrupt the process dynamics by 

considering random variability within the subject, thus providing a very flexible modeling approach. 

Then, we take the example of GBM as an application in order to estimates the model parameters when 

we include random effects in the model. 

Therefore, we adopt an estimation method as a flexible modeling framework to regularize the ill-posed 

problem of the SDME models, that we apply to the GBM with random effect. The proposed parameter 

estimation method is based on the classical statistical inference by maximizing the likelihood function 

of the model. Therefore, we propose to derive the transition density of the process by solving the 
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Fokker Planck equation and using the equation solution proposed in [1], that we perform otherwise in 

order to get an explicit form of the likelihood function. The proposed approach is addressed by 

simulation studies on large and small data, since in the epidemic field the data are not sufficiently large 

and are usually sparse. However, it may be difficult to numerically evaluate the integral in (4) when the 

dimension of B increases, and efficient numerical algorithms are needed. 

Finally, simulation studies are addressed to estimate the model parameters of GBM with random effect on 

different artificial data sizes, the simulation results show that the estimates obtained by minimizing 

−logL(β,σ,σβ), are close to the true parameter values, and this result can be achieved using even moderate 

values of M (the number of subjects) and n (the number of observation for a given subject). This result is 

relevant for applications of GBM in situations where large data sets are unavailable, as in biomedical 

applications, and where Mixed-Effects theory is widely applied 
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B. APPENDIX 

Here, we report the explicit expression of the likelihood function of (11) using (6) and (10): 

 
(14) 

 

 

 


