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Abstract 

Currently, consumers prefer nutrient-rich foods for health benefits. In this context, Broccoli, a 

cruciferous plant, in particular, is consumed worldwide as sprouts, and vegetables. The high bioactive 

ingredients like vitamins, vital minerals, phenolic compounds, glucosinolates, and others—have made it 

popular. Broccoli's nutritional value and pharmacological benefits are driving up its appeal day by day. 

Due to its many biologically active metabolites, broccoli's phytochemical makeup has been widely studied 

recently. There is a well-known positive correlation between secondary metabolites and their health 

benefits. Scientists recommend it for obesity, type-2 diabetes, cardiovascular disease (CVD), cancer, and 

osteoporosis. Many in vitro and in vivo researches on Broccoli showed a variety of noteworthy biological 

qualities, like anti-obesity, antioxidant, anti-inflammatory, anticancer, antimicrobial, anti-inflammatory, 

and antidiabetic effects. All these bioactive characteristics of Broccoli make it more valuable in the 

treatment of man. This review addresses an updated summary of bioactive components, bioactivities, 

and pertinent mechanisms of action of broccoli derivatives. By evaluating broccoli's wide range of 

nutrients, this review paper sought to determine its potential health advantages. Furthermore, it will also 

aid consumer food choices and nutraceutical and functional food applications. 
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1. Introduction 

Over the past 20 years, population growth and environmental degradation have highlighted critical 

need of sustainable agricultural output for human nutrition (Godfray and Garnett, 2014). Due to rising 

food and agricultural output, water, soil occupation, herbicides, chemical fertilizers, pesticides, and 

food waste disposal have cost the economy, ecosystem, and human health (Weber, 2017). Thus, the 

agriculture and food businesses must overcome a significant obstacle to reach the sustainable 

development goals of providing food demand while minimizing adverse environmental impacts 

(Aschemann-Witzel and Peschel, 2019). Additionally, new food sources with high nutrient content and 

health benefits are sought due to growing public awareness of healthy lifestyles (Butkutė et al., 2018). 

https://doi.org/10.48047/AFJBS.6.8.2024.3222-3242
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Consequently, nutritional foods and nutraceuticals are gaining popularity since they provide basic 

nutrition and reduce risk of chronic diseases (Gupta et al., 2013). Nutrition and health are closely 

connected. Maintaining good health and lowering the chances of many diseases require eating a 

balanced diet. Health and nutrition experts have long recommended a diet rich in fruits and vegetables. 

Hence, it is crucial for human society to consume particular fruits and vegetables in order to prevent 

certain diseases (Murphy et al., 2014). Numerous studies suggest eating natural vegetables may help 

maintain heart health. Consuming lycopene and beta-carotene, for instance, reduce risk of heart 

disease (Jacques et al., 2013).  

In this context, Broccoli (Brassica oleracea L. var. italica), an annual, herbaceous vegetable belonging to 

the family Cruciferae is a nutritious food source and commonly grown for its rigid, terminating crowns 

of green flower buds at the tips of firm palatable stalks (Siomos et al., 2022). In addition, it is low in 

calories, high in fiber, and abundant in vitamins, minerals, and other vital compounds (Hu et al., 2004). 

Broccoli’s antibacterial, antioxidant, immunomodulatory, anticancer, liver-protective, cardioprotective, 

and anti-amnesic properties are widely known in the medical community (Pacheco‐Cano et al., 2018; 

Hu et al., 2004; Hwang and Lim, 2015; Mahn and Reyes, 2012; Park et al., 2016; Vinha et al., 2015; 

Owis, 2015).  

2. Bioactive Compounds  

2.1 Glucosinolates (GSLs) and Sulforaphane (SFN)   

GSLs are crucial secondary metabolites classified by amino acid precursors into aromatic, aliphatic, and 

indole groups (Blažević et al., 2020; Wittstock and Halkier, 2002). Although GSLs are chemically stable, 

post-myrosinase isothiocyanates have varied biological actions (Rask et al., 2000). GSLs make broccoli 

anti-cancer. GSLs also affect flavor, disease resistance, and insect resistance (Bell et al., 2018). Strong 

and nontoxic anti-cancer compounds from broccoli are glucoraphanin (GRA), an aliphatic GSL, and its 

decomposition product, is SFN (Soundararajan et al., 2018). Figure 1 displays generalized 

Glucosinolate hydrolysis.  
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The 22 GLS compounds found in broccoli sprouts and microgreens are shown in Table 1.  

Table 1: List of glucosinalates identified in broccoli. 

Sl 

no. 

Trivial name Chemical name Molecular 

formula 

Molecul

ar 

weight 

(g/mol) 

Reference  

Aliphatic glucosinolates  

01

. 

Glucoiberin 3-Methylsulfinylpropyl 

 

 

C11H21NO10S3 

 

 

423.5 

Baenas et al., 

2012; Baenas et 

al., 2017a; 

Moreira-

Rodríguez et al., 

2017. 

02

. 

Sinigrin 2-Propenyl 

 

 

C10H17NO9S2 

 

 

397.5 

Baenas et al., 

2012; Kestwal et 

al., 2011; Rychlik 

et al., 2015; Guo 

et al., 2018. 

03

. 
Glucoraphenin 4-Methylsulfinylbutyl 

C12H21NO10S3 437.5 Baenas et al., 

2017a. 
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04

, 
Glucoiberverin 3-Methylthiopropyl 

C11H21NO9S3 406.5 Baenas et al., 

2012. 

05

. Progoitrin (2R)-2-hydroxy-3-butenyl 
C11H19NO10S2 389.4 Baenas et al., 

2012; Moreira-

Rodríguez etal., 

2017; Rychlik et 

al., 2015; Guo et 

al., 2018. 

 

06

. 
Glucoerucin 4-Methylthiobutyl 

C12H23NO9S3 421.5 

07

. 
Gluconapin 3-Butenyl 

C11H19NO9S2 373.4 

08

. 
Epiprogoitrin (2S)-2-hydroxy-3-butenyl 

C12H15NOS2 389.4 
El Sayed et al., 

1996. 

 
09

. 
Gluconapoleiferin 2-Hydroxy-4-pentenyl 

C12H21NO10S2 403.4 

10

. 
Glucoalyssin 5-Methylsulfinylpentyl 

 

 

C13H25NO10S3 

 

 

451.5 

Baenas et al., 

2012; 

Guo et al., 2011. 

 

11

. 
Glucobrassicanapin 4-Pentenyl 

C12H21NO9S2 386.4 Yamada-Kato et 

al., 2012. 

12

. 
Glucocochlearin 1-methylpropyl glucosinolate 

C11H21NO9S2 375.4 

 

 

 

Lelario et al., 

2012. 

 

 

13

. 

Glucosativin 

[(Z)-(5-sulfanyl-1-

{[(2S,3R,4S,5S,6R)-3,4,5-

trihydroxy-6-(hydroxymethyl) 

oxan-2-yl] 

sulfanyl}pentylidene)amino]oxy}sulf

onic acid 

 

 

C11H21NO9S3 

 

 

407.4 

14

. 
Glucoconringianin 

3-hydroxy-3-methyl- N -

sulfooxybutanimidothioate 

C11H21NO9S2 391.4 

15

. 
Glucohirsutin 8-Methylsulfinyloctyl glucosinolate 

C16H31NO10S3 492.6 Kestwal et al., 

2011. 

16

. 
Glucojiaputin 1- Methyylethyl glucosinolate 

C12H23NO9S2 361.4 Lelario et al., 

2012. 

Aromatic glucosinolates  

17

. 
Gluconasturtiin 2-Phenylethyl 

C15H21NO9S2 423.45 

 

Baenas et al., 

2012. 

18

. 

Glucosinalbin [(2S,3R,4S,5S,6R)-3,4,5-

trihydroxy-6-

(hydroxymethyl)oxan-2-yl] (1E)-2-

(4-hydroxyphenyl)-N-

sulooxyethanimidothioate 

C14H19NO10S2 425.4 
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Glucoraphanin, glucoiberin, glucoerucin, glucobrassicin, and neoglucobrassicin are the most prevalent 

GLSs among these substances (Pérez‐Balibrea et al., 2010). Specifically, glucoraphanin comprised more 

than half of the total GLSs content, measured at 605–1172 mg/100 g of fresh weight (Guo et al., 2014; 

Yang et al., 2016a). According to Clarke et al. (2011), the bioactive molecules in cruciferous vegetables 

are not GLSs but the byproducts of their hydrolysis (Clarke et al., 2011). Making this distinction is 

crucial. GLSs have the potential to be hydrolyzed by the enzyme myrosinase into a wide range of 

breakdown products in the event that plant tissues are subjected to mechanical injury. These 

degradation products include isothiocyanates (ITCs), thiocyanates, nitriles, epithionitriles, along with 

oxazolidines. ITCs have powerful anticarcinogenic effects (Guo et al., 2014). Different compounds were 

produced under different enzymatic conditions. Epithiospecifier proteins and a pH of less than 6.5 

encourage the synthesis of nitrile while preventing the production of SFN. Nitrile is promoted when 2 < 

pH < 5 when Fe2+ and nitrile-specifier proteins are present. Isothiocyanate synthesis is promoted when 

pH is greater than 8 and thiocyanate-forming protein is present. The formation of SFN is only 

promoted when pH is kept within the neutral range (Shokri et al., 2021; Sikorska-Zimny and Beneduce, 

2021). As was indicated before, the most common GLSs found in broccoli seedlings are glucoraphanin, 

glucoerucin, and glucobrassicin. These GLSs are changed into SFN, erucin, and iberin, respectively, by 

the process of enzymatic conversion (Clarke et al., 2011). SFN naturally activates the phase 2 enzymes 

that detoxify carcinogens in humans and animals. This means that it may reduce the risk of getting a 

number of cancers, especially those of the bladder, colon, and lungs (Baenas et al., 2015). According to 

the findings, the total amount of ITC that was found in broccoli seedlings was around 11 mg/100 g of 

Fresh weight. Moreover, it was stated that these seedlings have 90% SFN (Baenas et al., 2017a; Guo et 

al., 2013). A proposed role for SFN in tumor suppression is depicted in Figure 2, along with its 

conversion from glucoraphanin. 

Indolic glucosinolates  

19

. 

4-Hydroxy 

glucobrassicin 
4-Hydroxy-3-indolylmethyl 

C16H20N2O10S2 464.5 
Baenas et al., 

2012; Baenas et 

al., 2017a; 

Moreira-

Rodríguez et al., 

2017; Clarke et 

al., 2011; 

Guo et al., 2011 

 

20

. 
Glucobrassicin 3-Indolylmethyl 

C16H20N2O9S 448.5 

21

. 
Neoglucobrassicin N-methoxy-3-indolylmethyl 

C17H22N2O10S2 478.5 

22

. 4-Methoxy 

glucobrassicin 
4-Methoxy-3-indolylmethyl 

C17H22N2O10S2 478.5 



 Papiya Dey/Afr.J.Bio.Sc.6(8)(2024)                                                                                          Page 3227 of 21 
 

 

Figure 2: The transformation of Glucoraphanin into Sulforaphane and its potential involvement in 

inhibiting tumor growth 

2.2 Phenolic compounds  

Besides GLSs and ITCs, cruciferous vegetables such as, broccoli, include phenolic compounds (Table 2).  

 

 

 

Table 2: List of phenolic compounds in broccoli sprouts. 

Sl no. Chemical name Molecular formula Molecular 

weight 

Ref. 

Phenolic acid 

01 Ferulic acid C10H10O4 194.18 Le et al., 2019; 

Pasko et al., 2018a; 

Gawlik-Dziki et al., 

2012a; 

Pająk et al., 2014 
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02 Benzoic acid C7H6O2 122.12 Gawlik-Dziki et al., 

2012a. 

03 Sinapic acid C11H12O5 224.21 Baenas et al., 2012; 

Moreira-Rodríguez 

et al., 2017; 

Paśko et al., 2018a. 

 

04 Salicylic acid C7H6O3 138.12 Gawlik-Dziki et al., 

2012a. 

05 Sinapoyl malate C15H16O9 340.28 Moreira-Rodríguez 

et al., 2017. 

06 Protocatechuic acid C7H6O4 154.12 Pająk et al., 2014. 

07 Chlorogenic acid C16H18O9 354.31 Baenas et al., 2012; 

Paśko et al., 2018a; 

Pasko et al., 2018b. 

 

08 Gentisic acid C7H6O4 117.14 Paśko et al., 2018a; 

Pasko et al., 2018b. 

 

09 Caffeoyl-quinic acid C16H18O9  

354.31 

 

Moreira-Rodríguez 

et al., 2017. 

 

10 Digalloyl hexoside 

 

C20H20O14 484.4 

11 1,2-

Diferuloylgentiobiose 

C32H38O19 694.6 

12 Gallotannic acid C76H52O46 1701.19 

13 1,2-

Disinapoylgentiobiose 

C34H42O19 754.7 

14 2-Feruloyl-1,2’-

disinapoylgentiobiose 

C44H50O22 754.7 

15 Gallic acid hexoside C13H16O10 170.12 

16 1,2-Disinapoyl-1-

ferulolylgentiobiose 

C44H50O23 754.7 

17 Caffeic acid C9H8O4 180.16 Le et al., 2019; 

Pasko et al., 2018b; 

Di Bella et al., 2020. 



 Papiya Dey/Afr.J.Bio.Sc.6(8)(2024)                                                                                          Page 3229 of 21 
 

18 Esculetin C9H6O4 178.14 Le et al., 2019 

19 Vanillic acid C8H8O 168.15 Pająk et al., 2014 

Flavonoids 

20 Robinin C33H40O19 740.66 

Baenas et al., 2012; 

Moreira-Rodríguez 

et al., 2017; 

Le et al., 2019; 

Pasko et al., 2018b; 

Pająk et al., 2014; 

Di Bella et al., 2020. 

 

21 Apigenin C15H10O5 270.24 

22 Myricetin C15H10O8 318.23 

23 Kaempferol C15H10O6 286.24 

24 Astragalin C21H20O11 448.38 

25 Luteolin C15H10O6 286.24 

26 Quercetin C15H10O7 302.23 

27 Rutin C27H30O16 610.51 Rychlik et al., 2015. 

 

 

Polyphenols help plants resist diseases and UV radiation. These secondary metabolites are produced by 

plants via the shikimate and phenylpropanoid pathways (Abellán et al., 2019). Major phenolic 

compounds found in broccoli seedlings include flavonoid glycosides and hydroxycinnamic acids 

(Moreira-Rodríguez et al. 2017; Gawlik-Dziki et al. 2012a). 

2.3 Selenium (Se) 

Se, a crucial trace element included in the DNA code, shows its biological significance (Rayman, 2000). 

Like other plants, broccoli accumulates Se (Ellis and Salt, 2003). This trait is linked to better health and 

fewer cancers (Finley et al., 2000). Se directly or indirectly acts as antioxidant. Witte et al. (2001) found 

that decreased Se metabolism increased CVD and cancer risk. Some chemical versions of Se minimize 

cancer risk (Rayman et al., 2008).  

Ip et al. (2000) and Finley and Davis (2001) found that organic Se compounds, especially SMSeC, are 

more powerful chemoprotective agent than sodium selenite and selenomethionine at doses of 1 to 3 

mg Se/kg in humans (Abdulah et al., 2005). SMSeC's monomethylated Se molecules may explain its 

chemoprotective effects. SMSeC, a nonproteinogenic amino acid, protects against cancer chemotherapy 

fully (Wachowicz et al., 2001). As a powerful antioxidant, Se boosts immunity and lowers CVD risk 

(Alissa et al., 2008). Prenatal Se supplementation decreases blood pressure, according to Franco et al. 

(2009). Lubos et al. (2010) found that heart patients with low Se levels had a greater risk of acute 

coronary syndrome death.  

2.4 Other compounds 

Broccoli sprouts and microgreens, are rich in vital nutrients which are essential for body's regular 

processes like DNA synthesis, energy production and biochemical pathways (Turne et al., 2020; 

Jahangir et al., 2009). However, compared to glucosinolate and phenolic chemical studies, broccoli 
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seedling nutritional makeup and germination changes have been studied less. Studies (Moreira-

Rodríguez et al., 2017; Vicas et al., 2019; Guo et at., 2011; Yanaka, 2018) have shown that broccoli 

sprouts are especially high in minerals (potassium, magnesium, calcium, and Se), pigments 

(carotenoids and chlorophylls), vitamins (Vit-A, C, K, and folic acid), and other vital nutrients (dietary 

fiber, amino acids, and fatty acids).  It has been found that conjugated double bonds in long polyene 

chains can block reactive oxygen species (ROS) and minimize oxidative damage, making them 

immunomodulatory and lipophilic antioxidants. Carotenoids may protect degenerative diseases such as 

diabetes, skin damage, CVD, and cancer. Broccoli contains three primary carotenoids: lutein, 

zeaxanthin, violaxanthin, and neoxanthin (Moreira-Rodríguez et al. 2017). Beta-carotene is the 

carotenoid most investigated in broccoli sprouts and microgreens for medical benefits (Mewis et al., 

2012).  

3. Biological Activities  

Over the years, researchers have extensively studied the positive effects of Broccoli's bioactive 

components, such as its ability to act as an antioxidant, anticarcinogenic, antibacterial, and anti-

inflammatory agent. Laboratory studies and clinical trials in animals have evaluated these capacities (Le 

et al., 2019; Yang et al., 2016b; Bahadoran et al., 2013).  

3.1 Anti-cancer activity  

Glutathione (GSH) levels in cancer cells are higher than in healthy cells. In cancer cells, GSH 

concentrations are four times greater than in healthy cells and over 1,000 times higher than in 

extracellular fluid. Tenfold higher amount is found in cancer cells (Kalinina and Gavriliuk, 2020). 

Glutathione S-transferase uses SFN and GSH in cancer cells to produce SFN-GSH. SFN-GSH uses g-

glutamyltranspeptidase, cysteine glycinase, and N-acetyltransferase to produce SFN-Cys-Gly, SFN-Cys, 

and SFN-NAC. Upon entering the cell, SFN quickly combines with GSH to generate SFN-GSH, which the 

cell accumulates. The high GSH level of carcinoma cells boosted SFN production and increased its anti-

cancer activity (Gu et al., 2022). SFN's primary mechanism of action against cancer is the inhibition of 

histone deacetylase (HDAC). Multiple research (Chen et al., 2014; Jiang et al., 2016; Bär et al., 2022) 

have demonstrated that SFN hinders HDAC activity, hence impeding cell growth and promoting 

programmed cell death. This process results in the suppression of E2F3 and Ki-67, as well as the 

activation of p21, bax, and caspase-3 in cancerous cells. When SFN (20-40 mM) disrupts the 

mitochondrial membrane, it may cause apoptosis in different cancer cell types by releasing cytochrome 

c, Smac/DIABLO, and AIF from the mitochondria. Protein kinase B (PKB, Akt) and ERK1/2 are activated 

by SFN (40 mM), which results at an end to the cell cycle and apoptosis and induces apoptosis (Choi 

and Singh, 2005). Additional research (Rudolf et al., 2009) has demonstrated that SFN may induce 

apoptosis through JNK and p38. Additionally, it has been shown that SFN can damage the endoplasmic 

reticulum, which in turn can activate the effector proteins calapsin, caspase-12, caspase-9, and 

caspase-3 in that order (De Gianni and Fimognari, 2015). The mechanism of anti-cancer activity of SFN 

is diagrammatically shown in Figure 3. 
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Figure 3: Mechanism of anti-cancer activity of SFN [GSH - Glutathione, HDAC - Inhibitory Effect on 

Histone Deacetylase]. 

3.2 Antioxidant activity  

ROS production damages biomolecules and leads to chronic diseases such as neurological disorders, 

CVDs, and age-related malignancies (Uttara et al., 2009). The body creates a lot of ROS due to 

nicotinamide adenine dinucleotide phosphate oxidases, according to recent research. Further cellular 

sources of ROS include lipoxygenases, cytochrome P450, neutrophils, monocytes, endothelial cells, and 

nitric oxide synthases (Bardaweel et al., 2018). ROS affects chronic inflammation, metabolic diseases, 

oxidative stress/regulation, and normal physiological processes differently. Targeting ROS is linked to 

antioxidant, anti-inflammatory, antidiabetic, and anti-obesity therapy (Alfadda and Sallam, 2012). 

Natural or synthetic antioxidants can remove free radicals, inhibit ROS formation, and scavenge ROS 

(Uttara et al., 2009). Broccoli contains several antioxidants, including carotenoids, phenolic 

compounds, and vitamins (Jang et al., 2015). Antioxidants neutralize oxidative stress, preventing DNA 

damage that could lead to cancer. Cells and tissues need antioxidants to prevent oxidative damage. 

Besides preventing mutations and aberrations, this biological defense can avert cancer. Scavenging free 

radicals and reducing oxidative stress, antioxidants improve cellular function and integrity and may 

reduce cancer risk. The body's antioxidant and anti-inflammatory actions are linked. Notably, cancer is 
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directly linked to chronic inflammation. Antioxidants reduce chronic inflammation caused by oxidative 

stress and protect body from various diseases. (Rizwan et al., 2014). 

3.3 Anti-Inflammatory activity  

The immune system's natural reaction to defend the body against damage and infection is 

inflammation. However, chronic inflammation can cause arthritis, heart disease, and cancers. 

Antioxidants, phytochemicals, and other bioactive elements reduce inflammation. Broccoli contains 

SFN, which may alleviate inflammation by blocking inflammatory enzymes (Nandini et al., 2020). 

Research suggests that it boosts antioxidant enzyme synthesis and protects cells from inflammation-

related damage (Santín-Márquez et al., 2019; López-Chillón et al., 2019). Chronic inflammation 

promotes cancer cell proliferation. Prolonged inflammation may increase growth factors and cytokines, 

which encourage cell division and help the tumor, establish new blood vessels. Inflammatory cells 

produce enzymes that damage the extracellular matrix, allowing cancer cells to invade nearby tissues 

and spread to other organs. Chronic inflammation is connected to many cancers (López-Chillón et al., 

2019; Hwang and Lim, 2014). Chronic gastrointestinal inflammation, such as Crohn's disease and 

ulcerative colitis, raises colorectal cancer risk. In addition, chronic hepatitis B or C infection can induce 

liver inflammation and malignancy. Also, long-term human papillomavirus infections can inflame the 

cervix and increase cervical cancer risk (Frazer, 2004).  

3.4 Antidiabetic activity  

Broccoli supplements type 2 diabetes treatment and prevents its long-term effects (Ares et al., 2013). 

Several studies evaluated the health benefits of microgreens and broccoli sprouts for diabetics. A novel 

study examined how broccoli sprouts powder affects insulin resistance in type 2 diabetics. Broccoli 

sprout powder containing a lot of SFN reduced serum insulin levels and helped with diabetes 

(Bahadoran et al., 2012b). A recent study found that early broccoli sprout SFN may treat type 2 

diabetes. It may activate peroxisome proliferators-activated receptors, which manage glucose balance 

in high blood sugar and oxidative stress (Bahadoran et al., 2013). 

3.5 Anti-Obesity activity  

Obesity is connected to metabolic diseases like heart disease and type 2 diabetes, making it a global 

health issue. Several studies have demonstrated that broccoli sprouts regulate lipid metabolism and 

reduce obesity. A double-blind clinical trial found that type 2 diabetics supplementing with broccoli 

sprout powder improved lipid profiles and the ratio of oxidized to low-density lipoprotein, risk factors 

for obesity and CVD (Bahadoran et al., 2012a). SFN's Nrf2 pathway activation may help broccoli sprouts 

control lipid metabolism (Bahadoran et al., 2013). Study suggests that broccoli sprout glucose may 

minimize lipid accumulation and increase Nrf2 activation. It reduces obesity and diabetes by 

decreasing gluconeogenesis and lipogenesis gene activity (Xu and Ota, 2018). 

3.6 Anti-neurodegenerative disorders  

Neuroprotective isothiocyanate SFN is produced from glucosinolate glucoraphanin. Parkinson's and 

Alzheimer's benefit from SFN's Nrf2/ARE pathway activation preventing neurodegeneration. Additional 

symptoms include oxidative stress, neuronal loss, and inflammation. Thus, broccoli may prevent 

neurodegenerative illnesses (Tarozzi et al., 2013).  
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3.6 Against asthma  

SFN can reduce nasal irritation. It also decreases asthma and allergy symptoms from particle pollution. 

A study found that 100-200 g of broccoli with SFN can improve asthma and allergies. Thus, broccoli 

with glucoraphanin is therapeutic (Heber et al., 2014). 

3.7 Other effects  

Broccoli has been studied in vitro, in vivo, and clinically for additional health benefits. Broccoli sprouts 

are rich in bioactive compounds that inhibit Xanthine Oxidase (XO) which may treat gout and other XO-

induced illnesses (Gawlik-Dziki et al., 2012b). XO converts xanthine and hypoxanthine to uric acid. 

Placental insufficiency-related brain damage in newborn rats may be prevented by broccoli sprout 

supplementation during pregnancy and the first few days of life. The findings suggest a unique way to 

prevent cerebral palsy and placental insufficiency (Black et al., 2015). Broccoli sprout extracts showed 

opioid-mediated analgesia and antinociception in two in vivo nociception experiments.  This study 

suggests broccoli sprouts may relieve pain (Baenas et al., 2017b).  

4. Conclusion  

In recent years, broccoli has become popular and their health-promoting components have been 

isolated to use them in culinary and pharmaceutical products. Among the different phytochemicals of 

broccoli the main ingredients are GSLs and their hydrolysis products, followed by phenolic compounds 

with a wide spectrum. Earlier studies have focused on Broccoli’s biological qualities, including their 

anti-inflammatory, anti-cancer, antibacterial, and antioxidant properties and their potential benefits 

for cancer, diabetes, neurological disorders and obesity patients. Their toxicity is usually low. 

Hopefully, more bioactive phytochemicals will be obtained soon from Broccoli and will be separated, 

and analyzed. However, to confirm Broccoli's health benefits, properly structured clinical trials are 

needed.  
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