

 K.Karunakar / Afr.J.Bio.Sc. 6(Si2) (2024) ISSN:2663-2187

https://doi.org/ 10.33472/AFJBS.6.Si2.2024.3563-3570

Optimizing Scalability and Load Balancing for

Microservices in DevOps - Driven Systems.

K.KARUNAKAR

Department of Computer Science and

Engineering

Koneru Lakshmaiah

Education Foundation

Guntur, Andhra Pradesh, India

2100030993cseh@gmail.com

B.UDAY
Department of Computer Science and

Engineering

Koneru Lakshmaiah

Education Foundation

Guntur, Andhra Pradesh, India

2100031526cseh@gmail.com

 N.V. MANOJ SAI

Department of Computer Science and

Engineering

Koneru Lakshmaiah

Education Foundation

Guntur, Andhra Pradesh, India

2100031080cseh@gmail.com

K.V.V.SATHYANARYANA
Department of Computer Science and

Engineering

Koneru Lakshmaiah

Education Foundation

Guntur, Andhra Pradesh, India

koparti@kluniversity.in

N. PAVAN KRISHNA PRASAD

Department of Computer Science

and Engineering

Koneru Lakshmaiah

Education Foundation

Guntur, Andhra Pradesh, India

2100031447cseh@gmail.com

Abstract:

Many companies are now using smaller, independent

software parts called microservices. These parts help in

quicker deployments, work well together, and make it

easier to adapt to changes. They're often put inside

containers and managed using systems like Kubernetes.

We’re exploring how these microservices handle tasks,

especially in dealing with lots of data (like Big Data) and

managing lots of users. We found they can be more

effective when they're balanced well across different

computers and when their connections are managed

carefully. They’re good for fast-paced changes in what

customers want, yet they additionally present certain

challenges. For example, they require more complex

ways of managing them and ensuring their proper

operation together. In our research, we've seen that

these microservices work better when they're organized

and managed thoughtfully. They can make systems

faster and more flexible but need careful handling to

work their best. This summary focuses on the

advantages, challenges, and key considerations

when using microservices in a simple manner.

Keywords: Quicker Deployments, Containerization,

Kubernetes management, Scalability and load balancing,

Continuous Deployment, DevOps, Microservices.

Introduction:

In recent years, the evolution from traditional monolithic

architectures to the acceptance of microservices has

redefined the area of software development. There have

been spurred shifts. by the inherent advantages
microservices offer, such as streamlined application

deployments, continuous integration, and the facilitation

of independent development. However, this

transformation introduces a network-centric dimension,

fragmenting monolithic systems into independently

deployable components. Microservices, often

implemented as containers within Kubernetes-managed

clusters, have sparked innovations and challenges in load

balancing and architecture. Traditional load balancing

algorithms, like Least Connection, face new hurdles in a

distributed microservices environment, where multiple

K.Karunakar / Afr.J.Bio.Sc. 6(SI2) (2024) Page 3564 of 8

instances operate independently, posing challenges in

maintaining accurate metadata caches. This paradigm shift

aligns with the growth trajectory observed in DevOps and

microservices, where DevOps principles find efficient

application in the microservices framework, emphasizing

smaller, specialized teams and diverse platforms. Case studies,

exemplified by Backstory’s transition, showcase how migrating

from monolithic to microservices architectures aligns with

DevOps, enhancing deployment frequency and scalability

across diverse user bases. Furthermore, Big Data applications

demand specialized environments and effective load balancing

solutions. Integrating containerized environments, notably

Docker a Docker Swarm has emerged as a novel approach to

address load balancing needs in Microservice-based Big Data

applications. Research into microservices' performance,

scalability, and resource management emphasizes their

advantages in dividing up difficult tasks into smaller,

manageable components. But these investigations also

highlight challenges in CPU balancing, efficient task scheduling,

and understanding the result of task interconnections on

overall system efficiency. While the transition to microservices

offers promising advantages, it also presents complexities in

managing diverse services, evolving relationships between

services, technological diversity, and testing challenges. This

research aims to explore and elucidate the multifaceted impact

of microservices on software architecture, load balancing,

resource management, and the overall dynamics of modern

software systems.

Literature Survey:

[1] The rise of microservices has gained friction because

of several benefits they offer such as easy deployments of

applications; it continuously integrates and the ability for

independent development, but this strategy also presents a
network aspect into the architecture by breaking down a

monolithic system into several autonomously deployed

components. In these-days microservices are often deployed

as containers within clusters managed by Kubernetes.

The Least Connection algorithm, commonly for load balancing in

microservices architecture, originates from the join the shortest

Queue approach, known for efficiency in approximating optimal

load balancing within a single node centralized system.

However, in the microservices landscape, the load balancer no

longer operates as a single centralized node, but rather as

multiple instances linked to each client service. In this

distributed setup, Least Connection encounters challenges

maintaining accurate metadata cache which can decrease

rapidly.

[2] Based on Google trends both DevOps and

microservices have shown similar growth trajectories. While

DevOps principles can be applied to monolithic systems,

microservices offer an efficient framework for implementing

DevOps by emphasizing the significance of smaller, focused

teams. These services can run on diverse platforms and utilize

different technological stacks, communicating through

lightweight methods such as RESTFUL or RPC-based APIs. In

this setup, each service represents a distinct business

capability and can employ various programming languages and

data stores, typically developed by compact teams.

In this author said that the migration from monolithic

architectures to microservices, as exemplified by

Backstory’s platform transition, has showcased numerous

advantages aligning with DevOps principles. This shift

enabled Backstory to enhance feature deployment

frequency and scale effectively for a diverse user base

across various mobile applications. Overall, the

experiences shared through backstory’s incremental

migration highlight the substantial advantages of

adopting microservices in conjunction with DevOps

methods. This combination fosters agility, scalability, and

accelerated development, significantly benefiting both

the platform and its user base.[3] Big Data applications

demand substantial resources and specialized resources

and specialized environments for storing, processing, and

analyzing vast volumes of data across distributed systems.

While containerization through cloud computing offers a

solution, it is a suitable load-balancing system. As

resources increase, there’s an exponential rise in server

load, highlighting the critical need for effective load

balancing. Furthermore, the rapid and accurate

adjustment of containers according to service loads

stands as a crucial factor in Big Data Applications.

This study delves into the integration of containerized

environments like Docker in addressing the

loadbalancing needs of Big Data applications. It proposes

a novel scheduling mechanism leveraging Docker Swarm

and Microservice architecture tailored for Big Data

application environments. This study emphasizes the

advantages of employing containerization in

Microservice-based Big Data applications. Docker

containers, paired with the orchestration tool Docker

Swarm, effectively manage the critical aspects of load

balancing and service discovery within Microservices.

.[4] Microservices are comparable to the building blocks

for businesses in the digital world. divide up large tasks
into smaller, easier-to-handle pieces, which helps

companies adapt quickly to new technologies and

changes in what customers want. These smaller parts

also make it easier for businesses to work with other

outside services, making operations smoother and

improving how customers experience their products or

services.

In our study, we introduced a new way of organizing how

a business uses its technology called the

MicroservicesDriven Enterprise Architecture Model. We

tested this model on different types of computer

processors to see how well it works and how it can make

things run better. What we found is that this model can

grow or shrink to handle more work as needed, no

matter the type of processor. It also used its resources

more effectively in contrast to the other type of
processor, making the tasks it handles run more

efficiently. [5] Small, independent microservices are

becoming more popular instead of big, all-in-one

applications. These microservices possess a few distinct
clear advantages over the older, larger applications. They

make it easier for different teams to work together in the

K.Karunakar / Afr.J.Bio.Sc. 6(SI2) (2024) Page 3565 of 8

same project, and they're simpler to put into action. Big

companies like AWS and Alibaba are now offering ready-made

microservices setups for people to use, which makes it easier

for them to launch their own apps.

Our research into how microservices perform while running

has some important findings for how we schedule them and

manage resources in groups. We discovered that most of these

microservices are affected more by other tasks using the CPU

rather than by how much memory is being used. This means

we should focus on making sure the CPU is balanced well

between different computers to schedule these tasks better.

Also, we noticed that the time it takes for online services to

respond depends a lot on how different tasks are connected.

This means we need to consider these connections when we're

trying to make the scheduling of microservices more efficient.

But figuring this out can be quite tricky. [6] A lot of developers

are now using microservices to address the difficulties of
building monolithic applications. A recent trend involves

deploying these microservices using containers, especially

across distant cloud locations. Containers, a more lightweight

alternative to virtual machines (VMs), have gained popularity

in the industry. Unlike VMs, they are simpler to use and require

less space, making them a favored choice for many developers.

As more people use the framework and more data piles up,

things get more complicated. When an excessive number of

people are using it, the system slows down, making it a bad

experience for them. The way the system was set up originally

starts to get messy and weak.

This study focused extensively on load balancing and auto-

scaling issues concerning Cloud-based Container microservices.

It thoroughly explored topics like Microservice architecture,

cloud-based microservices, and container microservices,

shedding light on the specific challenges related to load

balancing and autoscaling within microservices.[7] This study

looks at how problems (called faults) affect how well online

software services can handle lots of users at once. They used a

special test to see how faults in the software affect its ability to

handle many people using it. Other studies helped understand

how well these services can handle lots of users, so this study

could dig deeper into that.

They ran tests on a cloud platform called EC2 using a real

software service. They made the software slowdown in two

different ways and tested it with different levels of demand.

They describe what they did on these tests in detail. This paper

talks about a way they tested how well online software can

handle lots of users. They used a special method called ALFI.

They describe what they did by using four things: a tool to

create lots of work, a problem in the software, ways to

measure how well it handles lots of users, and the actual

software and its setup. They tested this with a program called

Orangery on EC2, a cloud service. They made the software

slowdown in two different ways and tested it with different

levels of people using it. They discovered that their approach

was good at showing how these

problems affect how well the software can handle lots of

users.[8] Companies today are aiming to meet customer

demands faster than ever. To achieve this, many are adopting a

methodology called DevOps and embracing Continuous

Delivery (CD). I worked on implementing these practices

at Paddy Power, a huge betting and gaming company, for

four years. During this time, I discovered that the

structure of software can sometimes be a big challenge.

To tackle these challenges, we explored a newer way of

designing software known as Microservices. What I

noticed was that using Microservices brought

advantages like making it easier to deploy, modify, and

safeguard against the breakdown of the software's

original design.

In conclusion, the adoption of DevOps and Continuous

Delivery (CD) as a reaction to the fast-paced customer

demands led to the investigation of Microservices as an

emerging software architecture approach. While

Microservices offered advantages such as improved

deploy ability, flexibility, and resilience against design

issues, it also introduced complexities related to

managing a larger number of services, evolving service

relationships, technological diversity, and testing

challenges.[9] Cloud services have recently shifted from

large, all-in-one applications to a more fragmented

approach called microservices. These microservices

consist of numerous smaller, interconnected

components, offering both opportunities and difficulties

in ensuring top-notch service quality and efficient cloud

usage. This paper explores how microservices affect

datacenter server design and bottlenecks in the system.

Specifically, we reexamine the age-old debate of using

powerful 'brawny' cores versus more modest 'wimpy'

cores within the microservices framework. We assess

how much of a burden these microservices put on

instruction caches (I-cache) and measure how much time

is spent computing as opposed to communicating across

services via Remote Procedure Calls (RPCs). [10] Imagine

putting together smaller, interconnected computer

programs that can handle a lot of data at once. These

programs use tools like Apache Flink, Apache Kafka

Streams, or others to process huge amounts of data

smoothly. Although these tools claim they can handle a

lot, we don't have much real-world proof comparing how

well each of them really scales up to big tasks. Usually,

when working with large amounts of data, we use one

big system to handle all the data processing tasks. But

now, with microservice setups, we can place smaller

systems for handling data processing within each tiny

service. It's like having mini data processors inside each

service. This way, we can pick lighter and more fitting

data processing tools for each specific job. We looked at

our findings without focusing on how much work each

small service could handle, how much computing it did,

or which cloud setup we used. These data processing

systems can also manage additional work if one of its

powers is increased. In summary: We found that all the

frameworks we tested could be made scalable. But the

specific framework chosen and how it's set up can

significantly affect how much it costs to run.

[11] Microservices architecture is a service-oriented

architecture structure that produces software system as

a collection of little services, each alone conveyable on a

K.Karunakar / Afr.J.Bio.Sc. 6(SI2) (2024) Page 3566 of 8

different floor and software stack. Microservices is also called

as a microservices architecture. It is important for the

migrating monolithic architecture to microservices gives many

advantages, but it is not pliability to modify to the technology

converts to keep away from technology demonstration, and

more seriously, lower time-to-market. Microservices are

helped in various ways, mostly in posting new features more

regularly. DevOps is a list of practices in the relocation process

towards microservices. DevOps practices can be utilized for

monoliths, but microservices enables a successful execution of

the DevOps through increasing the significance of small

teams.[12] Hence, there is an increasing need for additional
research to simplify the challenges that come with working on

big data projects. A promising avenue for addressing this

challenge is focusing on data architecture. Data architecture

provides the framework for a versatile and scalable BD system,

capable of adapting to evolving requirements. An effective

approach to assimilating the abundance of knowledge in data

architecture is through Reference Architectures. In the context

of this study, the first

Systematic Literature Review is conducted to gather all

Microservices patterns present in the existing body of

knowledge. The second SLR aims to identify and compile all

existing Big Data Reference Architectures, highlighting their

architectural components and limitations. The outcomes of

these Systematic Literature Reviews are then systematically

gathered and combined using thematic synthesis.

Through this process, the study generates and validates various

design theories by seeking expert opinions. In essence, the

research collects insights from the literature on both

 Microservices and Big Data Reference

Architectures, creating a foundation for developing and

confirming design principles in these domains.[13] Certainly!

Kubernetes is a free and open-source platform designed to

streamline the deployment, scaling, and management of

applications packaged in containers. Containers enable

developers to package an application along with its

dependencies, ensuring consistent performance across various

environments.

Kubernetes simplifies the deployment process by allowing

developers to focus on building and deploying their

 applications without the need to

 concern themselves with the intricate details of the underlying

infrastructure. It operates on a declarative model, where users

define the desired state of their applications, and Kubernetes

takes care of maintaining that state.

One key feature of Kubernetes is its ability to automatically

detect and recover from failures, providing a self-healing

mechanism for applications. This enhances the reliability and

availability of applications in production environments.

In summary, the survey on Kubernetes scheduling offers a

thorough examination of the present landscape in this field. It

delves into the goals, approaches, algorithms, experiments,

and findings from various research endeavors. The

report emphasizes how important scheduling is to

Kubernetes and how crucial it is to have excellent

scheduling algorithms.

Notably, the experimental results indicate that there is

still room for enhancement in this domain. The findings

suggest that future efforts should concentrate on

devising novel algorithms and refining existing ones to

further optimize Kubernetes scheduling. In essence, the

survey serves as a valuable resource, shedding light on

the current state of Kubernetes scheduling and

suggesting promising avenues for future research.[14]

The concept of auto-scaling becomes crucial for both

cost efficiency and enhancing Quality of Service (QoS).

This study aims to explore solutions related to load

balancing and auto-scaling that can dynamically adjust

the allocation of materials for cloud services based on

incoming workloads. The focus is particularly on

cloudbased container microservices, which are

components of a larger system that utilizes containers to

deliver its services. This paper reviews the challenges

associated with load balancing and auto-scaling in the

context of cloud-based container microservices. It delves

into topics such as microservices in a cloud-based

system, containerized microservices, and the key

objectives and issues involved in load balancing and

auto-scaling within microservices. The primary

motivation behind this research is to address current

issues related to these techniques, aiming to mitigate

problems like server overload, sudden spikes in traffic,

and service failures. The goal is to enhance the overall

performance of services, thereby providing a better

Quality of Service to end-users. This paper thoroughly

examined the significant challenges associated with load

balancing and auto-scaling in Cloud-based Container

microservices. The detailed exploration covered various

aspects, including microservice architecture, cloud-based

microservices, containerized microservices, additionally

specific issues related to load balancing and auto-scaling

within the context of microservices. The study delved

deeply into understanding and addressing these

challenges to contribute valuable insights to the

field.[15] Microservices represent a modern approach to

software architecture, breaking down a single program

into a set of small, independent services This differs from

customary monolithic apps, where all functions are

bundled into a single entity. With microservices, each

program operates independently in its own process.

These services communicate and collaborate with each

other, working together to maximize the overall

effectiveness of the system. In today's computing system

architecture, microservices play a crucial role as a

paradigm and infrastructure, offering a more flexible and

scalable way to design and manage complex software

systems.

K.Karunakar / Afr.J.Bio.Sc. 6(SI2) (2024) Page 3567 of 8

Problem Statements and Solutions:

Problem Statement Potential Solutions Contextual Evidence

Maintaining accurate metadata cache
for Least Connection load balancing in
distributed microservices architecture.

 Implement gossip protocols like

epidemic or anti-entropy algorithms to

propagate service status updates

among different load balancer

instances, ensuring consistent metadata

across the distributed system.

Microservices architecture's distributed
nature: The text highlights the shift from
centralized monolithic systems to
distributed. [1] microservices, increasing
network complexity and introducing
challenges for traditional load balancing
algorithms like Least Connection.

Network complexity of distributed

microservices.

Utilize Docker Swarm and container

orchestration for efficient management

and communication.

Backstory's experience [2] and Least

Connection challenges highlight the need

for orchestration.

Maintain accurate metadata cache for

Least Connection load balancing.

Implement gossip protocols or

distributed key-value stores for

consistent data propagation.

Study on containerized Big Data

applications [3] emphasizes distributed

data management.

Microservices as building blocks for

businesses to adapt to changes.

Easier for teams to work, faster

deployments, smoother operations, and

improved customer experience.

Study on Microservices-Driven Enterprise

Architecture Model [4] highlights these

benefits.

Schedule and manage resources in

microservices based on CPU usage and

task dependencies.

 Focus on CPU balancing and consider

connections between tasks for

scheduling efficiency.

Research on performance measurement

of running microservices [5] provides

these insights.

Challenges of deploying containerized

microservices across cloud locations.

Increased complexity and slowdown as

user base grow.

 Study on load balancing and auto-scaling

issues in cloud-based container

microservices [6] addresses these

challenges.

Fault tolerance testing for online

software services.

Developed a method to test how faults

affect service performance with

different user demands.

Study on online software service

performance under faults [7] describes

this method.

K.Karunakar / Afr.J.Bio.Sc. 6(SI2) (2024) Page 3568 of 8

DevOps and Continuous Delivery leading

to exploration of microservices for

tackling challenges.

 Microservices offered advantages like

improved deploy ability, flexibility, and

resilience.

Paddy Power's experience implementing

DevOps and microservices [8] highlights

these benefits.

Microservices impact on system

bottlenecks and datacenter server

design.

Reexamining the use of 'brawny' vs.

'wimpy' cores within microservices

framework.

Study on cloud services and microservices

impact on system bottlenecks [9] explores

these aspects.

Scalability of different data processing

frameworks for microservices.

Specific framework choice and setup can

significantly impact cost.

 Study on comparing big data processing

frameworks within microservices [10]

highlights this finding.

 Difficulty in adapting microservices
architecture to changing technology
while maintaining rapid deployment and
time-to-market.

Focus on loosely coupled services and

APIs: Design microservices with

welldefined and stable APIs that

minimize dependencies.

The text states that while microservices

offer advantages like faster deployments

and easier feature updates, it can be

inflexible when adapting to technological

changes due to technology lock-in and

the complexity of transitioning between

different software stacks [11].

Complexities in Big Data projects due to
evolving requirements and lack of clear
design principles.

Focus on data architecture as a
foundation: Develop a well-defined data
architecture that outlines the system's
components, data flows, and governance
protocols. This provides a clear roadmap
for managing and evolving the Big Data
system.

The passage states that Big Data projects
often face difficulties due to the need for
adaptability and a lack of established
design principles [12].
Existing approaches tend to rely on

monolithic architectures or fragmented,

poorly understood patterns.

Optimizing scheduling algorithms within

Kubernetes to enhance resource

utilization, performance, and overall

efficiency.

Facilitate cross-cluster scheduling: Allow
for scheduling across multiple
Kubernetes clusters to leverage shared
resources and improve resource
utilization in distributed environments.

The survey highlights the critical role of
scheduling in Kubernetes and the ongoing
need for improvement in this area [13].
Research findings indicate that current
scheduling algorithms have room for
optimization to better meet diverse
application needs and resource
constraints.

Ineffective load balancing and
autoscaling strategies for cloud-based
container microservices, leading to
bottlenecks, service failures, and poor
QoS.

Implement adaptive load balancing
algorithms: Utilize machine
learningpowered algorithms that can
dynamically adjust load distribution
based on real-time metrics and
application-specific requirements.

The paper highlights the critical role of
load balancing and auto-scaling in
optimizing resource utilization and
ensuring service availability in cloudbased
container microservices environments
[14]. Current approaches face challenges
in handling sudden traffic spikes,
preventing server overload, and efficiently
scaling resources to meet dynamic
workload demands.

K.Karunakar / Afr.J.Bio.Sc. 6(SI2) (2024) Page 3569 of 8

Conclusion:

The study highlights the need for more investigation,

particularly in the areas of load balancing, auto-scaling,

and resource management in cloud-based container

microservices and Kubernetes scheduling algorithm

optimization. It draws attention to how important these

areas are to improving the effectiveness and quality of

services. The shift from monolithic software development

to microservices is significant. It offers scalability,

flexibility, and the capacity to work with emerging

technologies. However, further study is required to

improve these systems even more for the future because

there are still issues to be resolved. Microservices must be

carefully organized and managed to realize their benefits.

In general, microservices offer speed and flexibility, but to

fully realize their potential, they must be handled

carefully.

References:

[1] BLOC: Balancing Load with Overload Control In

the Microservices Architecture Ratnadeep Bhattacharya

Department of Computer Science George Washington

University ratnadeepb@gwu.edu Timothy Wood

Department of Computer Science George Washington

University timwood@gwu.edu

[2] Microservices: Architecting for Continuous

Delivery and DevOps Lianping Chen Lianping Chen Limited

Dublin, Ireland lianping.chen@outlook.com

[3] Load balancing and service discovery using

Docker Swarm for microservice based big data

applications Neelam Singh1 , Yasir Hamid2 , Sapna

Juneja3 , Gautam Srivastava4,5,6, Gaurav Dhiman1,7,8,9,

Thippa Reddy

Gadekallu9,10 and Mohd Asif Shah11,12*

[4] Microservices-driven enterprise architecture

model for infrastructure optimization A. M. Abd-

Elwahab1 , A. G. Mohamed2* and E. M. Shaaban3

[5] Characterizing Microservice Dependency and

Performance: Alibaba Trace Analysis Shutian Luo

Shenzhen Institute of Advanced Technology, CAS Univ. of

CAS, Univ. of Macau st.luo@siat.ac.cn Huanle Xu

University of Macau huanlexu@um.edu.mo Chengzhi Lu

Shenzhen Institute of Advanced Technology, CAS Univ. of

CAS cz.lu@siat.ac.cn Kejiang Ye Shenzhen Institute of

Advanced Technology, CAS kj.ye@siat.ac.cn Guoyao Xu

Alibaba Group yao.xgy@alibaba-inc.com Liping Zhang

Alibaba Group liping.z@alibaba-inc.com Yu Ding Alibaba

Group shutong.dy@alibaba-inc.com Jian He Alibaba

Group jian.h@alibaba-inc.com Chengzhong Xu†

University of Macau czxu@um.edu.mo

[6] A Cloud-Based Container Microservices: A

Review on Load Balancing and Auto-Scaling Issues

Shamsuddeen Rabiu a,1,*, Chan Hauh Yong a,2 , Sharifah

Mashita Syed Mohamad a,3 a School of Computer

Sciences, University Sains Malaysia,11800 USM, Pulau

Pinang Malaysia. 1 shamsrabiu@student.usm.my; 2

hychan@usm.my; 3 mashita@usm.my * corresponding

author

[7] Scalability resilience framework using

applicationlevel fault injection for cloud based software

services Amro Al-Said Ahmad1,2* and Peter Andras3

[8] Microservices: Architecting for Continuous

Delivery and DevOps Lianping Chen Lianping Chen Limited

Dublin, Ireland lianping.chen@outlook.com

[9] The Architectural Implications of Cloud

Microservices Yu Gan and Christina Delimitrou Cornell

University {yg397,delimitrou}@cornell.edu

[10] Microservices Architecture Enables DevOps: An

Experience Report on Migration to a Cloud-Native

Architecture Armin Balalaie Abbas Heydarnoori Pooyan

Jamshidi

[11] Application of microservices patterns to big

data systems Pouya Ataei1* and Daniel Staegemann2

[12] A survey of Kubernetes scheduling algorithms

Khaldoun Senjab1 , Sohail Abbas1*, Naveed Ahmed1 and

Atta ur Rehman Khan2

Taming the Load Balancing Beast in
Modern Microservices Architectures.

Consistent Hashing: Maps services and
requests to specific servers based on
pre-defined hash functions, ensuring
predictable distribution but limiting
flexibility in workload adjustments.

The rise of complex microservices
architectures has brought new challenges
in managing service load and maintaining
optimal capacity. Ensuring continuous
availability while minimizing request
delays is paramount.[15]

.

K.Karunakar / Afr.J.Bio.Sc. 6(SI2) (2024) Page 3570 of 8

[13] A Cloud-Based Container Microservices: A

Review on LoadBalancing and Auto-Scaling Issues

Shamsuddeen Rabiu a,1,*, Chan Hauh Yong a,2 , Sharifah

Mashita Syed Mohamad a,3 a School of Computer

Sciences, University Sains Malaysia,11800 USM, Pulau

Pinang Malaysia. 1 shamsrabiu@student.usm.my; 2

hychan@usm.my; 3 mashita@usm.my * corresponding

author

[14] Load Balancing in Microservices Architecture

Shetty Srinidhi Udaya Department of Information

Technology (MSc. IT Part I) Sir Sitaram and Lady Shantabai

Patkar College of Arts and Science, Mumbai, India

[15] Challenges and Solution Directions of

Microservice Architectures: A Systematic Literature

Review Mehmet Söylemez 1 , Bedir Tekinerdogan 2,* and

Ayça Kolukısa Tarhan 1 1 Department of Computer

Engineering, Hacettepe University, 06800 Ankara, Turkey;

mehmetsoylemez@hacettepe.edu.tr (M.S.);

atarhan@hacettepe.edu.tr (A.K.T.) 2 Information

Technology Group, Wageningen University & Research,

6706 PB Wageningen, The Netherlands *

Correspondence: bedir.tekinerdogan@wur.nl

