https://doi.org/10.33472/AFJBS.6.Si3.2024.6529-6539

African Journal of Biological Sciences

ISSN: 2663-2187

Journal homepage: http://www.afjbs.com

Research Paper

Open Access

Exploring the Quality of Life of Chronic Kidney Disease Patients Undergoing Hemodialysis: A Preliminary Investigation at Selected Hospitals

Mr. Nilesh Mhaske¹, Dr. Heera Jayasheela²,

¹Ph.D. Scholar, Smt. Sindhutai Eknathrao Vikhe Patil College of Nursing, Pravara Institute of Medical Sciences (DU), Loni (Bk), Maharashtra., Associate Professor, Dr.V.V.P.F's, College of Nursing, Ahmednagar, Maharashtra
²Dean Faculty of Nursing, Smt. Sindhutai Eknathrao Vikhe Patil College of Nursing, Pravara Institute of Medical Sciences (DU), Loni (Bk), Maharashtra

Correspondence address:- Mr. Nilesh Mhaske,

Associate Professor, Dr.V.V.P.F's, College of Nursing, Ahmednagar, Maharashtra , Email – nileshmhaske1985@gmail.com

Article Info

Volume 6, Issue S 6, July 2024

Received: 03 May 2024

Accepted: 16 June 2024

Published: 01 July 2024

doi: 10.33472/AFJBS.6.Si3.2024.6529-6539

ABSTRACT:

Background: Chronic kidney disease (CKD) is a major global burden affecting of people worldwide. Among CKD treatments, hemodialysis is a cornerstone treatment that provides lifelong kidney replacement for patients with end-stage renal disease (ESRD). However, the effect of hemodialysis on the quality of life (QoL) of patients with CKD is of great interest and concern to health professionals and researchers. **Objective**: This cross-sectional analytical study aimed to investigate multifaceted aspects of the quality of with chronic experienced byhemodialysis patients diseases. Methodology: A cross-sectional analytical study was conducted among 100 patients undergoing hemodialysiswho were selectedusing a simple random sampling technique after eligibility screening. Chronic kidney disease clients undergoing regular hemodialysis and free from critically ill patients were included in the study. The data have been collected using a demographic profile, clinical characteristics profile, and kidney disease quality of life instrument KDQOL scale to assess the quality of life. Data analysis was done by calculating the frequency and percentages of demographic profiles and clinical characteristics and for association Chi-Squaretest was used.

Results: The analysis showed that, regarding age distribution, a maximum of 53% of participants fall within the range of 38 to 47 years, and 61% are from the male gender category. In view of the clinical profiles hypertension was notably higher among dialysis patients as a comorbid illness. Furthermore of the dialysis patients were receiving dialysis twice a week. In the blood lab clinical profile report data, a maximum of 39 % of patients were having issues with low hemoglobin levels between 6 - 8.5 g/dl along with this it was also noticed that serum urea levels show a clear majority in the range of 20.5 - 24 mg/dl (82%), Finally, body mass index (BMI) reveals 58% of participants categorized as obese. From the perspective of Quality of Life. The mean calculated value of quality of life mean is 33.3, indicating the average quality of life score across the study participants. Additionally, the standard deviation is reported as 4.085, reflecting the degree of variability or dispersion in the quality-of-life scores among the dialysis patients. A significant association was observed between gender and quality of life and

Notably, a significant association was likewise found between serum sodium levels and quality of life (chi-square value 4.273, p-value 0.039*). **Conclusion:** The study has provided valuable insights into the quality of life (QoL) of chronic kidney disease (CKD) patients undergoing hemodialysis. Through a comprehensive exploration of various dimensions such as physical functioning as well clinical profile, and emotional wellbeing.

Keywords: Chronic kidney disease (CKD), Quality of life, Clinical profile, Hemodialysis, patients

© 2024 Nitin Pandey, This is an open access article under the CC BY license (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Creative Commons license, and indicate if changes were made

1. Introduction

Chronic kidney disease (CKD) and its treatments, such as hemodialysis, have an impact on patients' lifestyles and health. "Quality of life" is a complicated and multidimensional notion that encompasses both subjective and objective components. Quality of life is frequently viewed as a precise definition of life satisfaction, social and familial health, hope, rules, and mental health. Clinical trials have proven that quality of life may be used to assess the quality of healthcare services and is included in patients' treatment plans. As a result, assessing quality of life, particularly for chronic conditions, can be an effective tool for improving healthcare quality.

The prevalence of CKD in India is quickly increasing globally. At the end of 2004, 1,78,3000 individuals worldwide were receiving treatment for ESKD, with 77% on dialysis and 23% having a functioning renal transplant (RT), and this figure is increasing at a 7% annual pace. If the current trend continues, the global ESRD population will approach two million by 2010.³ Individuals diagnosed with Chronic Kidney Disease (CKD) usually develop psychiatric complications as the dialysis procedure causes changes in their physical health and social life.⁴ Chronic kidney disease causes catastrophic medical, social, and economic consequences for individuals and their families. Chronic kidney disease affects around 10% of the global population. Over 2 million people received dialysis and kidney transplants to stay alive.⁵

2. Materials and Methods:

A cross-sectional analytical study was carried out on 100 patients receiving hemodialysis who had been selected using a simple random sampling procedure completing eligibility screening. The study comprised chronic renal disease patients who received hemodialysis on a regular basis and were not critically ill. The data was gathered using a demographic profile that included characteristics such as age, gender, marital status, educational qualification, occupation, family type, family income, place of residence, distance from the hospital, and availability of health insurance. Clinical criteria include the frequency of dialysis each week, concomitant illnesses, physical activity, and blood test results. The KDQOL scale is used to assess the quality of life of individuals with kidney disease. Data analysis included figuring out the frequency and percentages of demographic profiles and clinical characteristics and also applying the Chi-Square test for association.

3. Results:

Table 1 shows the demographic characteristics of chronic renal disease patients receiving hemodialysis at the chosen hospital. In terms of age distribution, 53% of participants are between the ages of 38 and 47, with lesser percentages in the younger and older groups. The gender breakdown shows a largely male group (61% of the study participants). Marital status suggests that 92% of people are married, while 8% are single. Educational attainment varies, with a significant 56% illiterate, 37% finishing primary education, and lesser amounts obtaining higher levels. Occupation diversity is remarkable, with 33% working in the private sector and 31% identifying as agriculturalists. Family arrangements are predominantly made up of nuclear (51%) and joint (43%) families, with only 6% being extended families. The majority of participants (61% of the total) fall into Class II, whereas 57% live in rural areas. The distance to the hospital differs with 39% living 15 kilometres away, while health insurance is mainly offered through work insurance (68%). This complete demographic profile offers the groundwork to comprehend the study population and its potential effect on quality of life in the context of hemodialysis, as can be checked in Table 1.

Table 1: Findings about the Demographic Data of Patients Undergoing Hemodialysis n=100

11—.	100	
Demographic Variable	Frequency (F)	Percentage (%)
	years	
a) Above 18 to 27	2	2%
b) 28 to 37	17	17%
c) 38 to 47	53	53%
d) 48 to 57	28	28%
	nder	
a) Male	61	61%
b) Female	39	39%
	l status	
a) Married	92	92%
b) Unmarried	8	8%
Educational	qualification	
a) Illiterate	56	56%
b) Primary education	37	37%
c) Higher secondary education	0	0%
d) Graduate	3	3%
e) Postgraduate	4	4%
Occup	pation	
a) Housewife	23	23%
b) Daily wages	5	5%
c) Private Employee	33	33%
d) Govt. Employee	7	7%
e) Business	1	1%
f) Agriculturist	31	31%
, -	f family	1
a) Nuclear	51	51%
b) Joint	43	43%
c) Extended	6	6%
,	ome	
a) Class I (Rs. 10,000 and above)	39	39%
b) Class II (Rs. 5000 – Rs.9999)	61	61%
, , , , , , , , , , , , , , , , , , , ,	residence	1
a) Rural	57	57%
b) Semi-urban	39	39%
c) Urban	4	4%
,	om hospital	1,75
a) 5 Km	3	3%
b) 10 Km	34	34%
c) 15 Km	39	39%
d) More than 15 Km	24	24%
	nsurance	2170
a) Employee Insurance	68	68%
b) Self	32	32%
0) 5011	32	32/0

Table 2 summarizes the clinical characteristics of chronic renal disease patients undergoing hemodialysis, providing information on numerous health indices and conditions. The prevalence of co-morbid conditions is described, with 10% for heart disease and diabetes, whereas hypertension is significantly higher at 65%. Furthermore, 15% of patients have diabetes and hypertension simultaneously. In terms of dialysis frequency per week, the majority (85%) have twice-weekly sessions, with 15% opting for three-weekly sessions. Physical activity levels are very evenly divided, with 49% taking part in moderate activity and an equal amount remaining inactive. Hemoglobin levels are separated into two categories, with 39% ranging between 6 and 8.5 g/dl and 61% exceeding 9 g/dl. Serum creatinine values include 10% with a range of 2 to 4 mg/dl, 74% with 5 to 8 mg/dl, and 16% with 9 to 12 mg/dl. Serum urea levels are highest in the range of 20.5 - 24 mg/dl (82%), but serum sodium levels are distributed as 57% in the range of 129 - 138 mmol/L and 43% in the range of 139 - 148 mmol/L. Serum potassium levels vary equally across the groups of 4.5 - 5 mmol/L (57%) and 5.5 - 6 mmol/L (43%). Serum phosphorus levels vary, with 13%, 46%, 38%, and 3% falling into each of the following categories: 1 - 1.5 mg/dl, 2 - 3 mg/dl, 3.5 - 4.5 mg/dl, and 5 - 5.5 mg/dl. GFR varies between 60 to 80 mL/min/1.73 m² (100%). Finally, body mass index (BMI) reveals that 58% of participants are obese, 42% have a normal BMI, and none are underweight. This detailed clinical profile provides insight into the health state of the study population undergoing hemodialysis.

Table- 2 Frequency Distribution of participants as per clinical characteristics of participants. n=100

Clinical Characteristics	Frequency (F)	Percentage (%)
Со	-morbid illness	
a) Cardiac disease	10	10%
b) Diabetes	10	10%
c) Hypertension	65	65%
d) Diabetes and hypertension	15	15%
Frequenc	y of dialysis per week	
a) Once in a week	0	0%
b) Twice in a week	85	85%
c) Thrice in a week	15	15%
Pł	nysical activity	
a) Moderate	49	49%
b) Sedentary	51	51%
Hemo	globin level (g/dl)	
a) 6 – 8.5	39	39%
b) Above 9	61	61%
Serum	creatinine (mg/dl)	
a) 2 - 4	10	10%
b) 5 - 8	74	74%
c) 9 – 12	16	16%
Seri	ım Urea (mg/dl)	
a) 13.5 – 17		
b) 17.5 – 20	18	18%
c) 20.5 - 24	82	82%
Serum	Sodium (mmol/L)	
a) 129 – 138	57	57%

b) 139 – 148	43	43%
c) 149 – 158 and above		
Serum P	Potassium (mmol/L)	
a) 3.5 – 4	0	0%
b) 4.5 – 5	57	57%
c) 5.5 - 6	43	43%
Serum I	Phosphorus (mg/dl)	
a) 1 – 1.5	13	13%
b) 2-3	46	46%
c) 3.5 – 4.5	38	38%
d) 5-5.5	3	3%
Glomerular filtra	ntion rate (mL/min/1.73 r	m2.)
a) 60 - 80	100	100%
b) 81 - 100	0	0%
Body	mass index (BMI)	
a) Under Weight		
b) Obese	58	58%
c) Normal	42	42%

Table 3 Observations on the quality of life in chronic renal disease patients undergoing hemodialysis.

n=100

	Good Quality of life	Average Quality of life	Poor Quality of life	Mean	Standard Deviation
Quality of Life	28	39	33	33.3	4.496

Table 3 exhibits the summary statistics for the variable "Quality of Life" in the context of a research study emphasizing chronic renal disease patients receiving hemodialysis. The mean value is calculated to be 136.91, which is the average quality of life score among study participants. In addition, the standard deviation is stated as 4.085, indicating the degree of variability or dispersion in the quality-of-life ratings.

Table 4- Findings related to the association of the demographic variables with the score of quality of life

n = 100

		Qual	ity of Life		Chi-	
Demographic Variable	F	Good	Fair	df	Square Value	p-value
		Age in y	ears			
Above 18 to 27	2	1	1			
28 to 37	17	14	3	3	6.819	0.078
38 to 47	53	29	24	3	0.819	0.078
48 to 57	28	12	16			
		Gend	er			
Male	61	39	22	1	3.996	0.046*
Female	39	17	22	1	3.990	0.046**

	ľ	Marital s	status			
Married	92	49	43	1	3.502	0.061
Unmarried	8	7	1	1	3.302	0.001
	Educa	tional qu	ualification			
Illiterate	56	33	23			
Primary education	37	21	16			
Higher secondary education	0	0	0	3	4.080	0.253
Graduate	3	0	3			
Postgraduate	4	2	2			
		Occupa				
Housewife	23	10	13			
Daily wages	5	4	1			
Private Employee	33	22	11	5	7.620	0.178
Govt. Employee	7	2	5		7.020	0.170
Business	1	0	1			
Agriculturist	31	18	13			
]	Type of f	amily			
Nuclear	51	25	26			
Joint	43	28	15	2	2.547	0.280
Extended	6	3	6			
		Incon				
Class I (Rs. 10,000 and above)	39	22	17	1	0.004	0.947
Class II (Rs. 5000 – Rs.9999)	61	34	27	1	0.004	0.547
		ace of re			1	
Rural	57	33	24			
Semi-urban	39	19	20	2	4.065	0.131
Urban	4	4	0			
			n hospital		1	
5 Km	3	2	1			
10 Km	34	22	12	3	4.034	0.258
15 Km	39	17	22		7.037	0.230
More than 15 Km	24	15	9			
		ealth Ins		1	1	1
Employee Insurance	68	38	30	1	0.001	0.972
Self	32	18	14	1	0.001	0.772

Table 4 shows the results of a Chi-Square analysis that looked at the relationship between demographic characteristics and the quality of life of chronic renal disease patients having hemodialysis at a specific hospital. The study's goal was to measure and determine the quality of life based on socio-demographic characteristics. The results suggest a strong link between gender and quality of life, with a chi-square value of 3.996 and a p-value of 0.046. There were no significant connections found for age, marital status, educational qualification, occupation, type of family, income, site of residence, distance from the hospital, or health insurance. The p-values for these factors ranged from 0.078 to 0.972, which exceeded the significance level of 0.05. These findings provide insights into the impact of particular demographic characteristics on the quality of life of chronic renal disease patients receiving hemodialysis at the chosen hospital.

Table 5 Findings related to the association of the clinical characteristics with the score of quality of life

n = 100

		Oualit	ty of Life		Chi-	
Clinical Characteristics	F	Good	Fair	df	Square	p-value
					Value	
	1	norbid ill			T	
Cardiac disease	10	9	1			
Diabetes	10	7	3	3	6.739	0.081
Hypertension	65	33	32		0.737	0.001
Diabetes and hypertension	15	7	8			
	1—— <u> </u>	of dialys	is per week		T	
Once in a week	0	0	0			
Twice in a week	85	49	36	1	0.624	0.430
Thrice in a week	15	7	8			
	Phy	sical acti	vity	_		
Moderate	49	31	18	1	2.058	0.151
Sedentary	51	25	26	1	2.036	0.131
J	Hemog	lobin lev	el (g/dl)			
6 - 8.5	39	23	16	1	0.230	0.632
Above 9	61	33	28	1	0.230	0.032
S	erum c	reatinine	(mg/dl)			
2 - 4	10	7	3			
5 - 8	74	38	36	2	2.500	0.286
9 – 12	16	11	5			
	Serur	n Urea (n	ng/dl)			
13.5 – 17	0	0	0			
17.5 – 20	18	13	5	1	2.344	0.126
20.5 - 24	82	43	39			
S	erum S	Sodium (r	nmol/L)			
129 – 138	57	37	20			
139 – 148	43	19	24	1	4.273	0.039*
149 – 158 and above	0	0	0			
Sei	rum Po	tassium	(mmol/L)			
3.5 – 4	0	0	0			
4.5 – 5	57	32	25	1	0.001	0.974
5.5 - 6	43	24	19			
	rum P	hosphoru	s (mg/dl)			
1 – 1.5	13	8	5			
2-3	46	28	18		1.705	0.610
3.5 - 4.5	38	19	19	3	1.785	0.618
5 – 5.5	3	1	2]		
Glomerular	filtrat	ion rate (mL/min/1.	73 m2.	.)	•
60 - 80	100	56	44			
81 - 100	0	0	0	1		
J	Body m	ass index	(BMI)			
Under Weight	0	0	0	1	3.344	0.067

Obese	58	28	30
Normal	42	28	14

Table 5 presents the results of a Chi-Square study that looked at the relationship between clinical variables and quality of life in chronic renal disease patients undergoing hemodialysis. The study sought to determine the effect of several clinical conditions on quality of life. Notably, there was a strong correlation between serum sodium levels and quality of life (chi-square value 4.273, p-value 0.039*). Other clinical parameters, such as co-morbidities, dialysis frequency, physical activity, hemoglobin level, serum creatinine, serum urea, serum potassium, serum phosphorus, glomerular filtration rate, and body mass index, did not show any significant relationships. These findings provide insight into the potential impact of particular clinical parameters on the quality of life of chronic renal disease patients having hemodialysis at the selected hospital.

4. Discussion:

Among the study's main findings, 53% of participants are between the ages of 38 and 47 years, whereas an equivalent randomized controlled trial study conducted in 2019 discovered that the majority of ESRD and dialysis patients were between the ages of 50 and 59 years, had completed primary education (29, 30%), and worked in skilled jobs (44, 40%). The majority of them had diabetes and hypertension (35, 34%), as well as hemoglobin levels of more than 9 g/dl (41,38%) and obesity (48,41%).^[7]

With regards to the clinical characteristics of serum hemoglobin, serum creatinine, and body mass index –obesity was reported in a higher number of study participants, similarly, research conducted in 9 hemodialysis centers in Egypt identifiedbody mass index (BMI) \geq 30 kg/m², was present in 72.6% of the studied population.^[8]

The desired target hemoglobin level (10.0-11.5 g/dL) was met by 77.3% of patients, with a maximum of 75.8% of patients reporting blood creatinine levels of 5-8 mg/dL. In the current investigation, 28 patients had an excellent quality of life, 39 had an average quality of life, and 33 had a poor quality of life, with the male gender variable being associated with it. In 2022, a similar analytical survey method with a cross-sectional study was carried out at Lampung University-Abdul Moelok Hospital in Indonesia, and it was found that 84 patients had a good quality of life (67.7%), while 40 (32.3%) reported a poor standard of life. [9]

A study on the Quality of Life of End-Stage Renal Disease Patients Undergoing Dialysis in Southern Kerala, India found that males had significantly higher physical domain scores (p < 0.03). [10] Among the findings, serum sodium level was found to be associated with study participants' quality of life; however, a cross-sectional study conducted at the MMIMSR hospital's in-patient department (IPD) in 2023 indicated a deteriorating quality of life among patients who had lower serum levels of sodium. [11]

5. Conclusion

Furthermore, the study addressed the demographic and clinical aspects that influence the quality of life among chronic renal disease patients having hemodialysis at a specific hospital. The demographic profile revealed a diversified population with differences in age, gender, marital status, educational qualifications, occupation, family type, income, location, and distance from the hospital, and health insurance coverage. The clinical characteristics, which included co-morbidities, dialysis frequency, physical activity, hemoglobin levels, and different serum indicators, offered a thorough understanding of the individual's health status. The statistical studies, which included mean quality of life scores and Chi-Square tests, revealed

significant relationships between gender, serum salt levels, and quality of life. However, no significant relationships were discovered for other demographic or clinical characteristics. These findings are useful for healthcare providers, policymakers, and researchers seeking a better understanding of the variables influencing the quality of life in chronic renal disease patients undergoing hemodialysis.

Limitations: This study was limited only to patients undergoing hemodialysis therapy.

Ethics permission: The study was approved by the Ethics Review Committee (IEC) of PIMS-DU in Loni, Maharashtra.

Conflict of interest: The authors declare that they have no financial or other conflicts of interest.

Acknowledgment: The author would like to acknowledge everyone who participated for their proactive participation, cooperation, and interest in the study.

6. References:-

- 1. Chojak K, Smolenski O, Milkowski A, Pitrowski W. The effects of 6-month physical training conducted during hemodialysis in ESRD patients. Med Rehabil 2006;10:25-41.doi: 10.1155/2015/912980
- 2. Rahnavard Z, Zolfaghari M, KazemNejad A, Hatami KH. Quality of life and determinants in patients with congestive heart failure (Persian). Hayat 2006; 12:77 86. URL: http://hayat.tums.ac.ir/article-1-221-en.html
- 3. Varma PP. Prevalence of chronic kidney disease in India Where are we heading? Indian J Nephrol. 2015 May-Jun;25(3):133-5. PMID: 26060360; PMCID: PMC4446915.http://www.indianjnephrol.org/
- 4. Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR. The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 2023; 289: 3095-3105. DOI: 10.1001/jama.289.23.3095
- 5. Kovesdy CP. Epidemiology of chronic kidney disease: an update 2022. Kidney IntSuppl (2011). 2022 Apr; 12(1):7-11. doi: 10.1016/j.kisu.2021.11.003. Epub 2022 Mar 18. PMID: 35529086; PMCID: PMC9073222. DOI: 10.1016/j.kisu.2021.11.003
- 6. Alshehri M, Alshehri A, Alfageeh A, Asiri K, Alshehri A, Alqahtani F, Alshehri M, Alshabab M, Asiri O. Who have a better-kidney-related quality of life: peritoneal dialysis or hemodialysis patients? A cross sectional study from Saudi Arabia. BMC Nephrol. 2023 Jul 20;24(1):216. doi: 10.1186/s12882-023-03270-7. PMID: 37474901; PMCID: PMC10360311.
- 7. EileanRathinasamy Lazarus, Effectiveness of education and exercise on quality of life among patients undergoing hemodialysis, Clinical Epidemiology and Global Health, Volume 7, Issue 3,2019, Pages 402-408, ISSN 2213-3984, https://doi.org/10.1016/j.cegh.2018.07.003.
- 8. Kittiskulnam P, Johansen KL. The obesity paradox: A further consideration in dialysis patients. Semin Dial. 2019 Nov;32(6):485-489. doi: 10.1111/sdi.12834. Epub 2019 Jul 23. PMID: 31338891; PMCID: PMC6848753.
- 9. Yonata A, Islamy N, Taruna A, Pura L. Factors Affecting Quality of Life in Hemodialysis Patients. Int J Gen Med. 2022 Sep 12;15:7173-7178. doi: 10.2147/IJGM.S375994. PMID: 36118180; PMCID: PMC9480587.
- 10. Visweswaran K, Shaffi M, Mathew P, Abraham M, Lordson J, Rajeev P, Thomas R, Aravindakshan R, G J, Nayar KR, Pillai M. Quality of Life of End Stage Renal Disease Patients Undergoing Dialysis in Southern Part of Kerala, India: Financial Stability and Inter-dialysis Weight Gain as Key Determinants. J Epidemiol Glob Health. 2020

- Dec;10(4):344-350. doi: 10.2991/jegh.k.200716.001. Epub 2020 Jul 22. PMID: 32959612; PMCID: PMC7758848.
- Sharma S, Kalra D, Rashid I, Mehta S, Maity MK, Wazir K, Gupta S, Ansari SA, Alruqi OS, Khan R, Khan I, Anwar S. Assessment of Health-Related Quality of Life in Chronic Kidney Disease Patients: A Hospital-Based Cross-Sectional Study. Medicina (Kaunas). 2023 Oct 8;59(10):1788. doi: 10.3390/medicina59101788. PMID: 37893506; PMCID: PMC10608694.