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Abstract: Density Functional Theory (DFT) calculations are essential for 

understanding molecular properties and predicting biological activities based on 

quantum mechanical principles. Predictive performance is limited by the inability of 

conventional machine learning (ML) models, like random forests and linear 

regression, to adequately represent the complicated, nonlinear correlations seen in 

DFT data. These methods often fail to account for the intricate dependencies between 

molecular descriptors and target variables, resulting in suboptimal accuracy. 

Additionally, interpreting traditional models in the context of DFT calculations is 

difficult, hindering the elucidation of structure-property relationships. This research 

proposes the application of Gradient Boosting Machines (GBM) for the predictive 

modelling of DFT calculations. GBM is an ensemble learning technique that enhances 

overall accuracy by combining the predictive power of several weak learners, such 

decision trees. GBM captures complicated nonlinear interactions in data by iteratively 

fitting new models to prior models' residuals. This makes it well-suited for analysing 

DFT calculations and predicting material properties with high accuracy. The research 

utilizes two datasets: tmQM, containing information on transition metal complexes, 

and ECD-cubic, focusing on the electronic charge density of inorganic materials with 

cubic structures. The GBM model is trained iteratively, with each new tree pointing 

on correcting the errors produced by previous trees. The optimal tree size and learning 

rate are determined through grid search optimization. The model's performance is 

assessed using mean squared error (MSE), mean absolute error (MAE), and R-squared 

(R²) metrics. The GBM model demonstrates high accuracy and low error metrics, 

indicating its robust performance in capturing the complex relationships inherent in 

DFT data. For the tmQM dataset, the GBM model achieves a lower MSE and MAE 

on the testing set (0.018 and 0.092, respectively) compared to the training set (0.021 

and 0.105). Similarly, for the ECD-cubic dataset, the model exhibits a lower MSE and 

MAE on the testing set (0.029 and 0.118) than the training set (0.035 and 0.132). The 

high R² values (0.995 for tmQM and 0.996 for ECD-cubic) indicate that the model 

describes a large percentage  of the variance in the target properties, demonstrating its 

predictive power. 

Keywords: DFT, GBM, Predictive Modelling, Materials Discovery, , Feature 

Selection, , Molecular Properties. 
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1. Introduction 

DFT is a crucial computational method in quantum chemistry for predicting molecular 

properties and biological activities [1]. It helps in understanding the electronic structure of 

molecules, which is vital for the design and discovery of new materials [2]. DFT calculations are 

based on quantum mechanical principles and provide detailed insights into the molecular structure, 

electronic charge distribution, and other properties [3]. Despite its importance, DFT calculations 

are computationally intensive and require significant resources, making them challenging to 

perform on a large scale [4][5]. The advent of ML has opened new avenues for enhancing the 

analysis of DFT data [6]. ML models can learn from large datasets to uncover hidden patterns and 

relationships, thereby improving the predictive accuracy of DFT calculations [7]. Traditional ML 

methods like linear regression and random forests have been used to predict molecular properties 

from DFT data [8][9]. However, these methods often fall short in capturing the complex, nonlinear 

relationships inherent in quantum mechanical systems [10-12]. This limitation restricts their 

predictive performance and hampers their utility in practical applications [13][14]. Several 

software packages are widely used for DFT calculations [15]. The Vienna Ab initio Simulation 

Package (VASP) is a popular tool that performs electronic structure calculations and quantum-

mechanical molecular dynamics from first principles. VASP uses DFT to calculate the total energy 

and electronic structure of solids, making it invaluable for materials science research. Despite its 

capabilities, VASP, like other DFT software, requires substantial computational power and time, 

limiting its use in high-throughput screening of materials. 

To overcome the limitations of traditional ML methods in DFT calculations, this research 

proposes the use of GBM. GBM is an ensemble learning technique that combines multiple weak 

learners, such as decision trees, to improve predictive accuracy. Unlike traditional methods, GBM 

can effectively capture complex nonlinear relationships in the data by iteratively fitting new 

models to the residuals of previous models. This makes GBM particularly suitable for analysing 

the intricate dependencies in DFT calculations. The proposed method begins with the collection 

of two comprehensive datasets: tmQM and ECD-cubic. The tmQM dataset includes information 

on 86,665 transition metal complexes, providing data on various molecular properties calculated 

using DFT. The ECD-cubic dataset contains electronic charge density information for 17,418 

inorganic materials with cubic structures. These datasets offer a diverse range of chemical 

compounds and properties, enabling the development of a robust predictive model using GBM. 

Preprocessing the data is a critical step to enhance the quality and usability of the datasets. This 

research employs several preprocessing techniques, including feature scaling using Z-score 

normalization, encoding categorical features with one-hot encoding, outlier removal using the 

Interquartile Range (IQR) method, and dimensionality reduction with t-Distributed Stochastic 

Neighbour Embedding (t-SNE). These steps ensure that the data is well-prepared for modelling, 

improving the predictive performance of the GBM model. Feature selection is performed using 

Recursive Feature Elimination (RFE), which identifies the most relevant features for predicting 

material properties from DFT calculations. RFE enhances the model’s performance by recursively 

removing the least important features, ensuring that only the most significant ones are retained for 

training. This process results in a refined dataset that is more manageable and effective for 

modelling. The GBM model is trained iteratively, with every  new tree pointing  on correcting the 

error produced  by previous trees. The tree size and learning rate, crucial hyperparameters in GBM, 

are optimized through a grid search process. The performance of the trained model is evaluated 
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using metrics such as MSE, MAE, and R². These metrics give  quantitative measures of  model’s 

accuracy in predicting material properties from DFT calculations. 

The proposed method addresses the limitations of traditional ML models by capturing the 

complex relationships inherent in DFT data. The use of GBM significantly improves predictive 

accuracy, making it a valuable tool for materials discovery and design. The high accuracy and low 

error metrics achieved by the GBM model demonstrate its robustness and effectiveness in 

predicting molecular properties. This approach enhances the efficiency of DFT calculations and 

provides deeper insights into molecular behaviour and structure-property relationships. 

Research contributions of the proposed study are : 

1. Development of a robust predictive model for DFT calculations using GBM. 

2. Collection and preprocessing of two comprehensive datasets: tmQM and ECD-cubic. 

3. Implementation of RFE for feature selection. 

4. Optimization of GBM hyperparameters to achieve high predictive accuracy. 

This research presents a novel approach to DFT calculations using GBM. By addressing the 

limitations of traditional ML methods, this study enhances the predictive accuracy and efficiency 

of DFT calculations. The proposed method leverages the strengths of GBM to capture the complex 

relationships in DFT data, providing a powerful tool for materials discovery and design. The 

findings of this research have notable insinuations in quantum chemistry and materials science, 

offering a pathway to more efficient and accurate predictions of molecular properties. 

4. Literature review 

The integration of ML with DFT  has gained traction in computational chemistry, aiming to reduce 

computational costs and enhance predictive accuracy. This review examines several studies that 

propose various ML-DFT hybrid approaches, highlighting their methodologies, datasets, and 

inherent challenges. Each study aims to improve DFT calculations' efficiency and accuracy, yet 

they encounter specific limitations that impact their generalizability and practical application. 

Xuhao Wan et al [16] present a comprehensive study on using a DFT-ML hybrid scheme for 

intricate system catalysis. They developed the DMCP program to implement this scheme 

efficiently. The purpose is to reduce the computational cost of traditional DFT methods while 

maintaining high accuracy. The proposed method combines DFT calculations with ML models to 

predict catalytic properties. The datasets used include those from the Materials Project, AFLOW, 

and ICSD. However, the disadvantage lies in the complexity of feature selection and the need for 

extensive domain knowledge for accurate model training, which can limit the generalizability of 

the model to other material systems. 

Reynolds et al [17] developed a neural network model to predict spin-state ordering and bond 

lengths in first-row transition metal chelates. They generate datasets of octahedral complexes and 

perform DFT calculations using TeraChem. The primary challenge highlighted is the difficulty in 

obtaining stable minimized geometries and managing large spin contamination, which can lead to 
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inaccuracies in predictions and limit the practical applicability of their model in high-throughput 

screenings.  

Fiedler et al [18] focus on combining ML with DFT to accelerate materials discovery and 

electronic structure simulations. They review the integration of ML models to enhance  the 

effectiveness  and accuracy of DFT calculations. The dataset includes a comprehensive collection 

of over 300 research articles covering various materials and chemical systems. However, the 

primary disadvantage highlighted in this study is the challenge of maintaining accuracy when 

combining different ML techniques with DFT calculations. This can lead to inconsistencies and a 

lack of generalization across diverse material systems, which is critical for the scalability and 

reliability of the proposed methods. 

Riemelmoser et al [19] aims to enhance the applicability of the random-phase approximation 

(RPA) by integrating it with ML. They propose the machine-learned RPA model (ML-RPA), which 

maps RPA data to a Kohn−Sham density functional. This model uses nonlocal density descriptors 

as ingredients. The dataset includes information on diamond surfaces and liquid water. However, 

the ML-RPA struggles with capturing the second peak in the oxygen-oxygen radial distribution 

function of water and underbinds the water dimer. These limitations highlight the challenges in 

accurately modeling nonlocal interactions with a small cutoff radius, affecting the model's 

predictive accuracy in diverse material systems. 

Riemelmoser et al [20] propose a machine-learned density functional on the basis of random-phase 

approximation (RPA). Their method involves constructing ingredients for ML-DFT, analogous to 

two- and three-body descriptors used in ML force fields. They use the G2-2 database for training, 

which includes nonspin-polarized molecules containing C, O, and H. The main disadvantage is 

that the method requires significant computational resources for training and may not generalize 

well to all chemical systems, limiting its practical application in diverse DFT calculations. 

Del Rio et al. [21] seek to lower the computational amount of solving the Kohn-Sham equation in 

DFT. They offer an end-to-end machine learning type  that simulates DFT by mapping atomic 

structure to electronic charge density, then predicting features including density of states, potential 

energy, atomic forces, and stress tensor. The dataset includes organic molecules, polymer chains, 

and polymer crystals made up of carbon, hydrogen, nitrogen, and oxygen atoms. The main 

downside is that the model's accuracy suffers when applied to bigger systems than those used in 

training, limiting its generalizability across varied material systems. 

Xuhao Wan et al present a DFT-ML hybrid scheme using the DMCP program to reduce 

computational costs. However, the complexity of feature selection and the need for domain 

knowledge limit the model's generalizability. Reynolds et al. use neural networks for predicting 

spin-state ordering but face challenges with stable geometries and spin contamination. Fiedler et 

al. combine ML with DFT to accelerate material discovery but struggle with maintaining accuracy 

across diverse systems. Riemelmoser et al. enhance RPA with ML but fail to model nonlocal 

interactions accurately. Del Rio et al. propose an end-to-end ML model to emulate DFT, yet the 

accuracy diminishes with larger systems. The proposed method addresses these issues by 
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iteratively refining models and optimizing feature selection, thereby improving accuracy and 

efficiency. 

3. Proposed methodology 

In current  years, researchers have increasingly turned to ML approaches to augment the analysis 

of DFT data and improve predictive accuracy. ML models offer the advantage of learning from 

large datasets to uncover hidden patterns and relationships, thereby enhancing our understanding 

of molecular behaviour. Nevertheless, traditional ML algorithms, such as linear regression and 

random forests, may struggle to capture the nonlinear relationships inherent in DFT calculations, 

limiting their predictive performance. One of the primary challenges in DFT calculations is the 

accurate prediction of molecular properties and biological activities based on the underlying 

quantum mechanical principles. Even though ML methods are widely used, existing approaches 

often fall short of capturing the intricate dependencies between molecular descriptors and target 

variables. Moreover, the interpretation of ML models in the context of DFT remains very difficult, 

hindering the elucidation of structure-property relationships. To address these challenges, we 

propose the application of GBM for predictive modelling of DFT calculations. GBM is a powerful 

ensemble learning technique that combines the predictive strength of multiple weak learners, such 

as decision trees, to improve overall accuracy. By repeatedly fitting new models to the residuals 

of the previous models, GBM effectively captures complex nonlinear relationships in the data, 

making it well-suited for analysing DFT calculations. Figure 1 shows the process flow for 

developing and evaluating a GBM model for predicting material properties from DFT calculations. 

The process begins with the collection of two datasets: mQM and ECD-cubic, which contain 

information on transition metal complexes and inorganic materials, respectively. The data 

undergoes preprocessing, including feature scaling, encoding of categorical features, outlier 

removal, and dimensionality reduction. The pre-processed data is then used for feature selection 

using RFE. The selected features are then used to train a GBM model. The GBM model is trained 

iteratively, with every new tree focusing on rectifying the errors produced  by the previous trees. 

The performance of the trained model is evaluated using a validation set, and evaluation metrics 

such as MSE, 𝑅2, and MAE are calculated. Finally, the model is used to predict the DFT properties 

of new materials, and the performance is analyzed based on the evaluation metrics. 
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Figure 1: Process flow for developing and evaluating a GBM model for predicting material 

properties from DFT calculations. 
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3.1 Dataset details 

This research utilizes two datasets for training and evaluating a GBM model to predict properties 

of materials from DFT calculations. The first dataset, called tmQM [22], contains information on 

86,665 transition metal complexes extracted from the Cambridge Structural Database. It includes 

various molecular properties calculated using DFT, such as energies, charges, and dipole moments. 

This dataset is valuable for studying how different ligands and metals affect the properties of these 

complexes. The second dataset, ECD-cubic, focuses on the electronic charge density of 17,418 

inorganic materials with cubic structures [23]. This dataset was created using DFT calculations 

and provides detailed information about the distribution of electrons in these materials. It is useful 

for understanding the relationship between electronic structure and material properties. Together, 

these datasets offer a diverse range of chemical compounds and properties, enabling the 

development of a comprehensive predictive model using GBM.  

3.2 Data Pre-Processing 

The preprocessing module for this research includes several critical steps to prepare the DFT data 

for effective modeling with the GBM. The steps are designed to enhance the quality and usability 

of the data, thereby improving the predictive performance of the model. The first step is feature 

scaling using Z-score normalization. This method transforms the features so that they have a mean 

of 0 and a standard deviation of 1. The equation for Z-score normalization is given by: 

𝑍 =
𝑋−𝜇

𝜎
  (1) 

where 𝑋 represents the feature value, 𝜇 is the mean of the feature values, and 𝜎 is the standard 

deviation. This scaling confirms  that each feature provides equally to the model, preventing 

features with larger ranges from dominating the learning process. The next step is encoding 

categorical features using one-hot encoding. This method converts categorical variables into a 

binary matrix, where each category is represented by a unique binary vector. The equation for one-

hot encoding is: 

OHE(𝑋𝑖) = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑘]   (2) 

where 𝑋𝑖 is the original categorical feature, and 𝑥𝑖𝑗 is a binary indicator that is 1 if the feature 

belongs to category 𝑗 and 0 otherwise. This encoding allows the model to process categorical data 

effectively by converting them into a numerical format. Outlier removal is performed using the 

Interquartile Range (IQR) method. This method identifies and removes outliers based on the 

spread of the middle 50% of the data. The equations for the IQR method are: 

IQR = 𝑄3 − 𝑄1   (3) 

Lower Bound = 𝑄1 − 1.5 × IQR   (4) 

Upper Bound = 𝑄3 + 1.5 × IQR    (5) 

where 𝑄1 and 𝑄3 are the first and third quartiles of the data, respectively. Data points outside the 

range defined by the lower and upper bounds are considered outliers and are removed from the 

dataset. This step helps in reducing the noise and variability in the data, which can adversely affect 
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the model’s performance. The final step is dimensionality reduction using t-Distributed Stochastic 

Neighbor Embedding (t-SNE). This approach lowers the dimensionality of the data while 

preserving its local structure. The cost function for t-SNE is given by: 

𝐶 = ∑ ∑ 𝑃𝑖𝑗𝑗𝑖 log
𝑃𝑖𝑗

𝑄𝑖𝑗
    (6) 

where 𝑃𝑖𝑗 represents the probability that points 𝑖 and 𝑗 are neighbors in the high-dimensional space, 

and 𝑄𝑖𝑗 is the probability in the low-dimensional space. By minimizing this cost function, t-SNE 

ensures that similar points in the high-dimensional space remain close in the low-dimensional 

representation. This step simplifies the data structure, making it easier for the model to capture the 

underlying patterns. Together, these preprocessing steps ensure that the DFT data is well-prepared 

for training the GBM model, leading to improved accuracy and deeper insights into the molecular 

behavior of materials. 

3.3 Feature Selection Module: RFE 

The feature selection module in this research is implemented using  

RFE to identify the most relevant features for predicting material properties from DFT 

calculations using a GBM. RFE enhances the model’s performance by recursively removing the 

least important features, ensuring that only the most significant ones are retained for training. 

The process begins with the training of the GBM model on the full set of features. The model’s 

feature importance scores are then computed, which reflect the contribution of each feature to 

the prediction. The least important features are systematically removed based on these scores. 

This process is repeated iteratively until the optimal subset of features is obtained. The equation 

for the importance score of a feature Xi is derived from the GBM model as follows: 

Importance(𝑋𝑖) = ∑ 𝐼𝑡

𝑇

𝑡=1

(𝑋𝑖)  (6) 

where It(Xi) is the importance of feature Xi in the t-th tree, and T is the total number of trees in 

the GBM model. The algorithm for RFE is outlined below: 

 

Algorithm 1 RFE for GBM 

1: Initialize the feature set F with all features. 

2: repeat 

3: Train the GBM model on the dataset using the feature set F. 

4: Compute the feature importance scores for all features in F. 

5: Identify and remove the least important feature Xleast from F. 

6: until the desired number of features remains in F 7: Return 

the reduced feature set F. 

The detailed steps for applying RFE are as follows: 

 Initialization: Begin with the complete set of features F = {X1,X2,...,Xn}, where n is the 

total number of features. 
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Training: Train the GBM model on the dataset using the current feature set F. The GBM 

model is constructed by combining multiple weak learners, typically decision trees, to 

minimize the prediction error. 

Compute Importance Scores: After training, calculate the importance score for each feature 

Xi in the feature set F. The importance score reflects the contribution of each feature to the 

model’s predictions. 

Feature Elimination: Identify the feature Xleast with the lowest importance score and remove 

it from the feature set F. 

Iteration: Repeat the training, computation of importance scores, and elimination of the 

least important feature until the desired number of features is achieved. This iterative process 

continues, progressively reducing the feature set while retaining the most relevant features. 

Final Feature Set: The process concludes when the feature set F contains the optimal 

number of features. The final reduced feature set is then used for training the final GBM 

model. 

RFE ensures that the DFT data is refined to include only the most impactful features, 

thereby enhancing the efficiency and accuracy of the GBM model. This method effectively 

addresses the challenge of feature selection in high-dimensional data, leading to better 

predictive performance and deeper insights into the material properties derived from DFT 

calculations. 

 

4. GBM Model for DFT Calculations 

The GBM model is employed to establish a predictive framework for material properties derived 

from DFT calculations. GBM is an ensemble learning technique that strenghten predictive 

accuracy by combining multiple decision trees. This approach leverages the strengths of individual 

weak learners to build a robust model capable of capturing complex patterns in the data. 

4.1 Model Training and Optimization 

The GBM model is trained using selected features from the tmQM and ECD-cubic datasets. These 

datasets provide a comprehensive view of transition metal complexes and inorganic materials, 

respectively. To optimize the GBM model, a grid search is conducted to determine the optimal 

tree size. The tree size, a crucial hyperparameter, significantly affects model complexity and 

performance. An optimal tree size of 100 is identified, balancing the trade-off between complexity 

and predictive accuracy. 

Each decision tree in the GBM model is constructed by recursively partitioning the feature space. 

This partitioning is based on selected features, with each node split designed to minimize the mean 

squared error (MSE) of the target property. The MSE for a given tree is calculated using the 

formula: 

MSE =
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

  (7) 
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where 𝑛 is the number of samples, 𝑦𝑖 is the true value of the target property, and �̂�𝑖 is the predicted 

value. This criterion ensures that each node split contributes to reducing the overall prediction 

error, enhancing the model’s ability to generalize from the training data. 

4.2 Training Process 

The training process of the GBM model is iterative, with every new tree focusing on rectifying the 

errors made by its predecessors. This iterative refinement is a hallmark of the GBM algorithm, 

allowing it to progressively improve predictive performance. The learning rate, another crucial 

hyperparameter, controls the contribution of each tree to the ensemble. A learning rate of 0.1 is 

chosen to ensure gradual improvement without overfitting the training data. 

During each iteration, the model updates the residuals, which represent the difference between real 

and predicted values. New trees are then fitted to these residuals, effectively learning the errors of 

the previous trees. This process continues until the model achieves an optimal balance between 

bias and variance, ensuring robust predictions on unseen data. 

4.3 Prediction 

The prediction made by the GBM model for a given sample is the weighted total of predictions 

from all discrete trees in the ensemble. The weight of each tree is determined by its performance 

during training, reflecting its contribution to the overall model. Mathematically, the GBM 

prediction �̂� is expressed as: 

�̂� = ∑ 𝛾𝑡

𝑇

𝑡=1

ℎ𝑡(𝑥)  (8) 

where 𝛾𝑡 is the weight of the 𝑡-th tree, and ℎ𝑡(𝑥) is the prediction of the 𝑡-th tree for the input 

features 𝑥. This ensemble approach ensures that the final prediction leverages the strengths of 

multiple trees, improving accuracy and robustness. The GBM model, by effectively utilizing the 

strengths of the algorithm and carefully preprocessed DFT data, develops a robust predictive 

framework for material properties. This model has significant potential to accelerate materials 

discovery and design by enabling rapid screening and identification of promising candidates based 

on their calculated DFT properties. The approach addresses the limitations of traditional DFT 

calculations, offering a scalable and efficient solution for complex materials science problems. 

5 GBM Model Evaluation 

The experimental setup for evaluating the GBM model involved robust hardware and sophisticated 

software components. Calculations were performed on a high-performance computing cluster, 

featuring multiple nodes equipped with both central processing units (CPUs) and graphics 

processing units (GPUs). This setup enabled parallel processing of DFT calculations and 

accelerated the training of the GBM model. The primary software used was the Vienna Ab initio 

Simulation Package (VASP), a widely-used tool for performing DFT calculations. VASP was 

instrumental in calculating the electronic structure and properties of the materials in the ECD-

cubic dataset. Python, a popular programming language for scientific computing, was employed 

for data preprocessing, feature engineering, model training, evaluation, and visualization. Specific 
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Python libraries used included scikit-learn for ML tasks, pandas for data manipulation, and 

matplotlib for data visualization. 

5.1 Accuracy and Loss Analysis 

The performance of the GBM model was evaluated using several metrics, including MSE, MAE, 

and R². These metrics provided quantitative measures of the model's accuracy in predicting 

material properties from DFT calculations. Lower values of MSE and MAE indicate better 

predictive performance, while higher values of R² signify that the model explains a larger 

proportion of the variance in the target properties. The analysis of accuracy and loss metrics reveals 

significant insights into the performance of the proposed method on the tmQM and ECD-cubic 

datasets. Figures 2 and 3 illustrate the training and testing accuracy for both datasets. Notably, the 

testing accuracy surpasses the training accuracy, indicating that the model generalizes well to 

hidden data and is not overfitting. In terms of loss, Figures 4 and 5 depict the training and testing 

loss for both datasets. Consistent with the accuracy trends, the testing loss is lower than the training 

loss. This further reinforces the model's capability to effectively capture patterns in the data and 

make accurate predictions on new, unseen samples. The observed lower testing errors in both 

accuracy and loss metrics underscore the robustness of the proposed method. This suggests that 

the model has successfully learned the underlying relationships between features and target 

properties in the DFT calculations, enabling it to generalize beyond the training data. The superior 

performance on the testing sets indicates that the model can be reliably applied to predict the 

properties of new materials, which is critical for accelerating materials discovery and design. 

  

Fig 2. Training and testing accuracy using the 

tmQM dataset 

Fig 3. Training and testing accuracy using ECD-

cubic dataset 



 Y.P. Arul teen/Afr.J.Bio.Sc. 6(13) (2024)  Page 6886 of 19 
 

  

Fig 4. Training and testing loss using the tmQM 

dataset 

Fig 5. Training and testing loss using ECD-cubic 

dataset 

5.2 Performance Assessment of the GBM Model using MSE and MAE 

The performance of the GBM model was assessed using the MSE and MAE metrics on both the 

training and testing sets of the tmQM and ECD-cubic datasets. 

Table 1: MSE and MAE on the tmQM Dataset 

Metric Training Set Testing Set 

MSE 0.021 0.018 

MAE 0.105 0.092 

Table 2: MSE and MAE on the ECD-cubic Dataset 

Metric Training Set Testing Set 

MSE 0.035 0.029 

MAE 0.132 0.118 

For the tmQM dataset, the GBM model demonstrated a lower MSE and MAE on the testing set 

(0.018 and 0.092, respectively) compared to the training set (0.021 and 0.105). This suggests that 

the model has sucessfully learned the underlying patterns in the data without overfitting. Similarly, 

for the ECD-cubic dataset, the model exhibited a lower MSE and MAE on the testing set (0.029 

and 0.118) than the training set (0.035 and 0.132). This further supports the model's ability to 

generalize to unseen data and make accurate predictions on new materials. The lower MSE values 

indicate that, on average, the squared differences between the predicted and actual values are 

smaller for the testing sets compared to the training sets. Similarly, the lower MAE values suggest 

that the average absolute differences between predictions and actual values are also smaller on the 

testing sets. Overall, the MSE and MAE analysis demonstrates the robust performance of the GBM 

model on both datasets, highlighting its potential for accurately predicting material properties from 

DFT calculations. 
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5.3 R² Analysis 

The coefficient of determination, R², serves as a key indicator of a model's predictive power, 

quantifying the proportion of variance in the observed data that is described by the model. In this 

study, the GBM model demonstrated exceptional performance on both the tmQM and ECD-cubic 

datasets, as evidenced by the high R² values. 

Figure 6 illustrates the strong correlation between predicted and observed values for the tmQM 

dataset, with an R² value of 0.995. This implies that the GBM model, utilizing features derived 

from molecular descriptors, accounts for 99.5% of the variance in the observed material properties. 

This near-perfect fit underscores the model's remarkable predictive capability for transition metal 

complexes and suggests its potential for accelerating the discovery of novel compounds in fields 

like catalysis and materials science. Figure 7 shows an even stronger correlation for the ECD-cubic 

dataset, with an R² value of 0.996. This suggests that the GBM model, employing features derived 

from electronic charge density, explains 99.6% of the variance in the observed material properties. 

This outstanding performance highlights the model's capacity to accurately predict properties of 

cubic inorganic materials, further solidifying its potential for accelerating materials discovery and 

design across various applications. The consistently high R² values across both datasets 

demonstrate the robustness and generalizability of the GBM model, signifying its ability to capture 

the underlying relationships between input features and target properties. This impressive 

predictive power makes the model a valuable tool for materials research, enabling the rapid and 

accurate identification of promising materials for specific applications. 

  
Figure 6: Correlation Plot between Predicted 

and Observed Values for the mQM Dataset 

(R² = 0.995) 

Figure 7: Correlation Plot between Predicted 

and Observed Values for the ECD-cubic 

Dataset (R² = 0.996) 

6. Complexity Analysis 

The computational complexity of various methods for enhancing DFT calculations through ML 

techniques is a critical factor in their practical application. This section compares the complexity 

of the GBM model used in this research with several state-of-the-art methods, including those 

presented by Xuhao Wan et al., Reynolds et al., Fiedler et al., Riemelmoser et al., and Del Rio et 

al. 



 Y.P. Arul teen/Afr.J.Bio.Sc. 6(13) (2024)  Page 6888 of 19 
 

6.1 Computational Complexity of the GBM Model 

The GBM model employed in this research is optimized to balance computational efficiency and 

predictive accuracy. The model’s training involves iteratively building decision trees, each aimed 

at correcting the errors of its predecessors. This iterative process allows GBM to capture complex 

nonlinear relationships inherent in DFT data. The computational complexity of the GBM model is 

primarily determined by the number of trees T, the depth of every tree d, and the number of data 

points n. The overall complexity can be expressed as: 

O(T ⋅ n ⋅ d)  (9) 

where T is the number of boosting iterations, n is the number of training samples, and d is the 

maximum depth of each tree. This ensures that the model scales linearly with the number of data 

points and the depth of the trees. 

6.2 Comparison with State-of-the-Art Methods 

Xuhao Wan et al. utilize a DFT-ML hybrid scheme with the DMCP program to reduce 

computational costs. Their method involves complex feature selection and extensive domain 

knowledge, which limits its generalizability and increases computational overhead. The 

complexity of their approach is not explicitly stated but is likely higher due to the intricate feature 

engineering required. 

Reynolds et al. employ neural networks to predict spin-state ordering and bond lengths in transition 

metal complexes. The challenge with their approach lies in obtaining stable geometries and 

managing large spin contamination. The complexity of neural networks, especially deep learning 

models, can be expressed as: 

O(n ⋅ m ⋅ l)  (10) 

where n is the number of training samples, m is the number of neurons in each layer, and l is the 

number of layers. This results in a higher computational complexity compared to GBM, 

particularly for deep networks. 

Fiedler et al. combine ML with DFT to accelerate material discovery. Their approach struggles 

with maintaining accuracy across diverse systems, which can lead to inconsistencies. The 

complexity of their method is influenced by the integration of multiple ML techniques and the 

preprocessing required for different material systems. 

Riemelmoser et al. enhance the Random Phase Approximation (RPA) with ML. Their method 

faces challenges in modeling nonlocal interactions accurately. The complexity of their model 

depends on the nonlocal descriptors used and the need for extensive computational resources for 

training. 

Del Rio et al. propose an end-to-end ML model to emulate DFT. While their approach reduces 

computational cost, the accuracy diminishes with larger systems. The complexity of their model 

can be significant due to the requirement for large training datasets and the use of deep learning 

techniques. 
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6.3 Comparison Tables 

The following tables provide a comparative analysis of the computational complexity and key 

characteristics of the discussed methods. 

Table 3 Comparative Analysis of Computational Complexity and Key Challenges 

Method Training 

Samples 𝐧 

Complexity Key Challenges 

GBM (This 

Research) 

Moderate O(T ⋅ n ⋅ d) Balancing model complexity 

and performance 

Xuhao Wan et al. Moderate High due to feature 

selection 

Requires extensive domain 

knowledge 

Reynolds et al. Large O(n ⋅ m ⋅ l) Stability of geometries and spin 

contamination 

Fiedler et al. Large Varies with ML 

integration 

Accuracy across diverse 

systems 

Riemelmoser et 

al. 

Moderate High due to nonlocal 

interactions 

Modeling nonlocal interactions 

accurately 

Del Rio et al. Large High due to deep 

learning 

Accuracy diminishes with 

larger systems 

6.4 State-of-the-Art Comparison 

The GBM model offers a balanced approach, achieving high predictive accuracy with moderate 

computational complexity. It effectively captures complex nonlinear relationships in DFT data, 

making it suitable for analyzing and predicting material properties. In contrast, methods like those 

proposed by Reynolds et al. and Del Rio et al. offer high accuracy but at the cost of increased 

computational complexity. Xuhao Wan et al. and Fiedler et al. focus on hybrid and combined 

approaches but face challenges in feature selection and maintaining accuracy across different 

systems. 

Table 4 State-of-the-Art Comparison 

Method Predictive Accuracy Computational Efficiency Generalizability 

GBM (This Research) High Moderate High 

Xuhao Wan et al. High Low Moderate 

Reynolds et al. High Low Moderate 

Fiedler et al. Moderate Low Low 

Riemelmoser et al. High Low Low 

Del Rio et al. High Low Low 

This analysis demonstrates the advantages of the GBM model in terms of computational efficiency 

and generalizability, making it a valuable tool for DFT calculations in materials science. 

7. Discussion 
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The research presented explores the application of GBM models to improve the predictive 

accuracy of DFT calculations. This approach leverages the strengths of ensemble learning to 

address the inherent complexity and computational demands of traditional DFT methods. The 

results demonstrate that GBM models effectively capture nonlinear relationships within DFT data, 

significantly enhancing the prediction of material properties. 

The experimental setup, involving high-performance computing clusters and advanced software 

tools like VASP and Python libraries, underscores the importance of computational resources in 

this domain. The GBM model's performance, evaluated using metrics such as MSE, MAE, and R², 

reveals robust predictive capabilities. Notably, the model exhibits lower testing errors compared 

to training errors, indicating strong generalization to unseen data. This is critical for the practical 

application of the model in materials discovery and design. 

Comparative analysis with state-of-the-art methods highlights the advantages and limitations of 

various approaches. Xuhao Wan et al. present a DFT-ML hybrid scheme but face challenges in 

feature selection and domain knowledge requirements. Reynolds et al. use neural networks for 

spin-state ordering, yet their method struggles with stable geometries and spin contamination. 

Fiedler et al. combine ML with DFT but encounter difficulties in maintaining accuracy across 

diverse systems. Riemelmoser et al. integrate ML with RPA, failing to model nonlocal interactions 

accurately. Del Rio et al. propose an end-to-end ML model for DFT emulation but suffer from 

diminished accuracy with larger systems. 

In contrast, the GBM model offers a balanced approach, achieving high predictive accuracy with 

moderate computational complexity. Its iterative training process and optimal feature selection 

contribute to its robust performance. The model's ability to generalize well to new data underscores 

its potential for accelerating materials discovery by providing accurate predictions of material 

properties. 

The complexity analysis further emphasizes the computational efficiency of the GBM model. 

While deep learning methods like those employed by Reynolds et al. and Del Rio et al. offer high 

accuracy, they come with increased computational costs. The GBM model's complexity, expressed 

as  

O(T ⋅ n ⋅ d), ensures scalability and efficiency, making it a practical choice for large-scale DFT 

calculations. 

According to the overall findings the GBM model represents a significant advancement in the field 

of computational materials science. Its ability to handle complex DFT data and provide accurate 

predictions makes it a valuable tool for researchers. The findings of this study pave the way for 

future research focused on further optimizing the model and exploring its application to a wider 

range of materials and properties. The continued integration of ML with DFT holds promise for 

transforming the landscape of materials discovery and design, enabling faster and more accurate 

identification of novel materials with desired properties. 
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8. Conclusion 

This research explores the use of GBM models to enhance the predictive accuracy of DFT 

calculations. The study demonstrates that GBM effectively captures complex nonlinear 

relationships within DFT data, providing robust predictions of material properties. The 

experimental setup, which includes high-performance computing resources and advanced software 

tools, underscores the feasibility of integrating GBM with DFT calculations. The performance of 

the GBM model, evaluated through metrics such as MSE, MAE, and R², indicates its strong 

generalization capabilities. The model consistently shows lower testing errors compared to training 

errors, highlighting its ability to predict new, unseen data accurately. This is crucial for practical 

applications in materials discovery and design. Comparative analysis with state-of-the-art methods 

reveals the advantages of the GBM model in balancing computational efficiency and predictive 

power. Unlike methods requiring extensive domain knowledge or suffering from high 

computational costs, GBM offers a scalable and efficient solution. Its iterative training process and 

optimal feature selection contribute to its superior performance. The complexity analysis further 

emphasizes the model's computational efficiency, making it a practical choice for large-scale DFT 

calculations. The GBM model's ability to provide accurate predictions with moderate 

computational complexity positions it as a valuable tool for researchers in computational materials 

science. 
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