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Abstract 

The main goal of this study is utilizing domination and fractional domination 

in computational biology. The domination number of a graph is the size of the 

smallest domination set. The collection of vertices with non-negative weights 

is known as a fractional domination set such that the sum of the weights of the 

vertices and their neighbours is at least one. In the given study our proposed 

approach can be used to apply the domination and fractional domination 

concepts for connected graph using adjacency matrix and LPP formulation. 

Here we have used these conceptsin computational biological systems such as 

gene regulatory networks, protein-protein interaction networks and healthcare 

network optimization. Computational biology is an interdisciplinary field that 

applies computational techniques and mathematical models to analyse and 

interpret biological data. 

 

Keywords:Dominating set, fractional domination number, adjacency matrix, 

computational biological network, LPP formulation. 
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I. Introduction 

Let 𝐺 = (𝑉, 𝐸)is graph with 𝑉 as vertex set and 𝐸 as edge set. A subset 𝐷of 𝑉is called a 

dominating set of graphs 𝐺if eachvertex in 𝑉 − 𝐷is connected to at least one vertex in 𝐷. For 

every vertex 𝑢 ∈ 𝑉 − 𝐷, 𝑑(𝑢, 𝐷) = 1 or 𝑁[𝐷] = 𝑉.  A domination set 𝐷is known as 

minimaldominating set (MDS) if no proper subset of 𝐷is a dominating set of 𝐺. The size of 

smallest dominating set of graphs 𝐺is called the domination number of graph 𝐺 and it is 

denoted by  𝛾 (𝐺).The maximum cardinality of minimal dominating set (MDS) of graph 𝐺is 

called upper dominationnumber of 𝐺and it is denoted by Г(𝐺).Thedominationnumber noted 

by𝛾(𝐺)andtheupperdominationnumber noted byГ(𝐺) 

aredefinedas: 𝛾 (𝐺) = 𝑚𝑖𝑛{|𝐷|: 𝐷𝑖𝑠𝑀𝐷𝑆𝑜ƒ𝐺}andГ(𝐺) = max {|𝐷|: 𝐷𝑖𝑠𝑀𝐷𝑆𝑜ƒ𝐺}. 

A dominating function 𝑓to be any𝑓: 𝑉(𝐺)  → [0, 1]  is function of 𝐺 which allocates the 

values for each vertex 𝑣 ∈ 𝑉(𝐺) in the unit interval [0,1]. The given function 𝑓 is called a 

fractional dominating function if for every vertex 𝑣 ∈ 𝑉(𝐺), 𝑓(𝑁[𝑣]) = ∑ 𝑓(𝑣)
𝑣∈𝑁[𝑣]

≥ 1. It 

denotes the total value of the vertices in the closed neighbourhood of 𝑣 ∈ 𝑉(𝐺)such that𝑁[𝑣] 

is at least one, i.e. (∑𝑁[𝑣]) ≥  1. (Since then any vertex 𝑣 ∈ 𝑉(𝐺)is in the closed 

neighbourhood of at least one vertex in  𝐷, where 𝐷 is subset of vertex set 𝑉). 

The dominating function  𝑓is called a minimal fractional dominating function (MFDF) if there 

does not exist a dominating function 𝑔 ≠ 𝑓for which𝑔(𝑣) ≤ 𝑓(𝑣)for all𝑣 ∈ 𝑉(𝐺)equivalently 

𝑓is an minimal fractional dominating function (MFDF) if for every vertex 𝑣with𝑓(𝑣) >

0,there exist a vertex𝑤 ∈ 𝑁[𝑣]such that∑ 𝑓(𝑣)
𝑣∈𝑁[𝑤]

= 1. 

If there is a vertex 𝑣 for which given condition is not true meansevery vertex in the closed 

neighborhood of 𝑣 obeys (𝑁[𝑣]) > 1, then we can decrease 𝑓(𝑣) to obtain a smaller fractional 

dominating function and so 𝑓 is not a minimal fractional dominating function. The fractional 

domination number of 𝐺 denoted by𝛾𝑓 (𝐺)and the upper fractional domination number of 𝐺 

denoted by Г𝑓 (𝐺)are definedas,  𝛾𝑓 (𝐺)  = 𝑚𝑖𝑛 {|𝑓|: 𝑓 𝑖𝑠 𝑎𝑛 𝑀𝐹𝐷𝐹 𝐺},  

Г𝑓 (𝐺) = 𝑚𝑎𝑥 {|𝑓|: 𝑓 𝑖𝑠 𝑎𝑛 𝑀𝐹𝐷𝐹 𝐺}, Where |𝑓|  = ∑ 𝑓(𝑣)
𝑣∈𝑉

.  

Example Figure 1: The Hajos graph 𝐻3 , (𝛾𝑓 (𝐺) = 3/2, 𝛾 (𝐺) = 2,   Г (𝐺) = Г𝑓 (𝐺) = 3) 
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Figure 1 

At the Eighteenth Southeastern International conference, graph theory and computing, S.T. 

Hedetniemi formally defined fractional domination. For the Hajos graph 𝐻3 in Figure 1, let 

𝑓(𝑉2) = 𝑓(𝑉3) =𝑓(𝑉5) = 1/2 and 𝑓(𝑉1) = 𝑓(𝑉4)  = 𝑓(𝑉6) = 0 which makes𝛾𝑓 (𝐺) = 3/2. 

Fractional domination number as 1 be the vector of all ones. Let 0 be the vector of all zeros. 

Let 𝐴(𝐺)be the adjacency matrix. The fractional domination number 𝛾𝑓 (𝐺) is the value of 

linear program objective function minimizes 1𝑇𝑥, where 1𝑇 is row vector of once and 𝑥 is 

column vector of decision variables. Multiplying 1𝑇 by 𝑥 essentially sums up all the elements 

of 𝑥. subject to conditions(𝐴(𝐺) + 𝐼)𝑥 ≥ 1, This represents a set of linear inequality 

constraints where𝐴(𝐺)be the adjacency matrix and 𝐼 is the identity matrix and𝑥 is the   

decision variable vector. (𝐴(𝐺) + 𝐼)𝑥it creates a new vector to which each element is at least 

1. This constraint essentially ensures that the result of multiplying (𝐴(𝐺) + 𝐼)𝑥is greater than 

or equal to 1 for each elementand 𝑥 ≥ 0this constraint simply states that each decision 

variable must be non-negative. 

In 1980 Cockayne, Dawes, and Hedetniemi presented the idea and has since been extensively 

studied in graph theory and related fields.One of the early results in the area is a 

characterization of graphs with fractional domination number 1, which is equivalent to the 

domination number being 1. This result is due to Haynes, Hedetniemi, and Slater in 1998, 

who also proved that computing the fractional domination number is NP-hard. 

In 1985, Fink and Jacobson introduced generalization of the concept of domination and 

independence in graphs. Further in the paper of [2] they provide a survey result on k-

domination and 𝑘-independence in graphs. They also established a number of bounds and 

results for this variant of the problem.The authors of the paper [9] has demonstrated a linear 

time approach for the k-domination issue on networks where every block represents a full 

bipartite graph, a clique, or a cycle.All graphs include trees, block graphs, cacti and block-

cactus graphs. The authors of the paper [11] provided a polynomial-time approach for 
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determining each nontrivial tree's dominator chromatic number.The observations in [5] They 

offer a technique for determining the maximum n-independent set𝑆 and the total n-

dominating set 𝐷in a connected graph with at least 𝑝 ≥ 2𝑛 +  1 vertices where 𝑝 is the order 

of graph. 

The fractional domination number has also been studied in several graph classifications, 

including trees, planar graph, and hypercubes. In particular, research has demonstrated that 

the fractional dominance number of a tree is always at most one. In recent years, researchers 

have also investigated fractional versions of other graph parameters, such as the independent 

domination number and the total domination number. There has also been interest in the 

computational complexity of computing these parameters, as well as in algorithms for finding 

them in various types of graphs. Overall, the study of fractional domination numbers and 

research on related parameters is also on going in the field of graph theory. 

The author of [6] has given relation between fractional dominating number of 𝐺 and 

fractional total dominating number of graph complement. They have defined fractional 

domination number as 1 is the vector of all ones and 0 is the vector of all zeros. Now𝐴(𝐺) is 

adjacency matrix of graph and I be the identity matrix. The fractional dominating number 

𝛾𝑓 (𝐺)is objective function value of linear programming problem: 

Objective function minimizes1𝑇𝑥,  

subject to constraints(𝐴(𝐺) + 𝐼)𝑥 ≥ 1,and 𝑥 ≥ 0.(1) 

Same like this the fractional total dominating number Г𝑓 (𝐺) be the value of linear 

programming problem of objective function minimize 1𝑇𝑥,  

subject toconstraints(𝐴(𝐺)𝑥) ≥ 1, and𝑥 ≥ 0.                                                                    (2) 

Solution to equation (1) is fractional dominating number with non-negative weights on 

vertices whose sum in any closed neighbourhood is at least one. By forcing 𝑥 to have integer 

entries transforms equation (1) into integer program for domination number of graph.Solution 

to equation (2) is fractional total dominating number with non-negative weights on vertices 

whose sum in any open neighbourhood is at least one. By forcing 𝑥 to have integer entries 

transforms equation (2) into integer program for upper domination number of graph.  

Authors of [12] considered the problem of incrementally computing a minimal dominating 

set of a directed graph after the insertion or deletion of a set of arcs.In this paper, they first 

show how to incrementally compute a minimal dominating set on arc insertions and then 

reduce the case of computing a minimal dominating set on arc deletions to the case of 

insertions. 
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The second section includesgraph representation with adjacency matrix and LPPformulation. 

The third section contains applications of domination and fractional domination in 

computational biological systems. Specifically, gene regulatory networks, protein-protein 

interaction network, Healthcare Network Optimization. 

Somepreliminaryknownresults: 

Theorem1.1[7]Let for any graph 𝐺 we have⌈
𝑛

1+∆(𝐺)
⌉ ≤ 𝛾 (𝐺) ≤ 𝑛 − 𝛥(𝐺). 

Theorem1.2[7]Let for anygraph 𝐺 we have  
𝑛

1+∆(𝐺)
≤ 𝛾𝑓 (𝐺) ≤

𝑛

1+𝛿(𝐺)
 , 

Where ∆(𝐺) 𝑖𝑠 maximum degree of graph and𝛿(𝐺) is minimum degree of graph. 

Theorem1.3[7]Let for anygraph𝐺wehave𝛾𝑓 (𝐺) = 1if and only if𝛥(𝐺) = 𝑛 − 1. 

Theorem 1.4  [4] If 𝐺 is an r-regular graph then 𝛾𝑓 (𝐺) =
𝑛

𝑟+1
 . 

Some results of our work quoted as [13]: 

1. If G is the cycle graph of order n and 𝐺′its dual graph, then𝛾𝑓 (𝐺) + 𝛾𝑓 (𝐺
′) = 1 +

𝑛/3 and  𝛾𝑓 (𝐺) ∗  𝛾𝑓 (𝐺
′) = 𝑛/3.For cycle graph (𝐶𝑛 )where n = 3, 4, 5,…, n.The 

fractional domination number is𝛾𝑓 (𝐶𝑛 ) = 𝑛/3. 

2. If G be the wheel graph of order n ≥ 4 and 𝐺′its dual graph, for then 

 𝛾𝑓 (𝐺) + 𝛾𝑓 (𝐺
′) = 2 and  𝛾𝑓 (𝐺) ∗  𝛾𝑓 (𝐺

′) = 1. 

3. If G is the completegraph with vertices n < 5 and 𝐺′ be its dual graph then𝛾𝑓 (𝐺) +

 𝛾𝑓 (𝐺
′) = 2 and  𝛾𝑓 (𝐺) ∗  𝛾𝑓 (𝐺

′) = 1. 

4. If G be the Bi-Star graph of order n and 𝐺′its dual graph, then𝛾𝑓 (𝐺) + 𝛾𝑓 (𝐺
′) = 3 

and  𝛾𝑓 (𝐺) ∗  𝛾𝑓 (𝐺
′) = 2. 

5. If G be the n-Sunlet graph and 𝐺′its dual graph, then𝛾𝑓 (𝐺) + 𝛾𝑓 (𝐺
′) = (𝑛 + 1) 

and  𝛾𝑓 (𝐺) ∗  𝛾𝑓 (𝐺
′) = 𝑛. 

6. If G be the graph of Cartesian product (𝐾2 ×  𝑃𝑛 ) with n >1 then  

𝛾𝑓(𝐾2  ×  𝑃𝑛) =  

{
 

 
𝑛 + 1

2
,                             𝑖𝑓𝑛𝑖𝑠𝑜𝑑𝑑

(𝑛2 + 2𝑛)

2(𝑛 + 1)
,                     𝑖𝑓𝑛𝑖𝑠𝑒𝑣𝑒𝑛

 

7. If G be the graph of Cartesian product (𝐾2 ×  𝑃𝑛 ) for n >1 and 𝐺′ be its dual graph 

then   𝛾𝑓 (𝐺) + 𝛾𝑓 (𝐺
′) = {

1 +
𝑛+1

2
,                             𝑖𝑓𝑛 𝑖𝑠 𝑜𝑑𝑑  

1 +
(𝑛2+2𝑛)

2(𝑛+1)
,                     𝑖𝑓 𝑛 𝑖𝑠 𝑒𝑣𝑒𝑛
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8. If G is the graph of Cartesian product (𝐾2 × 𝐶𝑛) with 2n vertices n > 2 then,𝛾𝑓 (𝐾2 ×

 𝐶𝑛 ) = 2𝑛/4  

9. If G be the graph of Cartesian product (𝐾2 × 𝐶𝑛) with 2n vertices n > 2 and (𝐺′) be 

its dual graph with 2n-m vertices where m = 1, 2,..., mthen 

𝛾𝑓(𝐺) + 𝛾𝑓(𝐺
′) =

{
 

 
2𝑛

4
+
2𝑛 − 𝑚

4 +𝑚
,                                         𝑖𝑓𝑛 = 3 𝑎𝑛𝑑𝑚 = 1  

2𝑛

4
+

(2𝑛 − 2)

(4 +𝑚 − 1)
𝑖𝑓𝑛 = 4,5,6…  𝑎𝑛𝑑𝑚 = 2,3,4…

 

II. Graph representation with adjacency matrix and LPP formulation 

 

2.1A graph is a non-linear data structure: 

A set of nodes, also known as vertices and the edges that join two or more vertices together 

make up a graph. A graph can also be thought of as a cyclic tree, in which the vertices 

maintain a complex interaction between one another but do not have a parent-child 

relationship.  

Graph algorithmis a collection of instructions called a graph algorithm connected to each 

node in a graph. The path between two specified nodes or a single node can be found using 

some algorithms.The method used to store a graph data structure in memory is called graph 

representation. Either a linked form or a sequential representation can be used to store the 

graph. One of three data structures, such as an adjacency matrix, adjacency list, or adjacency 

set, can be used to represent a graph. The descriptions of these two kinds follow. 

2.2Sequential representation:The adjacency matrix is used in graph sequential 

representation. A matrix with size 𝑛 𝑥 𝑛, where n is the number of vertices in the network, is 

called an adjacency matrix. The adjacency matrix's rows and columns correspond to a graph's 

vertices. When there is an edge connecting the vertices, the matrix element is set to 1. The 

element is set to 0 if the edge is absent. 

Given below is an example of graph that shows its adjacency matrix. 

 

 

 

                            A   B   C   D   E 

























01010

10101

01001

10001

01110

A
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 (Undirected Graph) 

 

Adjacency Matrix 

Figure 2 

 

Here rows and columns are taken sequentially like (A, B, C, D, E) so that matrix is of order  

(𝟓 × 𝟓) matrix.The adjacency matrix for the graph above has been shown to us. Observe that 

the edge is present in both directions because this graph is undirected. For instance, we can 

infer that edge BA is present since edge AB is present. 

The interactions of the vertices, which are matrix entries set to 1 when the edge is present and 

to 0 when the edge is absent, are displayed in the adjacency matrix. The weighted graph and 

associated adjacency matrix are shown below. 

 

  (Weighted Graph) 

 A   B   C   D   E 

























00001

10010

02000

00000

00340

A

 

Adjacency Matrix 

Figure 3 

It is evident that a weighted graph's sequential representation differs from that of other graph 

types. In this case, the weight of the edge itself takes the place of the non-zero values in the 

adjacency matrix. Since the weight of the edge AB is 4, we set the intersection of A and B to 

4 in the adjacency matrix.  

In a similar manner, the weights of all the other non-zero values are adjusted. The adjacency 

list is simpler to use. Traversal means to check if there is an edge from one vertex to another 

takes O(1) time and removing an edge also takes O(1). A dense graph always requires more 

space than a sparse graph, which has fewer edges. 

2.3Linked representation 

For the graph's linked representation, we employ the adjacency list. Every node in the graph 

is preserved together with a link to the nodes that are next to it thanks to the adjacency list 

representation. We set the next pointer to null at the end of the list after we have traversed all 

of the neighbouring nodes. Initially, let us examine an undirected graph along with its 

adjacency list. 
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(Undirected Graph) 
 

Adjacency nodes 

Figure 4 

Every node has a linked list, also known as an adjacency list, as demonstrated above. We 

have edges to vertices B, C, and D from vertex A. In the associated adjacency list, node A is 

linked to these nodes as a result. Let's now build the weighted graph's adjacency list. 

 

 
(Weighted Graph) 

 

 
 

Adjacency List 

 

Figure 5 

 

To indicate the weight of an edge in a weighted graph, we include an additional field in the 

adjacency list node, as demonstrated above. It is simpler to add a vertex to the adjacency list. 

Because of the linked list implementation, it also conserves space. The operation is inefficient 

when we need to determine whether there is an edge connecting two vertices. The adjacency 

list for a weighted directed graph will be shown here. 

The edges of the graph and the adjacency list are stored in two different structures. The 

adjacency list is displayed like as (start-vertex, end-vertex, weight). We will get the output as 

Graph adjacency listwith (Start-vertex, end-vertex, weight): 

(0, 2, 4) (0, 1, 2)(1, 4, 3)(2, 3, 2)(3, 1, 4)(4, 3, 3) 

2.4LPP formulation of given graph: 

1) Let 𝐺 = (𝑉, 𝐸)be an undirected graph with𝑉 is set of verticesand 𝐸 is set of edges. 

Decision variable 𝑓(𝑣) = 𝑥𝑣 , binary decision variable indicating whether vertex 𝑣 is 

dominated. 𝑓(𝑣) = 𝑥𝑣 = 1 if vertex 𝑣 is dominated and 𝑓(𝑣) = 𝑥𝑣 = 0 otherwise. 

Objective function: Minimize the total number of vertices dominated so  
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Minimize: ∑ 𝑥𝑣𝑣∈𝑉  

Constraints: i) Every vertex 𝑣 must be dominated ∑ 𝑓(𝑣)
𝑣∈𝑁[𝑣]

≥ 1 for all 𝑣 ∈ 𝑉(𝐺) where 

𝑁[𝑣] is the closed neighborhood of vertex 𝑣 it means set of vertices adjacent to 𝑣. 

ii) Binary decision variables 0 ≤ 𝑓(𝑣) ≤ 1 for all 𝑣 ∈ 𝑉(𝐺) 

with these definitions the LPP representation for the fractional domination number of graph is  

Minimize: ∑ 𝑥𝑣𝑣∈𝑉  

Subject to i) ∑ 𝑥𝑣𝑣∈𝑁[𝑣] ≥ 1 for all 𝑣 ∈ 𝑉(𝐺) 

                  ii) 0 ≤ 𝑥𝑣 ≤ 1 for all 𝑣 ∈ 𝑉(𝐺) 

This LPP formulation aims to minimize the total number of vertices that are dominated 

subject to the constraints that every vertex must be dominated and the decision variables must 

be binary. Solving this LPP provides the fractional dominating number of graph.  

2) Objective function:Minimize 𝑍 = 𝑐1𝑥1 + 𝑐2𝑥2+ . . . + 𝑐𝑛𝑥𝑛, where 𝑐1, 𝑐2, . . . , 𝑐𝑛 are the 

weights assigned to each node in the graph, and 𝑥1, 𝑥2, . . . , 𝑥𝑛 are binary decision variables 

representing whether a node is included in the solution or not. 

Constraints: The constraints ensure that the solution represents a valid graph with no 

disconnected nodes and no cycles. 

Each node can only be included once 𝑥1 + 𝑥2+. . . +𝑥𝑛 = 1 if there is an edge between two 

nodes, they must both be included 𝑥𝑖 + 𝑥𝑗 ≥ 1 for all (𝑖, 𝑗) pairs where 𝐴𝑖𝑗 = 1. There can be 

no cycle in the solution 𝑥𝑖 + 𝑥𝑗 ≤ 1 for all (𝑖, 𝑗) pairs where there is cycle in the solution. 

The decision variables 𝑥𝑖 are binary, taking the value of 1 if node 𝑖 is included in the solution 

and 0 otherwise. The objective function 𝑍 is minimized by selecting the set of nodes that 

have the lowest weights while satisfying the constraints. The solution of this LPP will 

provide a valid graph with theminimum weight. 

2.5Example on LPP using a linear programming solver to obtain upper domination 

number of graph: 

Consider the following graph with vertex set {𝑉1, 𝑉2 , 𝑉3, 𝑉4, 𝑉5} 

 

Figure 6 
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The vertex set{𝑉1, 𝑉4}which forms dominating set of the graph with the minimum size of 2. 

Therefore, the dominating number of given graph  𝛾 (𝐺) = 2. 

To find the upper dominating number of this graphГ(𝐺)using linear programming, we can 

follow the steps. 

1. Let 𝑥1, 𝑥2, 𝑥3,  𝑥4, 𝑎𝑛𝑑 𝑥5 be binary decision variables representing whether vertex is 

included or not included in the dominating set. 

2. The objective function is to Minimize 𝑧 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5, which represents the 

smallest size of the dominating set. 

3. The conditions on constraints are  

    a) If vertex 𝑥𝑖where 𝑖 = 1,2,3,4,5is not in the dominating set, then at least one of its 

neighbours must be in set:  

 𝑥1 + 𝑥3 ≥ 1 (This constraint ensures that either vertex 𝑉1or vertex 𝑉3 (or both) must 

be connected to some other vertex) 

 𝑥2 + 𝑥4 ≥ 1(This constraint ensures that either vertex 𝑉2 or vertex 𝑉4 (or both) must 

be connected to some other vertex) 

 𝑥1 + 𝑥2 + 𝑥4 ≥ 1 (This constraint ensures that at least one of the vertices𝑉1,𝑉2, or 𝑉4 

must be connected to some other vertex) 

 𝑥3 + 𝑥4 ≥ 1 (This constraint ensures that either vertex 𝑉3 or vertex 𝑉4 (or both) must 

be connected to some other vertex) 

 𝑥4 + 𝑥5 ≥ 1 (This constraint ensures that either vertex 𝑉4 or vertex 𝑉5 (or both) must 

be connected to some other vertex) 

b) If vertex 𝑥𝑖 where 𝑖 = 1,2,3,4,5 is in the dominating set, then it does not need to be 

adjacent to any other vertex in the set:  

𝑥1 + 𝑥2 ≤ 1 (This constraint means that either vertex 𝑉1 or vertex 𝑉2(or neither) can have 

an outgoing edge, but not both. It ensures that there is at most one edge leaving vertex 𝑉1 

and vertex 𝑉2 combined) 

𝑥3 + 𝑥4 ≤ 1 (Similarly, this constraint means that either vertex𝑉3 or vertex 𝑉4 (or neither) 

can have an outgoing edge, but not both. It ensures that there is at most one edge leaving 

vertex𝑉3 andvertex 𝑉4combined) 

and 𝑥5 ≤ 1(This constraint ensures that vertex 𝑉5 can have at most one outgoing edge. Since 

it has no other adjacent vertex in the given graph, it can have either zero or one outgoing 

edge) 
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These constraints effectively enforce that each vertex has a maximum of one outgoing edge, 

ensuring acyclic behaviour in the graph. They prevent the formation of loops or cycles, 

making the graph undirected acyclic graph. 

   c) Each variable 𝑥𝑖 must be binary means 𝑥𝑖 ∈ {0,1} 

4. Solve the resulting LPP using a graphical method or linear programming solver to obtain 

the minimum size of a dominating set.We get the solution like 

𝑥1 = 0, 𝑥2 = 1, 𝑥3 = 0, 𝑥4 = 1, 𝑥5 = 1. Therefore  𝑧 = 3 

This solution corresponds to the set of vertices {𝑉2, 𝑉4 , 𝑉5}, which form dominating set of the 

given graph with the minimum size with 3. Therefore, the upper domination number of graph 

is Г(𝐺) = 3. 

III. Applicationsof domination and fractional domination in 

computational biological systems 

1) One prominent example of computational biology in action is the field of bioinformatics, 

which focuses on analysing large-scale biological data, particularly genomic and proteomic 

data, using computational tools and techniques. The Human Genome Project, completed in 

2003, marked a significant milestone in bioinformatics by sequencing the entire human 

genome, which consists of over three billion base pairs of DNA. Since then, computational 

methods have been essential in analysing and interpreting genomic data to uncover the 

genetic basis of diseases, identify potential drug targets, and understand evolutionary 

relationships between species. 

2) Another example is the use of computational modelling and simulation to study biological 

systems at various levels of complexity. For instance, systems biology employs mathematical 

models to simulate the behaviour of biological networks, such as gene regulatory networks or 

metabolic pathways, and predict how perturbations to these networks may affect cellular 

behaviour. By integrating experimental data with computational models, researchers can gain 

insights into the underlying mechanisms of diseases like cancer and develop strategies for 

therapeutic intervention 

3) In drug discovery and development, computational biology plays a critical role in rational 

drug design, virtual screening, and pharmacokinetic modelling. For example, molecular 

docking algorithms use computational models of protein-ligand interactions to predict the 

binding affinity of small molecules to target proteins, helping identify potential drug 

candidates with therapeutic efficacy. Similarly, pharmacokinetic modelling allows 

researchers to predict the absorption, distribution, metabolism, and excretion of drugs in the 
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body, aiding in the optimization of drug dosing regimens and minimizing the risk of adverse 

effects. 

4) Furthermore, computational biology is increasingly being applied in personalized medicine 

to tailor medical treatments to individual patients based on their genetic makeup, lifestyle 

factors, and disease characteristics. For example, genomic sequencing and analysis can 

identify genetic variants associated with drug response or disease susceptibility, enabling 

clinicians to prescribe medications that are most likely to be effective for a particular patient 

or to recommend preventive measures for individuals at high risk of developing certain 

diseases. 

Computational biology plays a vital role in advancing our understanding of complex 

biological systems, driving innovation in healthcare, and improving human health outcomes. 

By leveraging computational techniques and interdisciplinary collaboration, researchers can 

address fundamental questions in biology and develop novel solutions to pressing medical 

challenges. 

Fractional domination is a concept derived from graph theory, where it is used in 

computational biology, networks often represent various biological systems such as gene 

regulatory networks, protein-protein interaction networks, metabolic networks, and 

ecological networks. Applying fractional domination in computational biology can provide 

insights into the robustness, stability, and controllability of these biological systems. 

Once dominating sets are identified, interpret the biological significance of these sets. For 

instance, in a gene regulatory network, a dominating set might represent a group of genes that 

collectively control the expression of other genes in the network. Understanding the roles and 

interactions of these genes can provide insights into regulatory mechanisms. 

3.1Computational biological system such as gene regulatory networks: 

let's consider a simplified example of a gene regulatory network (GRN) represented as a 

graph. In this network, nodes represent genes, and edges represent regulatory interactions 

where one gene regulates the expression of another gene. We will apply fractional 

domination to identify key genes that collectively control a significant portion of the network. 

Consider the following gene regulatory network as a graph 𝐺: 

Genes: A, B, C, D, E, F, G. 

Regulatory Interactions:A → B, A → C, B → D, C → D, C → E, D → F, E → G. 
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Directed graph(𝐺)of regulatory interactions 

              A   B    C   D    E    F    G    

[
 
 
 
 
 
 
0 1 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1
0 0 0 0  0 0 0
0 0 0 0 0 0 0]

 
 
 
 
 
 

 

Adjacency matrix𝐴(𝐺) 

Figure 7 

Use algorithm to find dominating set within the network. In fractional domination we take a 

dominating function 𝑓to be any𝑓: 𝑉(𝐺)  → [0,1]  is function of given graph which allocates 

the values for each vertex 𝑣 ∈ 𝑉(𝐺) in the unit interval [0,1]. The given function 𝑓 is called a 

fractional dominating function if for every vertex 𝑣 ∈ 𝑉(𝐺), 𝑓(𝑁[𝑣]) = ∑ 𝑓(𝑣)
𝑣∈𝑁[𝑣]

≥ 1. It 

denotes the total value of the vertices in the closed neighbourhood of 𝑣 ∈ 𝑉(𝐺)such that𝑁[𝑣] 

is at least one it means(∑𝑁[𝑣]) ≥ 1. Here in this graph 𝛾𝑓 (𝐺) =
12

4
= 3.  

We can frame it as an optimization problem aimed at minimizing the expression level of a 

certain gene while satisfying the regulatory constraints. Let's choose gene 𝐺 for 

minimization. 

Objective function: Minimize 𝑥𝐺 

Constraints: 

1. Gene expression levels are non-negative: 𝑥𝐴, 𝑥𝐵, 𝑥𝐶, 𝑥𝐷, 𝑥𝐸, 𝑥𝐹, 𝑥𝐺 ≥  0 

2. Regulatory interactions: 𝑥𝐵 ≥ 𝑥𝐴, 𝑥𝐶 ≥ 𝑥𝐴, 𝑥𝐵 ≥ 𝑥𝐷,  𝑥𝐷 ≥ 𝑥𝐶, 𝑥𝐸 ≥ 𝑥𝐶 

𝑥𝐹 ≥ 𝑥𝐷,  𝑥𝐺 ≥ 𝑥𝐸. 

These constraints ensure that the expression levels of genes are regulated according to the 

specified interactions.With this formulation, the objective is to minimize the expression level 

of gene 𝐺 while satisfying the regulatory interactions among the genes. 

Illustration: If we take (𝐴(𝐺) + 𝐼)𝑥 ≥ 1,will convert it into system of equations like 

𝑥1 + 𝑥2 + 𝑥3 = 1,  𝑥2 + 𝑥4 = 1 , 𝑥3 + 𝑥4 + 𝑥5 = 1, 𝑥4 + 𝑥6 = 1, 𝑥5 + 𝑥7 = 1,  𝑥6 = 1 

and  𝑥7 = 1. By solving this system of equations will get   𝑥1 = −1, 𝑥2 = 1, 𝑥3 = 1, 𝑥4 = 0, 

𝑥5 = 0, 𝑥6 = 1, 𝑥7 = 1. Hence fractional domination number is objective function minimizes 

1𝑇𝑥 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 = 3. 

 

The goal is to find a set of nodes that collectively cover a certain fraction of the entire 

network. Let's say we aim to cover 100% of the network. The fractional domination number 
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provides a quantitative measure of the burden of a network, and can be used to design more 

robust and efficient networks. 

After applying fractional domination concept, we find the dominating sets. Let's assume we 

find the dominating set {A, D, E}.The dominating set represents a group of genes that 

collectively regulate a significant all portion of the network. In this example, dominating set 

includes genes A, D and E, which together regulate genes B, C,F and G. 

We can assess the robustness of the network by simulating perturbations to the dominating 

sets. For example, we can remove genes A, D and E from dominating set and observe how it 

affects the expression of genes B, C,F and G. 

Based on the dominating sets, we can devise control strategies to manipulate the network. For 

instance, by targeting genes A, D and E which are part of dominating set, we may be able to 

modulate the expression of downstream genes B, C,F and G. 

Combine fractional domination analysis with gene expression data or other omics data to 

enhance the biological relevance and accuracy of the findings. This could involve validating 

the regulatory interactions predicted by the dominating sets through experimental assays. 

This simplified example demonstrates how fractional domination can be applied to analyse 

gene regulatory networks in computational biology, providing insights into the control and 

regulation of gene expression within complex biological systems. 

 

3.2 Computational biological system such as protein-protein interaction network: 

We can take an example of a protein-protein interaction network (PPIN) represented as a 

graph. In this network, nodes represent proteins, and edges represent physical interactions 

between proteins. We can apply fractional domination to identify key proteins that 

collectively influence a significant portion of the network. 

Consider the following protein-protein interaction network 

Proteins: A, B, C, D, E, F, G 

Physical Interactions:A → B, A → C, B →C, B→ D, C → E, D →E, E →F,F→G. 

 
 

                A   B    C   D    E    F    G    

[
 
 
 
 
 
 
0 1 1 0 0 0 0
0 0 1 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0  0 0 1
0 0 0 0 0 0 0]
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Directed graph (𝐺) of protein-protein 

interaction network 

Adjacency matrix 𝐴(𝐺) 

Figure 8 

 

To find dominating set within the network we used fractional domination concept as 

dominating function 𝑓to be any𝑓: 𝑉(𝐺)  → [0,1]  is function of given graph which allocates 

the values for each vertex 𝑣 ∈ 𝑉(𝐺) in the unit interval [0,1]. The given function 𝑓 is called a 

fractional dominating function if for every vertex 𝑣 ∈ 𝑉(𝐺), 𝑓(𝑁[𝑣]) = ∑ 𝑓(𝑣)
𝑣∈𝑁[𝑣]

≥ 1. It 

denotes the total value of the vertices in the closed neighbourhood of 𝑣 ∈ 𝑉(𝐺)such that𝑁[𝑣] 

is at least one it means(∑𝑁[𝑣]) ≥ 1. Here in this graph 𝛾𝑓 (𝐺) = 3.If the goal is to find a set 

of nodes that collectively cover a certain fraction of the entire network. The fractional 

domination number provides a quantitative measure of the burden of a network, and can be 

used to design more robust and efficient networks. 

Let's define a binary decision variable 𝑥𝑖𝑗for each pair of proteins 𝑖 and 𝑗 where: 

1) 𝑥𝑖𝑗 = 1 if there exists a physical interaction from protein 𝑖 to protein 𝑗 

2) 𝑥𝑖𝑗 = 0 otherwise. 

Objective Function: We aim to minimize the total number of physical interactions, which can 

be represented as the sum of all decision variables:  

Minimize:∑ 𝑥𝑖𝑗𝑖,𝑗  

Constraints: Based on the given interactions, we need to ensure that if a protein interacts with 

another, it's included in the count: 

1. For each pair of interacting proteins, the decision variable must be set to 1 

𝑥𝐴𝐵 + 𝑥𝐴𝐶 + 𝑥𝐵𝐶 + 𝑥𝐵𝐷 + 𝑥𝐶𝐸 + 𝑥𝐷𝐸 + 𝑥𝐸𝐹 + 𝑥𝐹𝐺 ≥ 1 

2. Each decision variable must be binary: 𝑥𝑖𝑗 ∈ [0,1]for all 𝑖,𝑗. 

This formulation ensures that we minimize the number of physical interactions while 

ensuring that if there's an interaction between two proteins, it's counted. Linear programming 

techniques can be used to solve this optimization problem. 

Illustration: If we take (𝐴(𝐺) + 𝐼)𝑥 ≥ 1,will convert it into system of equations like 

𝑥1 + 𝑥2 + 𝑥3 = 1,  𝑥2 + 𝑥3 + 𝑥4 = 1 , 𝑥3 + 𝑥5 = 1, 𝑥4 + 𝑥5 = 1, 𝑥5 + 𝑥6 = 1, 

𝑥6 + 𝑥7 = 1and 𝑥7 = 1. By solving this system of equations will get 𝑥1 = 0, 𝑥2 = 1, 

𝑥3 = 0, 𝑥4 = 0, 𝑥5 = 1, 𝑥6 = 0, 𝑥7 = 1. Hence fractional domination number is objective 

function minimizes 1𝑇𝑥 = 𝑥1 + 𝑥2 + 𝑥3 + 𝑥4 + 𝑥5 + 𝑥6 + 𝑥7 = 3. 

After applying fractional domination, we find the dominating sets. Let's assume we find the 

dominating set {A, D, F}. Dominating set represents a group of proteins that collectively 



Page 4355 of 4358 
Mahesh Sarada / Afr.J.Bio.Sc. 6(5) (2024).4340-4358 

 
interact with a significant portion of the network. In this example, dominating set includes 

proteins A, Dand F, which together interact with proteins B, C, E and G. 

Assess the robustness of the network by simulating perturbations to the dominating sets. For 

example, we can remove proteins A, D and F from dominating setand observe how it affects 

the interactions of proteins B, C, E and G. 

Devise control strategies based on the dominating sets to manipulate the network. For 

instance, by targeting proteins A, Dand F, which are part of dominating set, we may be able 

to influence the interactions of proteins B, C, E and G. 

Combine fractional domination analysis with gene expression data, functional annotations, or 

other omics data to enhance the biological relevance and accuracy of the findings. This could 

involve validating the protein interactions predicted by the dominating sets through 

experimental assays. 

Given example illustrates how fractional domination can be applied to analyse protein-

protein interaction networks in computational biology, providing insights into the key 

proteins that regulate complex biological processes. 

3.3 Healthcare Network Optimization 

An example of a health-related application that utilizes the concept of fractional domination 

number in graph theory.In healthcare systems, it's crucial to optimize the allocation of 

resources such as medical facilities and personnel to ensure efficient and effective delivery of 

care to patients. Graph theory can be employed to model the network of healthcare facilities, 

with vertices representing hospitals, clinics, or other medical centres, and edges representing 

the connections or accessibility between them.Now, let's define the concept of fractional 

domination number in this context. 

Consider a scenario where a healthcare organization wants to optimize the placement of 

mobile medical units (MMUs) to provide healthcare access to remote or underserved areas. 

The organization can model the geographic region as a graph, with vertices representing 

potential locations for MMUs and edges representing the accessibility between these 

locations based on factors such as road networks and distance. 

Let's say we have a graph representing a region with several villages (vertices) and roads 

connecting them (edges). Each village requires healthcare access, and the organization aims 

to deploy MMUs strategically to cover as many villages as possible. 

1) Assign weights to vertices based on factors such as population size, healthcare needs, and 

geographical location. For example, larger villages or those with higher healthcare needs may 

have higher weights. 
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2) Deploy MMUs to selected vertices in such a way that the combined coverage provided by 

these MMUs forms a dominating set with a fractional domination number as close to 1 as 

possible. This means that the deployed MMUs cover as much of the population as possible 

while minimizing redundancy and overlap. 

3) Use LPP algorithm and LPP optimization techniques from graph theory to determine the 

optimal placement of MMUs to achieve maximum coverage with minimum resources. This 

may involve solving fractional domination problems or related optimization problems. 

4) By utilizing the concept of fractional domination number in graph theory, healthcare 

organizations can optimize the deployment of resources such as mobile medical units to 

provide efficient and equitable healthcare access to populations in need, especially in remote 

or underserved areas. 

Illustration:Let's create a simple graph representing a healthcare network for a region with 

several villages and roads connecting them. In this example, we will consider four villages 

(𝑉1, 𝑉2 , 𝑉3, 𝑉4) and the roads (edges) connecting them. Each village represents a potential 

location for a mobile medical unit (MMU).Here is the graph: 

 

Figure 9 

 

 The vertices (𝑉1, 𝑉2, 𝑉3 , 𝑉4) represent the four villages. 

 The edges represent roads connecting the villages. 

 The numbers on the edges represent distances or travel times between villages. For 

example, the edge between 𝑉1and 𝑉2 has a weight of 10, indicating that the distance 

between 𝑉1and 𝑉2 is 10 units. 

This graph can be used to model the connectivity and distances between villages in a region, 

allowing us to apply healthcare network optimization techniques such as fractional 

domination to determine the optimal placement of mobile medical units for maximum 

coverage and efficiency. Even though vertices 𝑉1and 𝑉4 are not connected but with the help 

of equal weightage we can optimize the allocation of resources such as medical facilities and 
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personnel to ensure efficient and effective delivery of care to patients.Given example 

illustrates how fractional domination can be applied to analyse healthcare network 

optimization in computational biology. 

 

IV. Conclusion 

Computational biology plays a vital role in advancing our understanding of complex 

biological systems, driving innovation in healthcare, and improving human health outcomes. 

By leveraging computational techniques and interdisciplinary collaboration, researchers can 

address fundamental questions in biology and develop novel solutions to pressing medical 

challenges.The use of domination and fractional domination is important applications in these 

fields. The fractional domination number provides a quantitative measure of the burden of a 

network, and can be used to design more robust and efficient networks.Here we have used 

these conceptsin computational biological systems such as gene regulatory networks, protein-

protein interaction networks and healthcare network optimization. 
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