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ABSTRACT 

This study aims outlines a comprehensive methodology for studying 

Human GRK2 in complex with G-beta-gamma in cardiovascular 

disease. g protein-coupled receptor kinases (GRKs) play crucial roles in 

receptor desensitization. changes in GRK expression have emerged as 

prominent factors in cardiovascular diseases. Study aims to explore the 

evolving understanding of GRKs in the context of cardiovascular 

diseases. The 3D structure of 3KRX is translated into its amino acid 

sequence using the Molecular Modeling Database (MMDB), while the 

quality of the protein model is evaluated using ERRAT. Molecular 

docking studies are performed using CB Dock server to predict potential 

binding sites for drug discovery. Structural classification is 

accomplished using the CATH database, categorizing the protein 

structure into distinct classes and domains, while exploring Gene 

Ontology terms associated with GRK2 provides insights into its 

biological functions. Pathway analysis using KEGG tools explores 

potential interactions and pathways relevant to cardiovascular disease. 

This comprehensive approach ensures a thorough investigation of 

Human GRK2 in complex with G-beta-gamma, offering insights into its 

structural and functional roles in cardiovascular disease research. 

Keywords: Drug discovery,Human GRK2,Structure Analysis 

,Cardiovascular disease, Biopython, NGS 
 

https://doi.org/10.33472/AFJBS.6.9.2024.765-785


Page 766 of 21 

Anaswara Jayarajan /Afr.J.Bio.Sc. 6(9) (2024) 

INTRODUCTION 

Cardiovascular diseases (CVDs) pose a formidable worldwide health contest, demanding a 

nuanced understanding of the molecular intricacies governing their pathophysiology 

(Samantha L. et al., 2023). Within the intricate signaling networks regulating physiological 

processes, G protein-coupled receptors (GPCRs) emerge as key players, responding to ligand 

binding and activating heterotrimeric G proteins (William & Brian, 2018). To fine-tune 

GPCR responsiveness and prevent sustained activation, G protein-coupled receptor kinases 

(GRKs), in collaboration with β-arrestins, play crucial roles in receptor desensitization 

(Pierre-Yves et al., 2017). G protein-coupled receptors (GPCRs) constitute the largest family 

of membrane receptors, orchestrating a myriad of physiological processes by transducing 

extracellular signals into intracellular responses (P.-Y. Jean-Charles et al., 2016). The 

fundamental mechanism involves ligand binding to GPCRs, triggering the activation of 

associated heterotrimeric G proteins and subsequent intracellular signaling pathways. To 

prevent hyperactivation of GPCR second-messenger cascades, G protein-coupled receptor 

kinases (GRKs), in collaboration with β-arrestins, play a pivotal role in desensitizing receptor 

signal transduction (Erin et al., 2010). 

In the realm of cardiovascular pathophysiology, changes in GRK expression have emerged as 

prominent factors in various conditions, including heart failure, myocardial infarction, 

hypertension, and cardiac hypertrophy (Packiriswamy & Parameswaran, 2015) (Claudio et 

al., 2022). The heightened levels and activity of G protein-coupled receptor kinase 2 (GRK2) 

in these pathological situations contribute to disease progression through multifaceted 

mechanisms. Additionally, GRK2 has been implicated in interconnected conditions such as 

obesity, insulin resistance, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD) 

(Cristina Murga, 2019). Consequently, the intensive exploration of GRKs as potential 

diagnostic markers and therapeutic targets holds promise for addressing these complex and 

interrelated health challenges (Jessica et al., 2019). 

This study aims to explore the evolving understanding of GRKs, with a focus on the central 

signaling node, GRK2, in the context of cardiovascular diseases. By unraveling its roles in 

modulating GPCRs and participating in diverse cellular signaling pathways, we seek to 

underscore the potential of targeting GRK2 as both a diagnostic marker and a therapeutic 

avenue. As we delve into the complexities of GPCR signaling mechanisms, including redox 

signaling, and the conservation of structural and biochemical aspects, we aim to illuminate 

how GRKs contribute to the selective and specific regulation of biological processes. 
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In the relentless pursuit of novel insights into cardiovascular diseases, the amalgamation of 

computational analysis and cutting-edge Next-Generation Sequencing (NGS) technologies 

has emerged as an indispensable tool (Mrinmoy et al., 2018). The realm of computational 

analysis not only facilitates the integration of vast datasets but also enables the discernment 

of key molecular players and intricate signaling pathways implicated in cardiovascular 

diseases (Prashant et al., 2021). The utilization of Biopython, a specialized library for 

computational biology, further enhances analytical capabilities by providing a versatile set of 

tools for the manipulation and analysis of biological data (Vinita & Uma, 2023). Through the 

application of Biopython, researchers can delve into genomic sequences, perform sequence 

alignments, and extract meaningful insights from large-scale biological datasets, thereby 

refining our understanding of the molecular underpinnings of cardiovascular pathologies 

(Uma & Kartik, 2023). 

NGS facilitates comprehensive genomic and transcriptomic profiling, unraveling intricate 

genetic variations and expression patterns associated with cardiovascular diseases. This 

wealth of genomic information not only aids in deciphering the genetic basis of 

cardiovascular pathologies but also serves as a foundation for identifying potential 

therapeutic targets (Robert et al., 2018). The synergy between experimental findings and 

computational approaches extends beyond data analysis to the realm of molecular docking 

studies. Molecular docking, a computational technique, allows researchers to predict the 

preferred orientation of one molecule to another when bound together (Priya & Uma, 2024). 

Applying molecular docking to the study of G protein-coupled receptor kinases 2 (GRK2) 

provides valuable insights into their interactions with ligands, substrates, and potential 

inhibitors. This approach facilitates the identification of compounds that may modulate GRK 

activity, offering prospects for the development of targeted therapeutic interventions in 

cardiovascular diseases (Helen et al., 2018). 

The integration of Biopython, molecular docking studies, and NGS technologies represents a 

sophisticated approach to cardiovascular research, offering a holistic understanding of the 

molecular intricacies underlying GRK-mediated signaling. This multidimensional strategy 

not only refines our comprehension of the complexities associated with cardiovascular 

diseases but also opens new avenues for the development of precision medicine strategies. As 

technology advances and these computational tools become more sophisticated, the synergy 

between experimental and computational methodologies is poised to accelerate 
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breakthroughs in cardiovascular research, fostering a new era of targeted therapeutic 

interventions and personalized medicine (Rajat Mittal et al., 2016). 

METHODOLOGY 

To comprehensively study Human GRK2 in complex with G-beta-gamma (3KRX) in 

cardiovascular disease, an elaborate methodology has been formulated, integrating a variety 

of tools and databases. Initially, the process begins with retrieving and preparing the 

biological sample by accessing the relevant PDB entry for the 3KRX protein structure, 

facilitating the acquisition of its 3D coordinates. Subsequent steps involve analyzing E-values 

and sequence similarity through BLAST searches across relevant databases to reveal related 

proteins and evolutionary connections. Utilizing RasMol and PyMOL, structural 

examinations are conducted to identify domains, active sites, and assess structural differences 

through RMSD calculations. Moreover, Python scripts utilizing Biopython are employed for 

detailed structural analyses such as distance and angle calculations. The 3D structure of 

3KRX is translated into its amino acid sequence using the Molecular Modeling Database 

(MMDB), while the quality of the protein model is evaluated using ERRAT. Molecular 

docking studies are performed using CB Dock server to predict potential binding sites for 

drug discovery. Structural classification is accomplished using the CATH database, 

categorizing the protein structure into distinct classes and domains, while exploring Gene 

Ontology terms associated with GRK2 provides insights into its biological functions. 

Pathway analysis using KEGG tools explores potential interactions and pathways relevant to 

cardiovascular disease. This comprehensive approach ensures a thorough investigation of 

Human GRK2 in complex with G-beta-gamma, offering insights into its structural and 

functional roles in cardiovascular disease research. 

RESULTS 

SAMPLE 

Chain A, Beta-adrenergic receptor kinase 1 

PDB: 3KRX_A 

>pdb|3KRX|A Chain A, Beta-adrenergic receptor kinase 1 

ADLEAVLADVSYLMAMEKSKATPAARASKKILLPEPSIRSVMQKYLEDRGEVTFEKI

FSQKLGYLLFRDF 

CLNHLEEARPLVEFYEEIKKYEKLETEEERVARSREIFDSYIMKELLACSHPFSKSATE

HVQGHLGKKQV 

PPDLFQPYIEEICQNLRGDVFQKFIESDKFTRFCQWKNVELNIHLTMNDFSVHRIIGRG

GFGEVYGCRKA 
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DTGKMYAMKCLDKKRIKMKQGETLALNERIMLSLVSTGDCPFIVCMSYAFHTPDKL

SFILDLMNGGDLHY 

HLSQHGVFSEADMRFYAAEIILGLEHMHNRFVVYRDLKPANILLDEHGHVRISDLGL

ACDFSKKKPHASV 

GTHGYMAPEVLQKGVAYDSSADWFSLGCMLFKLLRGHSPFRQHKTKDKHEIDRMT

LTMAVELPDSFSPEL 

RSLLEGLLQRDVNRRLGCLGRGAQEVKESPFFRSLDWQMVFLQKYPPPLIPPRGEVN

AADAFDIGSFDEE 

DTKGIKLLDSDQELYRNFPLTISERWQQEVAETVFDTINAETDRLEARKKAKNKQLG

HEEDYALGKDCIM 

HGYMSKMGNPFLTQWQRRYFYLFPNRLEWRGEGEAPQSLLTMEEIQSVEETQIKER

KCLLLKIRGGKQFI 

LQCDSDPELVQWKKELRDAYREAQQLVQRVPKMKNKPRSPVVELSKVPLVQRGSA

NGL 

 

 

Figure1: Visualization of molecule in  space fill representing atoms van der Waals sphere 
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Figure 2: Representation of alpha & beta structure in 3KRX (alpha helix in magenta & beta 

helix in yellow) 

 

 

Figure 3: Representation of chain A-yellow, chain B-green, chain c-red in biological sample 

(representation of domain) in pymol 
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Figure 4: Surface form representation of 3KRX in PyMOL 

 

 

Figure 5: Membrane preference (red-low membrane, green-high) new 

 

 

Figure 6: Size of A.A in COBALT (red -smaller side chain blue -larger side chain) 
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Figure 7: RMSD value score calculation(3krx,7pwd) square root of the mean showing the 

distance between the matched atoms determining the RMSD values. The analysis observed 

by python command-based work RMSD values is 0.675 (7096 to 7096 atoms) i.e.; closer to 0 

ther 

MOLECULAR DOCKING BY WEB SERVER CB-Dock (captopril) 

ChainA:LYS663 

Chain B: TYR59 ALA60 MET61 HIS62 THR102 CYS103 SER147 CYS148 ARG150 

MET188 SER189 LEU190 SER191 LEU192 ALA193 PRO194 ASN230 ALA231 ILE232 

CYS233 PHE234 PHE235 PRO236 THR274 SER275 VAL276 SER277 PHE278 SER279 

LYS280 SER316 CYS317 LEU318 GLY319 VAL320 THR321 ASP322 

 

Figure 8: Molecular docking analysis in protein-ligand interaction with docking score of -5.6 
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MOLECULAR DOCKING BY WEB SERVER CB-Dock (mexiletine) 

Chain A: ILE197 GLY198 ARG199 VAL205 LYS215 MET216 TYR217 ALA218 LYS220 

VAL255 LEU271 ASP272 LEU273 MET274 ASN275 GLY276 GLY277 ASP278 ALA321 

ASN322 LEU324 ASP326 GLU327 HIS328 ARG332 SER334 ASP335 ARG516 

 

 

 

Figure 9: Protein-Ligand interaction with score -5.7 with mexiletine ligand with CB-Dock 

showing very good binding and considered as the cure drug for human cardiovascular 

biological sample. 

S.No. Drug 

Name 

Vina 

Score 

Centre Docking Size 

x y z x y z 

1. Captopril -5.7 65 38 112 18 35 18 

2. mexiletine  -5.6 33 1 51 18 18 18 

Table:  Representing the Binding Score of the Effective drugs. 
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Figure 10: DRUG DISCOVERY USING BIOPYTHON CODE TO FETCHING DRUG. 

Scaling factors for drug Mexiletine and FPC 1 

 

Figure 11:Ramachandran plot generated by PROCHECK validation server showing the 

analysis of result 
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Figure 12: SIDE CHAIN RESULT IN PROCHECK. 

 

Figure 13: Structure Validation in ERRATE chain A with Overall quality factor: 91.483 

 

Figure 14: Chian G final model (Errate) 
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Figure 15: 9beta hairpins 

 

Figure 16: table of 9 beta hairpins PDB web server 

 

Figure 17: Interproscan provides an integrative classification of protein sequences into 

families, and identifies functionally important domains and conserved sites 
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Figure 18: LIGPLOT of interactions involving ligand BA1 

\  

Figure 19: MG (metal) interaction with Protein sample 
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CATH 

 

Figure 20:  Class identification of 3KRX IN CATH SERVER 

 

Figure 21: Table of Hierarchical  Classification of 3KRX  
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Figure 22: Structure Visualization of the protein (3KRX) with the help of Bio.PDB in 

BioPython.  
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Figure 23: Pathway Analysis 

CONCLUSION 

In conclusion, our study employed a comprehensive array of computational tools and 

techniques to analyze various aspects of protein structure and function in the context of 

cardiovascular research. Utilizing a computational tool, we visualized the protein structure of 

Human GRK2 in complex with G-beta-gamma in cardiovascular disease with PDB code 

3KRX, highlighting key features such as atom representation, secondary structure elements, 

and active sites. The representation of different protein chains in biological samples provided 
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insights into domain organization, with color coding indicating chain identity. Furthermore, 

the membrane preference analysis shed light on potential interactions with lipid bilayers. 

Additionally, our investigation involved the assessment of amino acid size preferences using 

COBALT, revealing variations in chain size within the protein structure. Sequence similarity 

analysis using BLAST uncovered conserved regions across related protein sequences, 

enhancing our understanding of evolutionary relationships. RMSD calculations offered 

valuable insights into the structural deviations between protein models, aiding in the 

evaluation of structural integrity. 

Furthermore, molecular docking analysis provided valuable insights into protein-ligand 

interactions, potentially informing drug discovery efforts. Ramachandran plot analysis via the 

structural validation server offered a comprehensive assessment of protein structure quality, 

aiding in the identification of structural irregularities. LIGPLOT analysis elucidated the 

interactions involving ligands, providing insights into molecular recognition events. The 

identification of metal interactions with protein samples further enriched our understanding 

of protein function and stability. Class identification through the CATH server facilitated the 

categorization of protein structures based on their structural features. 

Overall, our integrative approach, combining computational analysis, molecular modeling, 

and bioinformatics tools, yielded valuable insights into the structure, function, and 

evolutionary relationships of proteins relevant to cardiovascular diseases. These findings 

have implications for the development of targeted therapeutic interventions and further 

research in the field. 
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