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Article Info ABSTRACT:

Let G be a finite, undirected, simple graph with a set of vertices
V(G) and edge set E(G). The Dharwad Matrix of G is a matrix of
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1. Introduction

This paper examines a finite, simple, undirected graph that has a set of vertices V(G) =
{vy, v, v, } and edge set E(G). The notation v; ~ v; means v; and v; are adjacent[1]. A
vertex's degree is determined by how many other vertices are connected to it. Let A(G) be the
adjacency matrix of G with eigen values be p; = p, >.... = p,. These are called eigen values
of G and they form spectrum of G [2]. The total of the absolute values of the eigen values of
A(G) is the energy E(G) of G. The structure of the adjacency matrix has a significant impact
on a graph's spectrum. A graph's spectrum alone can be used to derive a number of potential
drawbacks[3]. For instance, the graph's second biggest eigenvalue can provide some insight
about the graph's extension and randomness[3]. Finding the energy of the molecular orbitals of
n-electrons in Huckel molecular orbital theory is one of the primary uses of graph spectra in
chemistry[3].More information and details about graph energy can be found in MajstoroviNc
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et al. (2009), Gutman et al. (2009), Gutman (2001), and Gutman (2005). Numerous graph
energies exist, including Randi’c energy (Alikhani and Ghanbari, 2015; Bozkurt and Bozkurt,
2013; Bozkurt et al. (2010), Das and Sorgun (2014), Gutman et al. (2014), Laplacian energy
(Das et al. 2013), matching energy (Chen and Shi 2015; Ji et al. 2013), incidence energy
(Bozkurt and Gutman 2013), and distance energy (Stevanovi'c et al. 2013). Motivated by the
Arithmetic-geometric energy[4] and Sombor energy[1] of specific graphs here we calculated
Dharwad energy for some specific graphs.

Dharwad index[5] is defined as D(G) = Lvw,€E(G) \/(deg(vi)f + (deg(vj))3

A graph G's Dharwad Matrix is described as

3
Ap(G) = (aij)an = {\/(deg(vi))3 + (deg(vj)) if vi~v;
0 Otherwise

The eigen values of the Dharwad Matrix Ap(G) be 1; = A, >....=> 1, Which are the Dharwad
characteristic polynomial's roots. @, (G, 1) = det(Al — Ap(G)) = [1i=1 (A — A;). The Dharwad
energy Ep(G) = Yiq|Ail.

2. Results

Here, we calculate the Dharwad energy and characteristic polynomial for the complete graph,
star graph, and complete bipartite graphs. Also determined the Dharwad characteristic
polynomial of the path graph and the cycle graph.

Theorem 2.1
The Dharwad characteristic polynomial and the Dharwad energy of the complete graph
K, ;n = 2 are

Op (K D) =(A=V2(n—1)52)(A+V2 (n - 1)3/2)”‘1

Ep(Ky) = 2v2 (n — 1)5/2
Proof:

The Dharwad matrix of K,, is /2(n — 1)3(J — I).
Therefore @, (K, A) = det (AI — \/Z(n —-1)3]+ \/Z(n —-1)3 I)

= det((/l +/2(n — 1)3) I —2(n- 1)31)

Since the eigen values of [, are n and 0 (occurs once and n — 1 times respectively), the eigen

values of \/2(n — 1)3 J,, are n\/2(n — 1)3 and 0 (occurs once and n — 1 times respectively).
Therefore

Op (K D) =(A—=V2(n— 1)) (A +V2 (n - 1)3/2)”‘1

Since the eigen values are v2 (n — 1)%/2 with multiplicity 1 and —v2 (n — 1)3/2 with
multiplicity n — 1, we have
Ep(Ky) = 2V2 (n — 1)%/2

Lemma 2.1
For a non-singular square matrix M, we have
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det (];I g) = det(M)det(Q — PM~1N)

where M~! and det(M) are the inverse and determinant of the matrix M.[6]

Theorem 2.2
The Dharwad characteristic polynomial and the Dharwad energy of the star graph S,, =
Kipn_q1;n = 2are

Op(Sp,A) = A2(22 — (n — 1)(n® — 3n? + 3n))

Ep(S,) = 2¢/(n —1)(n3 — 3n2 + 3n)

Proof:
The Dharwad matrix of S;, = K; ,_4 is

n—-1x1 On—lxn—l

We have

Q)D(Sn; /1) = det(/ll — AD(STL)) =

detl A —Vn3 —3n? + anlxn—ll
—Vn3 = 3n2 4+ 3n Jy-1x1 Al,_4

Using Lemma 2.1, Dharwad characteristic polynomial of S,, is given by

1
Op(Sp,A) = Adet (/1 Ih1 — \/n3 —3n2 4+ 3nJ,_1x1 X 1 X \/n3 —3n2+ 3n]1xn_1>

= A*""det(A?l,,_;, — (n® —3n%+3n) J,_1)

The eigen values of J,_; are n — 1 and 0 (occurs once and n — 2 times respectively), the eigen
values of (n® — 3n? + 3n)J,,_; are (n — 1)(n® — 3n? + 3n) and 0 (occurs once and n — 2
times respectively). Therefore

Op(S,A) = A"‘Z(/lz —(n—1D1m3-3n%+ 3n))

Since the eigen values are 0 with multiplicity n — 2, +y/(n — 1)(n3 — 3n2 + 3n) and
_\/(” —1)(n® — 3n? 4+ 3n), we have

Ep(S,) = 2¢/(n— 1)(n3 — 3n2 + 3n)

Theorem 2.3
The Dharwad characteristic polynomial and the Dharwad energy of the complete bipartite
graph K;,, , ; m,n # 1 are

Op(Kmn A) = A™2(22 — mn(m3 + n®))
Ep(Kpmn) = 2¢/mn(m3 + n3)

Proof:
The Dharwad matrix of Ky, ,, is
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Ap(Kmp) = m? +n3 [(}mxm men]

nxm OTI.XTI.

We have

0 (K 1) = det (2 = Ap(Kynn))

= det

Aly, —Vm3 +n3 [
—m3+n3 [ m Al

Using Lemma 2.1, Dharwad characteristic polynomial of K,, , is given by
1
@D(Km,n, /1) = det(11,,) det (/1 I, — m3+n3 ], n X ilm x m3 +n3 ]mxn>
1
= AMdet (A I, — ) (m3 +n?) m]n)

= A" "det(A%L, — m(m3 +n3) J,)

The eigen values of ], are n and 0 (occurs once and n — 1 times respectively), the eigen values
of m(m3 +n?)J, are mn(m3 +n3) and 0 (occurs once and n — 1 times respectively).
Therefore

Op(Kmn A) = A™772(22 — mn(m3 + n®))

Since the eigen values are 0 with multiplicity m+n—2, +mn(m3+n3) and
—ymn(m3 + n3),

Ep(Kpmn) = 24/ mn(m3 + n3)
Theorem 2.4

The Dharwad characteristic polynomial of the path graph B,; n > 5 satisfy
Op(P, ) = A%det ¥,,_, — 181 det ¥,,_3 + 81det ¥,,_,

Proof:
For B, we have
0 300 0 0 O
3 0 4 0 0 0 O
0 4 0 4 0 0 O
Ay (B,) = 0 054 0 0 O 0
o 0 o0 O 0 4 0
o 0 o0 O 4 0 3
o 0 o0 O 0 30
Let,
//‘1 -4 0 00 \
-4 1 -4 0 0
0 0 o 1 —4
0 0 0 -4 A

The Dharwad characteristic polynomial of P, ,
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Op (P, 1) = det(Al — Ap(B))

A =3 0 0 0 0 0
[—3 A -4 0 0 0 0 \
| 0 —4 1 -4 00 0 |
—det| 0 0:—4 A 0 0 0
0 0 0 A -4 0
\0 0 0 -4 1 =3
0 0 0 0 -3 A7 xn

0 -3 A
0 0
—2{Adet W, , +3det | Pn-3 o |- odet s ’
0o .. —4 -3 0 .. =3 21
= A{/‘{ det l'pn_z - 9 det l.IJn_3}

0

Lpn—4- :

—94AdetV,,_3; + 3det 0

0o .. —4 -3

= /‘{{A det l'pn_z -9 det l.IJn_3} - 9{/1 det l'pn_3 -9 det lpn_4_}
= A%det¥,_, — 18 1det ¥,,_; + 81 det ¥, _,

Theorem 2.5

The Dharwad characteristic polynomial of the cycle graph C,,; n > 3 satisfy

Op(CpA) =AdetW,_; +4{—4detW¥,_, + (—1)"*(—4)""1}
+ (DM ED{ED + (DM (-4 det W)

Proof:
For C,, we have
0 4 0 O 0 0 4
/ 4 0 4 0 0 0 O\
| 0 4 0 4 0 0 0
I I
A= 0040 090
O 0 0 o0 0 4 OI
o 0 0 o0 4 0 4/
4 0 0 O 0 4 0
Let,
A -4 0 00
-4 1 -4 0 0
lpk— : R2
o 0 o0 2 —4/
0 0 0 =4 A

The Dharwad characteristic polynomial of C,, ,
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(DSO—red(Cnr A) = det(ﬂl - ASO—red(Cn))

A -4 0 0 0 0 —4

-4 1 -4 0 0 0 O

0 -4 1 -4 0 0 O

:deti 0 0 -4 2 00 0 |
0 0 0 0 A =4 0
\ 0 0 0 0O -+ —4 A —4

—4 0 0 0 0 —4 17 pxn

-4 -4 .. 0 —4
= Adet W,_; +4det 0 w + (—1)"+1(—4)det< 0 Y.,
° n—-2 .

—4 —4 0 .. —4

=Adet¥,,_; +4{—4det¥,_, + (—D"(-)" 1} + (D" (-D{(-)" 1 +
(-D™(—4)det ¥,,_,}.

3. Conclusion

In this paper, we obtained the Dharwad energy and characteristic polynomial for the complete
graph, star graph, and complete bipartite graphs. Also calculated the Dharwad characteristic
polynomial of the path graph and the cycle graph. The following ideas are prospective areas of
interest for additional research:

Dharwad energy and characteristic polynomial for specific graphs due to edge
deletion.

Determination of Dharwad energy and characteristic polynomial for other graph
classes
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