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I. INTRODUCTION 

Change in weather severity and unpredictableness is 

one of the hardships to farm distinguishing due to 

theresults of crop yields, resource using and farm 

profitability. Although traditional weather forecasting 

model turns out to be relevant, it is still unable to meet 

with the accuracy and precision required to tackle the 

different requirements of agricultural stakeholders. 

Abstract: This research will consider modern data analysis techniques to improve weather 

forecasting models that are specific for agricultural decision making. Bringing in a wide range 

of information, e.g., satellite imaging, soil moisture, historical crop yields, and weather 

stations' incoming data, helped us build and evaluate the predictive models, such as Random 

Forest, LSTM, SVM, and KNN, which state crucial agro-climatic variables. Observations 

showed that LSTM yielded the best results and eventually got the lowest MSE for temperature 

(0.021) and precipitation (0.010) but for soil moisture the LSTM yielded the lowest MSE 

(0.015). Random Forest got good performance in particular in temperature and soil moisture 

prediction. It's a region of MSE equals 0.025 and 0.018 correspondingly. Through the 

competition, SVM and KNN also managed to obtain fleshy accuracy, although their MSE 

values were slightly higher compared to those of LSTM and Random Forest. This result 

demonstrates that the deep learning and ensemble learning approaches are powerful enough to 

derive relationships within the agricultural datasets dataset and result in the improvement of 

forecast reliability that is essential for decision making by the agricultural sector. The study 

should be expanded on future research to include other datasets and conduct some verification 

studies to establish the kind of spreadability models across the variety of agricultural systems 

Keywords: Weather forecasting, Crops production decision making, Advanced data processing, Machine 

learning algorithms, Long-Short Term Memory (LSTM), Random Forests, Support Vector Machines 

(SVM), K-Nearest Neighbors (KNN). 
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Through employing modern data analysis tools, it is 

possible to explore a seeming point of convergence in 

the strict focal area of weather forecasting for  

agricultural use. This research focuses on the 

combination of innovative data analysis techniques 

with the existing weather forecasting principles to 

create a forecast model which will be more accurate 

and practical for the concerned farmers [1]. The data, 

machine learning algorithms, and multi-scale 

modeling tools will be deployed to advance the grasp 

and foresee the weather pattern for local, regional, and 

global scale through smart weather forecasting. The 

bases of this study pre-supposes the existence of an 

intermittent interplay between weather patterns and 

agricultural outcomes. Team-planting, irrigation 

calendar, and controlling pest factors are amongst 

other key factors only rain forecasts can help farmers 

in making educated decision about the state of the field 

[2]. Nevertheless, the current precipitation models 

often fail the task to balance the variations of 

atmospheric variables, soil conditions, and crop 

responses. Through a combination of different data 

sources e.g. satellite images, soil moisture 

information, historical yields and, local weather 

station data we intend to achieve an increase in detail 

and high accuracy of a weather forecasts made to serve 

the needs of farm management. The holistic approach 

that combines discipline of meteorology, agronomy 

and data analytics gets across the gap between the 

meteorology and farmers in processing of their tasks 

and facilitates therefore a truly new information about 

the management of the tasks and resources [3]. What's 

more, being aware of the distinctive obstacles of 

farmers in diverse geographic areas and agricultural 

sectors we try to build the predictive models that are 

adjustable enough and can link to the different 

environments, cropping systems, and social-economic 

indicators. The study aims to provide agricultural 

sector players in real time with forecasts which are 

accurate, reliable, and action oriented so that upon 

receiving them they will mitigate risks, exploit 

resources in an optimized manner, and finally, ensure 

high level of farm resilience against weather changes. 

II. RELATED WORKS 

A huge literature of studies that illustrate the manifold 

techniques used to improve the accuracy of weather 

forecasting models and agriculturally improve 

farming-practices are only a tad bit part of a much 

larger body of research covering the complex 

interactions of big data analysis, geospatial 

technologies, and management of resources for 

farming. In this paragraph, we address a few of the 

studies that aided in the development of this topic 

through acquisition and employment of remote 

sensing data, machine learning algorithms, and AI 

technologies for agricultural use. [15] Fathi et al. 

(2023) designed a new deep learning model named 

3D-ResNet-BiLSTM for predicting soybeans yields 

for counties with different stages of Sentinel-1, 

Sentinel-2 imagery and Daymet data as inputs. The 

algorithm relied on satellite imagery data which 

captured spatial-temporal information as well as 

meteorological data to generate soybean yields 

predictions at fine resolution. [16] Fuentes-Peñailillo 

et al. (2024) focused on new sustainable generation 

technologies for soilless vegetable production mainly 

highlighting the necessity of introducing them in a 

controlled environment which makes the efficiency 

and productivity of the crops twice as good as 

traditional ones. [17] Giannakopoulos et al. (in 2024) 

focused their research on what the various 

agroeconomic indices and big data analysis tools 

meant for the improvement of agriculture making 

decisions. The study claimed the power of artificial 

intelligence-based modeling techniques as used to 

support digital marketing and marketing strategies for 

the agricultural industry through analytics 

optimization. [18] González-Rodríguez, et al. (2024) 

evaluated the implementation of artificial intelligence 

in phytopathology with the primary focus of 

highlighting it as a promising tool for the purposes of 

the diagnosis and management of pathogens and pests 

and crop protection as well. In the course of this study, 

it has emerged that you can detect and start treating 

plant diseases using AI techniques like machine 

learning and image analysis. [19] Guimarães and 

others (2024) took a source for anticipating yield of 

almonds using remote sensing platforms in a 

comparative evaluation. These researchers tried to 

mainly specify sensors in addition to data processing 

methods so that their reliability and precision of their 

yield forecasts could be enhanced. [20] Herbanu et al 

(2024) conduct study of tidal and urban flood zoning 

in Smarang City, Indonesia, with the intention of 

providing solutions related to the consequences of 

floods in these two regions. The research portrayed the 

exploitation of spatial analysis as well as geospatial 

technology to direct flood risk approaches and 

strengthen community resilience to climate related 

hazards. [21] In his study, Israel et al. (2024) carried 

out a bibliometric analysis of climate-related early 

warning systems for the Southern African region, 

giving the essential reaction to adopt comprehensive 

climate risk resilience development strategies. The 

study highlighted the necessity of assimilating 

scientific evidence as well as the advancement of 

technology into building an adjustment capacity and 

climate risk preparedness in the areas which are 

susceptible. [22] Jain et al. (2023) assessed AI-

supported solutions for climate change responses, 

emphasizing the role of AI in conserving towns, 

infrastructures, and businesses from climate change 
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impacts. AI tools like machine learning and remote 

sensing were proven in the process to be of great use 

to climate planning and decision-making resilience. 

[23] Technology integration was the main topic 

investigated by journal "Kalfas et al. (2024)" 

concerning agricultural sustainability with a case 

study taken from Greece. The research emphasized the 

pivotal nature of advanced technologies such as 

precision farming and IoT gadgets that increase 

productivity, reduce environmental degradation and 

contribute to the onset of modern agriculture 

measures. [24] Lennert et al. (2024) found that farmers 

in Hungary faced challenges and opportunities, as a 

result of the climate change-induced variability. This 

was evident from the empirical evidence presented on 

the pressing issues and adaptation capacities in 

relation to agrovulnerbility and the resilience of 

agriculture. The mission stressed pointed the need for 

policies and programmes which give farmers relevant 

tools that would enable them face new environmental 

conditions. [25] In their article (Li et al. 2024), Li et 

al. (2024) study the integration of carbon dioxide 

removal (CDR) technologies and artificial intelligence 

(AI) in energy system optimization and illuminate the 

prospects of carbon capture systems and automatic 

data analysis in lowering the consequences of global 

warming. Lu et al. (2024) proffered an algorithm 

customized for grading soybean yield by the use of 

different remote sensing data sources. It was observed 

that the genetic algorithm optimization leads an 

improved deep learning performance of models used 

in agri-applications. Through studies we can see that 

implementation of intensive data analyses, remotely 

sensing techs, and AI algorithms in agricultural 

management, climate adaptability and sustainability 

development are of importance. Incorporating 

multifaceted methodologies and innovative research 

techniques results to a more complete understanding 

of intricate agricultural systems and provides 

appropriate recommendations on how people can 

make a better decision through informed decision 

making and thus promote sustainable agricultural 

development. 

III. METHODS AND MATERIALS 

Data Collection and Preprocessing: 

The effectiveness of weather forecasting models that 

are used by farmers for decision-making process 

would determined by the existence and quality of the 

diverse data sources. This research employed a 

comprehensive dataset which include aerial images, 

soil moisture statistics, historical crop yields, and 

weather station readings at a location. Satellites in the 

form of remote sensing using MODIS (Moderate 

Resolution Imaging Spectroradiometer) we will 

capture images of a very high spatial resolution of 

vegetation indices, land surface temperature, and 

precipitation estimates [4]. Soil moisture data were 

taken from the sensors on the ground as well as by 

remote sensors which were difficult to millions as this 

data was crucial for the growth of crops and waters 

management. Historical crop productions based on 

data obtained from agricultural networks as well as 

surveys; this made it possible to understand how long-

term productivity of the region has evolved. 

Furthermore, monitoring data originating from the 

nearby facilities provided readings of the exact 

measurements of temperature, humidity, wind speed, 

and precipitation for numerous geographical locations. 

Data preprocessing was carried out to process the 

dauntless, assimilate and aggregate the diffuse data 

sources into a uniform model for both the training and 

the assessment. About 50% of missing values were 

completed by interpolation methods, while another 

50% were corrupted or removed consequently to 

ensure accuracy and integrity of data information [5]. 

Spatial as well dimension methods were used to 

perform merging of the resolution and frequency of 

the data from various sources onto the unanimous 

spatial scale. 

Algorithm Selection and Description: 

Four algorithms were selected for their relevance to 

the research topic and their demonstrated effectiveness 

in weather forecasting and agricultural applications: 

Random Forest, Long Short-Term Memory (LSTM) 

networks which are superior in classifying time series 

data, Support Vector Machines (SVM), and K-Nearest 

Neighbors (KNN) [6]. 

Random Forest (RF): 

Random Forest is a kind of ensemble learning that 

takes the majority vote of distinct decision trees built 

during training and lets the class prediction 

(classification) or mean prediction (regression) 

emerge in the final output of individual trees. For 

every Decision Tree, the training data and features are 

randomly chosen, they are over fitted and the model 

generalized well for better performance [7]. The 

prediction of the final decision is gathered by merging 

all the predictions of all the decision trees that are used 

to constitute a forest. It has a high capacity of tackling 

challenges like overfitting, learning non-linear 

relationships, and being robust to application of 

weather and agricultural datasets. 

“function Random_Forest(X_train, y_train, 

n_estimators, max_depth): 

    forest = [] 

    for i in range(n_estimators): 

        bootstrap_sample = 

bootstrap_sample(X_train, y_train) 

        tree = DecisionTree() 

        tree.train(bootstrap_sample, max_depth) 

        forest.append(tree) 
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    return forest 

 

function predict_forest(forest, X_test): 

    predictions = [] 

    for tree in forest: 

        predictions.append(tree.predict(X_test)) 

    return mode(predictions)” 

 

 

Long Short-Term Memory (LSTM) Networks: 

LSTM networks stand out as a kind of RNN 

architecture that was tailored to the aim of capturing 

long-term dependencies and recurrent patterns of 

sequential data. A LSTM network is distinguished 

from a feed-forward neural network by the installed 

memory cells and control gates that allow for the 

processing of data for longer periods of time by 

controlling of information flow by timestep [8]. This 

establishes the role of LSTM networks when it comes 

to time series forecasting jobs such as weather 

prediction, since the collected historical data sequence 

helps a lot in capturing time dynamics as well as 

trends. 

“function LSTM(X_train, y_train, n_layers, 

n_units, n_epochs): 

    model = Sequential() 

    model.add(LSTM(n_units, 

input_shape=(X_train.shape[1], 

X_train.shape[2]))) 

    for i in range(n_layers-1): 

        model.add(LSTM(n_units, 

return_sequences=True)) 

    model.add(Dense(1)) 

    model.compile(loss='mean_squared_error', 

optimizer='adam') 

    model.fit(X_train, y_train, epochs=n_epochs, 

batch_size=32) 

    return model 

 

function predict_LSTM(model, X_test): 

    return model.predict(X_test)” 

 

 

Support Vector Machines (SVM): 

SVM (Support Vector Machine) is a supervised 

learning type of algorithm which deals with two or 

more classes. It attempts to find a hyperplane in a high 

dimensional space in order to separate classes or a 

regression function in the case of regression. CVM 

tries to set the greatest distance between different 

classes that play the role of demarking boundaries in 

linear and complex data sets and which are not 

included in this process. SVMs achieve these models 

by utilizing kernel functions e.g. RBF kernel, through 

which input space are mapped into higher dimensional 

feature spaces permitting suitable data classification or 

regression of non-linear patterns [9]. SVM's advantage 

to handle high-dimensional data and its capacity to 

prevent overfitting bring it as a dominant method in 

solving weather forecasting and model simulation 

problems. 

“function SVM(X_train, y_train, kernel_type): 

    model = SVMModel(kernel=kernel_type) 

    model.train(X_train, y_train) 

    return model 

 

function predict_SVM(model, X_test): 

    return model.predict(X_test)” 

 

 

K-Nearest Neighbors (KNN): 

KNN is a non-parametric, similar instance-based 

learning method that is used to find the class which 

majority of the neighbor points of the new data in the 

feature space belongs to. KNN does not take part in 

explicit training that comes with having to train the 

entire training dataset and simply performs 

classification or regression in line with the similarities 

of data points. The concept of choosing the nearest 

neighbors (K) and the distance metric (eg., Euclidean 

distance, Manhattan distance) can affect the speed and 

accuracy of the performance of the algorithm [10]. The 

simplicity, quick data visualization, and generalization 

power of KNN make it an appropriate weather 

forecasting tool especially where data has a changing 

distribution pattern or some unknown trend. 

“function KNN(X_train, y_train, K, 

distance_metric): 

    model = KNeighbors(K, 

metric=distance_metric) 

    model.train(X_train, y_train) 

    return model 

 

function predict_KNN(model, X_test): 

    return model.predict(X_test)” 

 

 

 

Data Source 

Resolution/Frequenc

y 

Satellite Imagery 30m (daily) 

Soil Moisture 1km (weekly) 

Weather Stations Point (hourly) 

Historical Yields County-level (annual) 
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IV. EXPERIMENTS 

In this chapter we highlight the experiments done to 

evaluate the performance of the selected algorithms 

(Random Forest, LSTM, SVM and KNN) in 

improving the weather forecasting models that are 

specific to agriculture decision making [11]. The 

design of experiments was aimed at assessing the 

accuracy of each algorithm, their reliability, and the 

efficiency of computation, by which the parameters of 

importance of agriculture were predicted (e.g. the 

temperature, the precipitation, and the soil moisture). 

 
Figure 1: Smart Weather Data Management Based on Artificial 

Intelligence 

Experimental Setup: 

With reference to the extensive dataset that we had 

used for experiments we were able to find out the 

satellite images, soil moisture data and the older 

historical crop yields, and the weather station 

observations from many regions we have and in 

different seasons as well [12]. The dataset was split 

into training, validation and testing sets for automated 

model training, hyper-parameter fine-tuning and 

accuracy assessment. 

On every algorithm the experimental protocol was 

exact: data preprocessing, feature engineering, model 

training and model evaluation were performed 

simultaneously. Hyperparameter optimization 

techniques including grid search and random search 

were engaged to refine the model using algorithm-

specific parameters and improve the models 

performance [13]. The time series models such as 

seasonal autoregressive integrated moving average 

(SARIMA), exponential smoothing, and ARIMA 

were evaluated by determination coefficients (R^2), 

mean absolute error (MAE), and mean squared error 

(MSE) to measure the accuracy of the model and its 

ability to predict. 

 
Figure 2: Utilizing Analytics for Agricultural Decision 

Experimental Results: 

Table highlights the results of experiments conducted 

for every algorithm involving meteorological 

variables and various regions respectively. This result 

gives an overview of the algorithm's capacity to 

process the data correctly, returning the predictions 

with the given accuracy and running without the 

performance issues [14]. It is clear that the algorithm 

is suitable for making decisions based on the 

agriculture data. 

Table: Summary of Experimental Results 

Algorith

m 

Tempe

rature 

(MSE) 

Precipi

tation 

(MSE) 

Soil 

Moistu

re 

(MSE) 

Comp

utation

al 

Time 

(secon

ds) 

Random 

Forest 0.025 0.012 0.018 120 

LSTM 0.021 0.010 0.015 240 

SVM 0.032 0.015 0.022 180 

KNN 0.028 0.013 0.020 150 

According to the tribunal's findings, LSTM 

consistently demonstrated the lowest metrics 

superiority (MSE) for temperature, humidity, and soil 

moisture relative to four other algorithms. It's because 

LSTM excel in recognizing the long-term dependence 

relations and the regularity of the sequential data, they 

are able to achieve this better performance. 

Additionally, LSTM proved to be computationally 
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hardy, but it had a comparatively faster run-time of 4 

minutes on average. 

 
Figure 3: A real-time cloud enabled IoT crop management 

platform for smart agriculture 

Whereas, the Random Forest had, however, high 

performance on all atmospheric variables of 0.28 

equal to LSTM in predicting temperature and soil 

moisture. Random Forest's multi-layered ensemble 

model and ability to deal with the many non-linear 

relationships provided it with large scope in sensing 

and analyzing cross-relations between meteorological 

variables and agricultural performance [27]. However, 

Random Forest's speed operations are a bit slower than 

those of LSTM, and an average time of 2 minutes is 

taken for computation. 

In the same way, SVM and KNN algorithms presented 

their good predictive performance about agricultural 

meteorological parameters as well, although they had 

higher MSE values compared to LSTM and Random 

Forest. SVM classifier had the advantage in defining 

complex decision boundaries in extremely high-

dimensional feature spaces thus enabling it to capture 

nonlinear relations in the data; however, such a 

decision implicated extra computational complexity 

[28]. Another model which showed promising results 

in our study was the KNN due to its instance-based 

learning which turned out to be superior especially in 

temperature and precipitation estimates [29]. 

Although KNN's computing efficiency was relatively 

low against other algorithms, it's average runtime was 

150 seconds which is still the highest. 

Comparison with Related Work: 

In order to situate the results of our research within the 

overall context, it is useful to compare the 

performance of our algorithms designed for the same 

purpose with other studies that have suggested various 

solutions [30]. The analysis is represented in the table 

to compare the outcomes of the research with those in 

the previously published studies, stressing the 

strengths as well as weaknesses of each approach. 

 
Figure 4: Agriculture Analytics Market Global Growth 

Table: Comparison with Related Work 

Algorith

m 

This 

Study 

(Second

s) 

Related 

Work 1 

(Second

s) 

Related 

Work 2 

(Seconds) 

Random 

Forest 120 300 - 

LSTM 240 270 260 

SVM 180 240 200 

KNN 150 330 160 

 

V. CONCLUSION 

Finally, this research will combine cutting-edge data 

analysis with the purpose of help improve weather 

forecasting systems that will meet the needs for 

agricultural decision making. By combining various 

data sources like satellite imagery, soil moisture data, 

the historical yields of crops grown locally, and those 

gathered from the weather stations, we can generate 

precise and useful weather forecasts for agriculture 

stakeholders. Our experiments showed good results 

from various machine learning methods, including 
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Random Forest, LSTM, SVM, and KNN, as they all 

managed to successfully produce meteorological 

variables, such as temperature, precipitation, and soil 

moisture relevant to agriculture. Among those 

algorithms the LSTM demonstrates a better result than 

the others as it shows its ability to capture long-term 

dependencies and complex enfolded patterns in the 

data sequence. In addition, our work was contrasted 

with others related in the awgethering of climate 

decision-making and that indicated our technical 

progression. Combining multidisciplinary approaches 

and developing innovative strategies we have been 

capable to adapt of advancing the productivity on 

crops, enhancing water management and delivering on 

the allocation of resources in agricultural systems. The 

next step should be to estimate the availability of other 

data sources, change the model construction, and 

testify the operational quality and coverage of our 

findings in a variety of geographical regions and crop 

growing conditions. Therefore, production of this 

project will assist in developing of sustainable 

agriculture system, to improve enviroment climate 

resilience and as well to secure food farm production 

under changing environments. 
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