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Abstract 

Considerable research endavors are currently in progress exploring  

Using different types of microalgae for purifying dairy wastewate, aiming to 

contribute to the waste-to-bioproducts economy. Numerous studies have 

primarily concentrated on removing essential nutrients such as phosphorus and 

nitrogen from dairy wastewater through microalgae-based treatment methods. 

Microalgae exhibit a dual functionality, serving both as effective 

bioremediation and prolific producers of valuable components including lipids, 

proteins, pigments, antioxidants, and vitamins. Among these compounds, 

microalgal lipids are versatile in applications across human health, 

nutraceuticals, cosmetics, pharmaceuticals, and biofuels. This current review 

hunts into the pivotal role of microalgae in offering a promising solution for 

dairy effluent treatment, while also serving as a nutrient reservoir for production 

of biomass and the accumulation of lipids, such as polyunsaturated fatty acids 

(PUFAs), carotenoids (pigments), and oxylipins (oxygenated PUFAs). These 

accumulated compounds hold substantial potential for the production of 

biodiesel and other commercially viable products. The advancement of 

technologies related to biohydrogen production, systems biology, and algal 

trans genomics is advocated for a comprehensive approach towards sustainable 

development in this domain. 

 

Keywords: Dairy effluent; lipid by-products, microalgae, Phytoremediation 
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INTRODUCTION 

Water stands as the paramount natural resource crucial for the ongoing survival of every 

species. Water that is clean and free of toxins is essential for a prosperous life. Our dairy 

industry's growth contributes significantly to water contamination and adversely impacts 

water bodies by releasing significant amounts of pollutants into the water. (Kolev salalov 

2017; Qadir et al.2020; Gramegna et al. 2020; Ummalyma et al. 2021). By introducing toxins 

into the food chain, untreated wastewater further damages the ecology and has a detrimental 

effect on the survival of living things. Consequently, for a sustainable environment, 

wastewater management and treatment are essential. One of the major contributors of 

wastewater is the industry of dairy products. Milk is regarded as the most significant source 

of nutrients needed by the body and one of the main food elements in the world. Water is the 

primary ingredient utilised in the dairy industry to produce milk products, which generates 

large volumes of wastewater, making disposal a difficulty that cannot be disregarded (Swain 

et al., 2020). According to reports, the dairy sector produces 2 to 10 L of waste water for 

every litre of milk processed (Ummalyma and Sukumaran, 2014; Ragunath et al.2016; 

Daneshvar et al. 2019; Pang et al. 2020; Gramegna et al. 2020; Kusmayadi et al., 2022).  

The loss of dissolved oxygen is one of the major issues brought on by raw dairy wastewater 

discharged directly into the environment. Because dairy effluents are high in oil and fat 

molecules, they form a thin layer on the water's surface that prevents oxygen from getting to 

the water's surface, making it difficult for the local flora and wildlife to survive. (Karadag et 

al. 2015; Choi 2016; Sharma et al. 2022).  

Additionally, the majority of the whey production is discarded without being properly 

treated, in many cases due to an increasing cost for its treatment and disposal operations 

which leads to an excessive financial burden (Choi 2016; Gramegna et al.2020). 

 A stream with significant qualitative and quantitative fluctuations results (Porwal et al. 2015; 

Choi 2016; Panday, Srivastava & Kumar. 2019; Ummalyma et al.2022). Despite the 

compositional variations, dairy effluents are characterised by a significantly higher 

temperature. Dairy wastewaters are treated using mechanical, physicochemical, and 

biological techniques. To balance variations in both volumetric and mass flow, mechanical 

treatment is required. Additionally, some of the suspended particles are reduced. While 

emulsified compound removal can be accomplished with physicochemical procedures 
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(Kothari et al. 2011; Kolev Slavov, 2017; Swain et al. 2020). The highly biodegradable 

pollutants make biological wastewater treatment systems the preferred method. Employment 

of microalgae for remediating the dairy waste water results in decontamination of dairy 

effluent along with mass cultivation of microalgae (Gani et al. 2016; Choi, Jang & Kan. 

2018; Kawamura et al. 2018; Sirohi et al. 2021a, 2021b; Joun et al. 2021; Ummalyma 2021; 

Ummalyma et al. 2022). Mass cultivated microalgae are harvested for lipids produced which 

are utilized in diverse industrial applications (Nguyan et al. 2022). This review focuses on 

various environmentally-friendly green technologies to recover lipids from microalgae using 

dairy wastewater as growth medium. 

 

 

DAIRY INDUSTRY 

The dairy sector holds significant importance in the Indian economy, offering substantial 

employment opportunities, and continues to expand steadily. Despite being a major source 

of wastewater, dairy industries contribute positively to the economic growth of the nation.  

India, as per FAO (2020), holds the title of the world's leading milk producer, contributing 

22% to global milk production, followed by the USA and Pakistan. However, dairy 

operations globally leave a considerable environmental footprint, consuming substantial 

amounts of water, estimated at approximately three liters per liter of milk produced (Porwal 

et al., 2016). The production and consumption of dairy products, particularly milk, have been 

steadily increasing, with a projected global consumption rise of 13.7% by 2023 (Choi 2016).  

 

Types of waste generated during the processing of dairy products 

The wastewater discharged from dairy operations poses a substantial environmental hazard. 

These effluents typically contain suspended solids and organic matter, along with heightened 

levels of nitrogen and phosphorus. Additionally, they often contain oil, fat, and grease 

compounds. Furthermore, residues from the cleaning products utilized in utensil and 

equipment washing can also be present, (Kushwaha, Srivastava & Mall. 2011; Ahmad. 2014; 

Kolev Slavov. 2017; Chandra et al. 2021). According to their origin and composition, dairy 

effluents can be categorized into the following three types; a) processing water, b) cleaning 

wastewater and c) sanitary wastewater.  
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Processing water: Condensates resulting from milk or whey evaporation, along with the 

cooling process in specialized coolers and condensers, yield processing water. While 

evaporators may introduce milk or whey droplets, the vapor produced during milk and whey 

drying, upon condensation, generates the purest effluent. Generally, processing waters 

exhibit minimal contaminants and can be recycled or discharged alongside stormwater 

following basic pre-treatment measures. (Kolev Slavov. 2017). 

 

Cleaning wastewater: This effluent typically originates from washing machinery that comes 

into touch with milk or other dairy products, such as tanker washing, refrigeration points, 

floor washing, boiler houses, etc. spills of milk and whey, mistakes in operation, and broken 

equipment are all included. More than 90% of the organic solids found in effluents consist 

of cheese particles, whey, cream, separated water, starter cultures, yogurt, fruit concentrates, 

and stabilizers. These effluents must undergo additional treatment because they are produced 

in large amounts and are highly contaminated (Carvalho, Prazeres & Rivas. 2013; Karadag 

et al. 2015). 

 

Sanitary wastewater: The sanitary wastewater is produced in restrooms, showers, etc. And 

is typically piped directly to sewage works and shares a similar composition to municipal 

wastewater. Prior to further aerobic treatment and can be employed as a source of nitrogen 

for imbalanced effluents of dairy. Dairy product processing results in a huge amount of 

chemically modified liquid waste which needs proper treatment before discharge (Slavov 

2017; These waste materials can be efficiently repurposed as raw materials for manufacturing 

other industrial goods or for generating energy. (Tan et al. 2018; Chandra et al., 2021). 

 

Components of dairy effluent 

The dairy industry primarily produces liquid effluent during the processing of different useful 

products from whole milk like buttermilk, condensed cream, sweet whey, curd, cheese, 

butter, ice cream, etc. The distinguishing features of dairy wastewater might be varying 

according to the formation of final products.  Generally, dairy effluents contain high 

concentrations of lipids such as triacylglycerides, phospholipids, saturated and unsaturated 
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fatty acids, carbohydrates such as; lactose, glucose, galactose, etc. The dairy waste water also 

contains two major soluble proteins casein and whey protein etc., resulting in high BOD 

(biological oxygen demand) and COD (chemical oxygen demand) levels (Mehrotra et al., 

2016; Patel et al., 2020). Its high BOD depletes the dissolved oxygen content and creates 

anaerobic conditions in the aquatic system. Moreover, dairy effluent contains various 

inorganic and organic compounds of nitrogen and phosphorus, present in higher 

concentration and responsible for the alkalinity of the dairy waste other than it also contain 

a trace amount of some mono-valent and bi-valent cations like Na, Mg, Ca, Fe, K, Ni, Mn, 

etc. Use of detergents and chlorine in the dairy industry further deteriorates the quality of 

effluent (Kushwaha, Srivastava & Mall. 2011; Ahmed 2014; Patel et al., 2020; Gramegna et 

al. 2020; Vidya et al.2021). 

Dairy effluents are biologically active because of the presence of a high organic and 

inorganic load and when it is discharged into water streams either untreated or semi-treated 

leads to water pollution. Hence, the proper treatment before the disposal of dairy waste 

effluent has become a major problem for the vitality of the dairy industry and the 

environment. Various attempts have been already made to solve this problem by reusing the 

nutrients rich dairy waste with diverse microorganisms to metabolize organic matter. 

 

Dairy effluents treatment approaches 

Various technologies can be used for the processing of dairy waste prior to release into the 

natural habitat or surroundings. Dairy waste treatment is done in two ways: 

Physico-chemical treatment: Several Physico-chemical methods are used for the treatment 

of dairy wastewater, such as chemical precipitation, coagulation, coagulation/flocculation, 

adsorption, electrocoagulation, electroflocculation, membrane bioreactor, combined 

electrode system, etc. There are various demerits regarding the use of physicochemical 

treatments such as its higher cost, and generating secondary pollutants, because chemical 

reagents were used and they only perform partial treatment (Kushwaha, Srivastava & Mall. 

2011; Shete and Shinkar 2013; Slavov 2017; Patel et al., 2020; Gramegna et al. 2020; Vidya 

et al. 2021). 
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Biological treatment: In order to compensate for the negative aspects of physico-chemical 

approach, biological methods are a suitable alternative for the treatment of dairy wastes. 

These are eco-friendly, cost-effective, and highly efficient to remove the contaminants from 

dairy effluents (Kolev Slavov 2017; Gramegna et al. 2020).  Microorganisms have been 

employed in biological treatment methods. Among these, the microalgae are well-known 

bioremediator because of their ability to grow photoautotropically and mixotrophically 

(Choi,2016; Chokshi et al. 2016; Guldhe et al. 2017; Ahmad et al. 2019; Gramegna et al. 

2020; Goswami, Agrawal & Verma 2022; Encarnacao et al. 2022; Xing et al. 2022). Dairy 

wastewater contains high contents of phosphorus, nitrogen, and organic matter thus, the 

nutrient-rich dairy waste effluent proved to be a suitable medium for the growth of 

microalgae (Gonçalves et al. 2017; Gramegna et al. 2020; Vidya et al. 2021). 

 

 

MICROALGAE  

Microalgae are unicellular, eukaryotic microorganisms which include algae, dinoflagellates, 

diatoms, etc. They can exist independently as a single colony or in a consortium as a group. 

Microalgae are a broad group of aquatic organisms that have the efficiency and ability to 

remove pollutants and produce lipids with high biomass production (Kalra, Gaur & Goel, 

2021; Calijuri et al. 2022; Bhatt et al. 2022; Devi et al. 2022 Jiang et al 2022). Table 1 shows 

the different microalgae, their photosynthetic pigments, and reserve food material with 

examples (Heimann and Huerlimann, 2015; Enamala et al., 2018; Kalra, Gaur & Goel, 2021; 

Calijuri et al. 2022; Bhatt et al. 2022; Devi et al. 2022 Jiang et al 2022). 

 

Table: 1. Types of microalgae based on their pigment and reserve food 

Class Photosynthetic 

pigments 

Reserve food 

material 

Representative  

Genera 

Chlorophyceae 

(Green algae) 

Chlorophyll a, b, 

Carotene 

Starch  Chlorella sp., 

Heamatococcuspluvialis, 

Dunalialla salina 
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Xanthophyceae 

(Heterokont or 

Yellow green 

algae) 

Chlorophyll a, c, b- 

Carotene, Xanthophylls 

Fats, leucosin Chlorochromonas, 

Chlorosuccus, Vaucheria, 

Tribonema, Botrydinum 

Chrysophyceae 

(Yellow-brown 

algae) 

Chlorophyll a, b, 

Carotenoids 

Oils and 

leucosin 

Ochromonas, 

Dinobryon,Mallormonas, 

Synura, Rhizochrysis 

Bacillariophyceae 

(Diatoms) 

Cholorophyll a, c, 

Carotenes 

Leucosin and 

Fats 

Cyclotella, Rutelaria, 

Corethron, 

Navicula,Bacillaria 

Cryptophyceae 

 

Chlorophyll a, b- 

Carotenes, Xanthophylls 

Starch Falcomonas,Rhinomonas,Pla

gioselis,Chilomonas,Cryptom

onas 

Dinophyceae 

(Dinoflagellates) 

Chlorophyll a, c 

Carotenoids, 

Xanthophylls 

Starch and oil Dinophysis, Polykrikos, 

Gonyaulax, Gymnodinium 

Chloromonodiae 

(Raphidophytes) 

Chlorophyll a, b 

Carotenes, Xanthophylls 

Oils Vacuolaria 

Euglenophyceae 

(Phototrophic-

euglenids) 

Chlorophyll a, b Fats and 

paramylon 

Euglena 

Phaeophyceae 

(Brown algae) 

Chlorophyll a, 

Xanthophylls 

Laminarin, 

mannitol and 

fats 

Pelagophycus, Laminaria, 

Pelvetia, Sargassum 

Rhodophyceae 

(Red algae) 

Chlorophyll a, 

phycocyanin, 

phycoerythrin 

Floridian 

starch 

Vacuolaria, Gomyostomum, 

Chattonella, Psammamonas 

Myxophyceae 

(Blue-green algae) 

Chlorophyll a, b- 

carotene, c-Phycocyanin 

and phycoerythrin 

Glycoproteins, 

droplets of oil 

Chloroccus, Darmocarpa, 

Pleurocaspa, Oscillatoria, 

Stigonema 
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Dual role of microalgae 

Microalgae present a hopeful biological solution for dairy wastewater treatment owing to 

their adaptable metabolism, capable of engaging in photoautotrophic, mixotrophic, or 

heterotrophic activities. Their capacity to utilize inorganic nitrogen and phosphorus renders 

microalgae an efficient option for tertiary and quaternary treatments of dairy waste. (Choi et 

al., 2018). This type of bioremediation/ phycoremediation coupled with the production of 

potentially valuable biomass, which can be used for several purposes. Earlier researches 

suggested that cultivation of microalgae for the production of lipid components from dairy 

waste, had provide better results than any other wastewater used as microalgae cultivation 

medium (Chandrabose et al., 2013; Hu et al., 2018; Panday, Srivastava & Kumar. 2019; 

Swain et al. 2020; Pang et al. 2020; Gramegna et al. 2020; Biswas et al. 2021). 

Many microalgae cultures displayed high growth on the diluted effluents from dairy. 

Moreover, the microalgae have the ability to use solar energy for its photosynthetic activity 

and combine water with carbon dioxide in order to make their food autotrophically, further; 

it converts the environmental carbon di oxide to oxygen. Due to this ability of microalgae, 

they have been used to remediate the dairy waste as the nutrient sources for their growth, and 

to reduce the concentrations of nitrogen, phosphorus and other inorganic substances. It has 

been reported that the microalgae are the better source for manufacturing of bio-fuel due to 

its elevated photorespiration activity, and rapidly growing biomass activity Panday, 

Srivastava & Kumar. 2019; Gramegna et al. 2020).  

        The microalgae strain which contains large number of fatty acids, like polar and non-

polar or neutral lipids, and also flourishing in the native domain of dairy waste effluent have 

yet to be used for bio-fuel production. Micro algal feedstock is one of the best medium for 

bio-fuel production and as a replacement source of fossil fuel and also proved beneficial to 

eradicate greenhouse gas emissions (Mwangi et al. 2015; Khan et al. 2018; Shokravi et al. 

2019; Debowski et al. 2021). 

 

Lipid producing microalgal strains: Numerous species of microalgae have been scrutinized 

for their fatty acid compositions, with approximately 20-50% of dry biomass comprising 

lipid constituents. Such as species of Nannochloropsis, Neochloris, Chlorella, Dunaliella, 

Crypthecodinium, Chlamydomonas, Cylindrotheca, Isochrysis, Nannochloris, Nitzschia, 
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Schizochytrium, Phaeodactylum, Porphyridium, and Tetraselmishave been recognized for 

containing certain classes of polar and non-polar lipids. Nonpolar or neutral lipids like 

sterols, free fatty acids acylglycerols, etc. and polar lipids like glycoacylglycerides, 

phosphoglycerides, and sphingolipids have been reported in microalgae (Mata et al. 2010; 

Ghosh, Roy & Das. 2017; Chen et al.2018; Panday, Srivastava & Kumar. 2019; Swain et al. 

2020). 

Table 2: Some lipid containing micro-algal species 

Sr. 

No 

 Microalgae species Lipid Content (% Dry 

Weight) 

Reference  

1. Botryococcus braunii 25–45% Lee et al., 2015; 

Ferreira et al. 2019 

2. Schizochytrium sp.  30–60% Sajjadi et al. 2018; 

Menegazzo & 

Fonseca. 2019 

3. Neochloris oleoabundans 25–44%  Breurer et al., 2012 

4. Nannochloropsis sp.  31–68% Ma XN et al., 2016; 

Shokravi et al. 2020 

5. Nitzschia sp.  45–47% Jiang et al., 2015 

6. Chlorella sp. 35-58% Ghosh, Roy & Das. 

2017; Mirizadeh et al. 

2020 

7. Scenedesmus sp. 40-68% Kumar et al., 2021 

8. Chlococcum sp.  40–67% Mahapatra and 

Ramachandra., 2013 

9. Cylindrotheca sp. 20 -35% Demirel et al., 2015 

10. Dunaliella sp. 36-47% Gharajeh et al.,2020 

11. 

 

 

 Chlamydomonas reinharditi 55- 65% Xu et al., 2018; Yang 

et al, 2018; Hang et al. 

2020, 
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12. 

 

Phaeodactylum triconutum 18- 57% Yang et al. 2017; 

Desmukh et al. 2019 

13.  Chlamydomonas sp. 21-27% Desmukh et al. 2019 

14. 

 

Pavlova salina 12-30% Desmukh et al. 2019 

15. 

 

Phorphyridium 9-14% Desmukh et al. 2019 

 

Biosynthesis of lipid in microalgae 

The green microalgae generally synthesis two categories of lipids as free fatty acids or neutral 

fatty acids and triacylglycerols. Neutral fatty acids are synthesized in chloroplast while 

triacylgylcerols are, in smooth endoplasmic reticulum.14–20 carbon chains fatty acids are 

utilized in the preparation of biofuel and long carbon chains of 20 or more carbons which 

employed in food industry (Jacob-Lopes et al. 2015; Ratomski & Hawrot- Paw 2021). 

Microalgae produce and store large amounts of lipids in the form of triacylglycerides as oil 

droplets in the various cell organelles. The conversion and accumulation of lipid content, 

varies according to cultural conditions and microalgal strains (Bellou et al. 2014; Yang et al, 

2017; Konget et al. 2019; Nayak et al. 2019; Grijalva et al 2020; Abomohra et al 2020; 

Udayan et al. 2022; Rawat et al. 2022). Biosynthesis of lipid in microalgae depends upon the 

production of carbon compounds by the process of photosynthesis. It includes light 

dependent reactions and light independent reactions also. In light dependent reactions 

oxygen, ATP and NAD(P)H are produced while in light independent reactions (Calvin 

cycle), a three-carbon compound (glyceraldehyde-3-phosphate) is produced, which is 

converted into acetyl CoA via glycolysis. This acetyl CoA is a major substrate for 

biosynthesis of lipid and precursors for proteins, nucleic acids, carotenoid and carbohydrates 

etc. The transformation of acetyl CoA to malonyl CoA is the first confide path in biosynthesis 

of lipids (Lv et al., 2010; Griffiths, Dicks and Richardson. 2011; Goldberg, 2016; Mimouni 

et al. 2018; Dolganyuk et al. 2020; Chen & Wang 2021). Many factors which are responsible 

for the accumulation of lipids inside the cells, such as availability of nutrients (mainly 

nitrogen, phosphorus and silica), temperature, salinity, pH, light, humidity and enzymes are 
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mainly responsible for metabolic reactions (Han et al. 2012; Bartley et al. 2013; Lin & Wu, 

2015; Sun et al. 2017; Chen et al. 2017; Chen & Jiang. 2017; Gao et al. 2021).   

        There are various strains of microalgae (Chlamydomonas, Chlorella sp. etc.) which 

have been employed as an experimental design to examine its anabolic and catabolic 

activities and functions (Scaife et al 2015). Genomes of Chlamydomonas reinhardtii have 

been sequenced and its molecular and genomic tools is also available. It can also accumulate 

considerable amount of triacylglycerols under salt stress or nitrogen deprived conditions (Li 

et al., 2010; Dean et al., 2010; Siaut et al., 2011; James et al., 2011; Fan et al., 2012; Msanne 

et al., 2012; Lei et al. 2012; Bartley et al. 2013; Liang et al. 2013; Li et al. 2014; Viegas et 

al. 2015; Sibi et al.2016; Juppner et al. 2017; Lei et al. 2018; Gifuni et al. 2019; Sulochana 

& Arumugam 2020; Hang et al 2020; Shokravi et al. 2020). Micro algal species collected 

from the dairy waste indicated great prospective for low-cost cultivation and producing lipid 

utilizing dairy waste, without modifying the procedure. It was reported that the Chlorella sp. 

isolated from the dairy waste water showed good biomass production when grown on dairy 

effluent, reduced its COD, and nutrients (Wang et al. 2010; Choi et al., 2018). This microalga 

was identified by using 18S rDNA sequencing, and the DNA sequences were analyzed via 

BLAST representing the high homology with Chlorella sp. ArMoo29B (98% homology). 

Microalgae Chlorella protothecoides displayed good growth in a pre-treated whey solution. 

Since the use of microalgae approach alone was not sufficient for satisfactory removal of 

pollutants, therefore using hydrolysis and flocculation-struvite methods, the treated whey 

with 25:75 dilutions exhibited sufficient pollutants removal by designing biochemical 

approach. Using this approach, approximately up to 99% or 91–100% lessening of inorganic 

and organic contaminants was attained after nine days of cultivation of microalgae (Patel et 

al. 2020). In the similar study, reported that freshwater green microalgae Chlorella sp., 

UMACC344 was able to produce higher lipid amount in dairy waste, which could be utilized 

as potential biofuel.  

In another study, Chlorella sp. isolated and cultivated in dairy wastewater, resulted in higher 

algal biomass production along with good amount of lipid production, the microalgae 

reduced BOD and COD, trace elements and other nutrients, thereby remediated dairy waste 

water (Choi et al., 2018; Hu et al. 2019). In another study, the dairy effluent supported the 

growth of Chlorella vulgaris and Anabaena ambigua, with significant lipid, carbohydrates, 
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protein productivity. The lipid and carbohydrate content were higher in Chlorella vulgaris 

compared to Anabaena ambigua, which exhibited high protein content. A significant 

decrease in both COD and BOD along with other nutrients was also observed (Ahmad, 2014; 

Rani et al. 2015; Kolev Slavov, 2017; Ummalyma et al 2022)  

Chlorococcum sp. RAP13 grown in dairy effluent produced great amount of biological mass 

and lipids, particularly under heterotrophic growth conditions. Lipid production and biomass 

increased expressively under heterotrophic cultural conditions. Higher amount of lipid 

production by these micro algae makes it a suitable candidate for biodiesel production. 

Moreover, use of dairy effluent as a source of energy and carbon by micro algae remediated 

the effluent in terms of BOD and COD (Ummalyma & Sukumaran, 2014).  

Kothari et al. (2013) cultivated Chlamydomonas polypyrenoideum on dairy wastewater, 

which resulted in considerable lessening of nitrogen (90%) and phosphate (96%) on 10th and 

15th day respectively. Biomass of microalgae after 10th day treatment exhibited 42% (w/w) 

lipid contents, which was analogous to the bio-oil extracted from other natural resources as 

per FTIR results analysis. These outcomes proposed the possible usage of microalgae for 

biodiesel production as well as phyco-remediation of the dairy wastewater (Sharma et al 

2022). 

          The following section discusses the role of micro-algae in diverse fields, where lipids 

produced by microalgae employed in commercial products.  

 

Applications of microalgal lipids 

Microalgae are rich in lipids, high density lipoproteins, oxylipins, carotenoids, proteins and 

carbohydrates etc. (Pohl & Kock. 2014; Santosh, Dhandapani, & Hemalatha. 2016; 

Bošnjaković and Sinaga 2020; Randhir et al. 2020). Many micro algal strains are able to 

synthesize the long chain fatty acids, with yields between 25 to 75% of their total lipids. 

Many fresh water microalgae such as Chlorella sp., and Scenedesmus sp. etc. and seawater 

microalgae Thraustochytriacea sp. and Crythecodiniacea sp. are currently used for the 

production of PUFAs (Udayan et al. 2021).  

Microalgae strains have incredible adaptability to survive in extreme environmental 

conditions, and also have the huge potential for producing several advantageous by-products. 

Nowadays, the micro algal species   are considered as lipid biofactories because of producing 
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various kinds of lipids with remarkable applications in various fields such as in food and feed 

manufacturing industries, biofuel production, cosmetics, and pharmaceuticals etc. 

(Nascimento et al. 2013; Matos et al. 2017; Hess et al. 2018; Bhalamurugan et al. 2018; 

Maltsev & Maltseva 2021; Devadasu & Subramanyam 2021; Liu et al. 2022; Kuravi et al. 

2022). 

Food and nutrition field: Polyunsaturated fatty acids (PUFAs) have been known for its 

contribution in the field of human health benefits. Earlier, the major sources of 

polyunsaturated fatty acids were fish oil. But in the current scenario, the commercial 

production of PUFA from fish sources, are declined due to some limitations (fish population 

and diversity threatening and environmental hazards). Recently microalgae investigated for 

the production of oils or fatty acids which contain high amount of polyunsaturated fatty acids 

(EPA and DHA) (Winwood. 2013). Now days these are employed in the food industry, on a 

large scale. Various strains of microalgae are able to amalgamate various series of the PUFAs 

like1-6 series, which contains linoleic acid (LA), and arachidonic acid (ARA), and as well 

as of the PUFAs 1-3 series, containg linolenic acid (ALA), eicosapentaenoic acid (EPA), and 

docosahexaenoic acid (DHA) (Minhas et al., 2016; García, Vicente and Galan 2017; 

Camacho, Macedo & Malcata 2019; Koyande et al. 2019; Vieira et al. 2020). These fatty 

acids are having one or more double bond in their carbon skeleton. They have important 

ingredients for food and feed supplements, with many healthful benefits. The most common 

species of microalgae which are exploited in lipids production are Schizochytrium sp., 

Scenedesmus sp., Arthrospira platensis, Ulkenia, Haematococcus pluvialis, Isochrysis 

galbana, Chlorella vulgaris, Chlorella pyrenoidosa, Chlorella ellipsoidea, Tetraselmis sp 

Dunaliella salina and Crypthecodinium. (Xia et al. 2013; Park et al. 2018; Enamala et al. 

2018; Costa et al. 2019; Gramegna et al. 2020; Mirizadeh et al. 2021. 

In cosmetic industry: Microalgal PUFAs have been considered very useful and safe in the 

formulation of various cosmetic products due to having antioxidant and anti-inflammatory 

properties. Fatty acyls including fatty acids, fatty alcohols, esters, carotenoids, and 

eicosanoids etc. are the needed oily raw materials used as emulsifiers in cosmetics. In the 

cosmetic field, the fatty acyls used as the major bio-based oil surfactants (Xu & Qian 2014; 

Khan, Shin & Kim. 2018; Jeyakodi, Krishnakumar, & Chellappan. 2018; Ambati et al. 2019; 

Luca et al. 2021).  
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The microalgal lipids which are used as biosurfactants possess amphiphilic nature due to the 

presence of both hydrophilic and hydrophobic components within the chain. The main 

function of these biosurfactants, are reducing the interfacial tension which make easier 

solubilization of hydrophobic molecules in water and its lower micelle concentrations, 

allowing it to work at a very small concentration when compared with any synthetically 

prepared surfactant (Guillerme, Couteau & Coiffard, 2017; Cezare- Gomes et al. 2019; 

Couteau & Coiffard 2020; Shi et al. 2020; Puchkova et al. 2020; Cikos et al. 2022). They are 

also having antibacterial, antifungal, anti-tumor bioactivities and very less eco-toxicity. 

(Mondal et al. 2017; Ahmad & Ahsan. 2020;). Many fatty acids such as palmitic acid, stearic 

acid, lauric acid, and myristic acid, are playing an important role in the maintenance of 

normal skin barrier functions and making the skin smooth, soft and brighter (Mukherjee et 

al. 2011; Bishop, 2012; Thomas, and Kim, 2013; Christaki et al. 2013; Wang et al. 2015; 

Ariede et al., 2017; Yang, Zhou, & Song, 2020; Kuravi et al. 2022).  

 

Pharmaceuticals: Many micro algal species produce high-value lipids which are utilized for 

pharmaceutical purposes. Production of these high value lipids or fats compounds (bioactive 

compounds) from microalgae has been considered as an emerging area. (Levine & Fleurence. 

2018; Basheer et al 2020). The microalgae strains exploited in production of lipid bioactive 

compounds (carotenoids), include Chlamydomonas sp., Spirulina sp., Chlorella sp., 

Dunaliella, Nannochloropsis, Nostoc, Crypthecodinium and Haematococcus etc. Microalgal 

produced various kind of carotenoids such as astazanthin, lutein, zeaxanthin, etc. the green 

microalgae commonly contain beta carotene which can derived other forms of it by the action 

of various enzymes like hydroxylase and ketolase. (Novoveska et al., 2019).   

     Microalgae represent a good source of natural carotenoids. These are also called 

isoprenoids or terpenoids organic compounds, which containing 5 carbon atoms units (2 or 

more). Because of having anti cancerous, antioxidental properties, these are highly used in 

food, cosmetics, nutraceuticals and also in pharmaceutical industries (Zaid, Hammad & 

Sharaf. 2015; Lauritano et al. 2016; Yan et al. 2016; Huang et al. 2017; Deniz, Vaquero & 

Imamoglu. 2017; Hussain & Abdullah. 2020; Vieira et al. 2020; Rahman et al. 2020; Khavari 

et al. 2021; Togarcheti & Padamati 2021). Nostoc sp.  has the capability to produce 

polyunsaturated fatty acids and essential fatty acids (omega 3 and 6 fatty acids) and 
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Chlamydomonas reinhardtii is able to produce glycerol, when grown in sulphur deprived 

medium, which is widely utilized in pharmaceutical industries (Singh et al. 2014; Yang et al. 

2015; Scranton et al. 2015). Chlorella species containing high amount of α-tocopherol 

(vitamin E) and this can help in preventing macular degeneration and the occurrence of 

certain cancers (Noguchi, Maruyama & Yamada. 2014; Jayshree, Jayshree & Thangaraju. 

2016; Bitto et al. 2020; Ferdous & Yosof. 2021). Nannochloropsis gaditana known to 

produce good amount of eicosapentaneoic acid (EPA) and Crypthecodinium cohnii for 

producing docosahexaenoic acid (DHA) (Adarme-Vega et al. 2012; Oliver et al. 2022). Long 

chain fatty acids EPA and DHA are the most valuable ones as having positive effects in the 

treatment and prevention of various diseases like; inflammation, hypertension, 

atherosclerosis, thrombosis, arthritis, and risk of chronic disease (Aderme–Vega et al. 2012; 

Toumi et al. 2022). DHA promotes eye health by enhancing the performance of retina and it 

also contribute in the brain functioning (Zang et al. 2020). EPA is showing the significant 

hypolipidemic activity. Hence it is very useful in preventing cardiovascular disease, and 

reducing the symptoms of depression (Mozaffarian & Wu. 2011; Kashiwagi &Huang. 2012). 

It also helps in the maintenance of normal growth and development of bone and hair, 

relaxation and contraction of muscles (Herrero et al.,2013; Yan et al.,2016; Blasio & Balzano 

2021). 

PUFAs also serve as precursors of eicosanoids and docosanoids which regulate gene 

expressions and biosynthesis of steroidal hormones that can maintain the good health of 

reproductive system. These are utilized in promoting the vasoconstrictive and aggregative 

activity of platelets in the process of coagulation. PUFAs are able to make some changes in 

their composition in the plasma membrane so that they can affect the fluidity and signaling 

process of the cell membrane. Omega-3 fatty acids have inhibitory effects on antibody 

production, lymphocyte proliferation and it also suppress to the activation of programmed 

cell death. Due to having above mentioned characteristic features, all these lipids are very 

important for pharmaceutical formulation (Ekka et al 2022). 

 

Biofuel: The microalgal biomass has the ability to produce various kind of biofuel such as   

biodiesel by transesterification of the fatty acids, biogas by gasification or anaerobic 

digestion, bioethanol by direct fermentation of carbohydrate fraction of microalgae, methane 
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gas by anaerobic fermentation of microalgal biomass. Microalgal lipids are the alternate 

resources which can be used to decrease the consumption of fossil fuels (Laurens. 2017). 

Microalgae cultivation gives much higher yields than any other conventional bioenergy 

crops. Some microalgal species eg. Scenedesmus sp., Schizochytrium sp., Nitzschia sp., and 

Botyococcus braunii which contain higher amount of lipid approximately 40 to 60 %, 

therefore, are an excellent source of biofuel (Mata, Martins, & Caetano. 2010; Chinnasamy 

et al. 2010; Gong et al., 2011; Gouveia. 2011; Shah, Yadav, & Tiwari. 2011; Shenbaga –

Devi et al. 2012; Mata et al. 2013; Sreekumar et al. 2016; Patel, Patel, & Krishnamurthy. 

2016; Chye et al. 2018; Sharma et al. 2018; Hossain, Mahlia & Saidur. 2019; Culaba et al. 

2020; Patnayak & Mallick. 2021; Moshood, Nawanir, & Mahmud. 2021; Mathushika & 

Gomes. 2021; Ebhodaghe, Imanah, & Ndibe. 2022; Mofijur et   al. 2022). 

 

Biodiesel: Nowadays, microalgae are being used as a potential source for production of 

biodiesel to overcome the ever exhausting and often increasing price of fossil fuels. They 

can produce high oil content (approx 50 to 80% of their dry weight) than any other traditional 

crops (Schlagermann et al. 2012; Eman & DM. 2013; Shin et al. 2015; Valdez-Ojeda et al. 

2015; Sun et al. 2018; Aratboni et al. 2019; Hawrot- Paw 2021; Udayan et al. 2022).  

Microalgal biomass contain good amount of triglycerols which is the main constituent of the 

biodiesel (Kim et al. 2014; Raheem et al. 2015; Hossain .2019; Lee. 2019; Kumar et al. 2017; 

Osman. 2021; Ebhodaghe, Imanah, & Ndibe. 2022; Kandasamy et al. 2022). Among them, 

transesterification is widely used process for the conversion of microalgal lipids into 

biodiesel. The microalgae biodiesel contains high caloric value and lower density and 

viscosity compared to the biodiesel obtained from other feedstock sources (Unpapran, 

Tipnee, & Ramaraj 2015). Microalgae biodiesel also help to reduce the level of carbon 

monoxide and other pollutants suspension in the atmosphere, as it does not contain aromatics 

hydrocarbons and sulfates. (Mondal et al. 2017; Bhalamurugan et al. 2018). Moreover, 

exploitation of microalgae for biodiesel is better option compared to usage of traditional food 

cops (oleaginous crops) and animal fats for the production of biofuel, since food supply could 

be affected severely. 

Therefore, microalgae are proposed to be a better choice for producing biodiesel in a 

sustainable way because they possess capacity to grow on diverse industrial waste effluent 

https://scholar.google.com/citations?user=5oeyIqEAAAAJ&hl=en&oi=sra
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and they can adapt themselves according to adverse environmental conditions. Many studies 

have been carried out by using Chlorella sorokiniana and Scenedesmus sp., for increasing 

the target number of fatty acids under a variety of culture conditions that could be used as a 

feedstock for producing good quality of biodiesel, under a variety of stress conditions (Jena 

et al. 2012; Ekka et al 2022; Khan et al. 2022). 

 

Biohydrogen: The first green microalgae, Scenedesmus obliquus which was noted to produce 

hydrogen. After that, many microalgal strains such as Chlorella sorokiniana, 

Chlamydomonas reinhardtii, Chlorococcum littorale, Platymonas subcordiformis and 

Chlorella fusca etc. were used to produce hydrogen. Microalgae produce biohydrogen by 

employing various processes like photosynthesis, direct and indirect biophotolysis and 

fermentation (Kothari et al. 2015; Singh & Das. 2018; Hossain & Mahila. 2019; Limongi et 

al. 2021; Ordonez et al. 2021; Mondal & Khan. 2021). It was reported that microalgae 

produce low amount of hydrogen in dark but high amount of hydrogen produced in presence 

of sunlight. The hydrogen production in microalgae depend on the expression of hydrogenase 

enzyme and as well as the availability of sulphur containing components in the growing 

media (Amaro et al.,2013; Hariskos and Posten 2014; Eilenberg et al 2016;). It was reported 

that Chlamydomonas reinhardtii has high amount of hydrogenase enzyme around 10 to 100-

fold, compared to other microalgal strains (Torzillo et al. 2016) But the commercial 

production of biohydrogen from this strain could not outstretch due to some technical issues 

(Batyrova & Hallenbeck. 2017). The studies on marine alga, Platymonas subcordiformis and 

on the fresh water green microalga Chlorella sorokiniana & Chlamydomonas reinhardtii 

demonstrated that they produced a high amount of biohydrogen when cultivated in sulphur 

deprived medium (Skjanes, Rebours, & Lindblad. 2013; Nomanbhav, Purvunathan & Yin. 

2017; Vargas, Zaiat & Calijuri. 2021). 

Chlorella vulgaris TISTR 8680 did not produce hydrogen (Ali, Rakshit & Kanhayuwa 2011; 

Kumari, Nasrand & Kumar. 2017). To attain profitable achievement in this field, genetically 

modified strains should be used which can be survive under adverse environmental 

conditions like sulfur- improvised state (Chader, et al., 2011; Shaishav, Singh, & Satyendra. 

2013; Saifuddin, & Priatharsini. 2016; Feng et al. 2022; Ali et al. (2011) 
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CHALLENGES IN THE FIELD OF MICROALGAL BIOMASS PRODUCTIVITY 

Current research on microalgal biomass productivity has been facing many challenges. Some 

of these are mentioned here as follows:  

• To overcome maximum organic and inorganic load from effluent and recycling of 

dairy waste-water    

• To enhance the outdoor microalgae productivity 

• To develop efficient photo reactor for enhancing the microalgal growth   

• Prevention of contamination from microalgal culture 

• To improve the supply of light and CO2 into dense cultures 

• To develop low-cost methods for harvesting process and energy efficient strategies 

for extraction of lipids and other additional co-products 

• To develop economic method for production of hydrogen 

• To develop algal transgenomics technology 

 

 Converting solar energy into lipid and other organic molecules is the main objective of 

microalgal culture. The selection of well-characterized strains through genetic engineering 

and screening for new species are two strategies to overcome these obstacles and achieve 

optimal lipid productivity in microalgal cells. A variety of methods are employed to increase 

the amount of light available, such as adjusting the reactor's architecture, utilizing optics to 

direct light towards the reactor's center, creating flashes, and employing mixed species to use 

a range of light wavelengths that increase photosynthetic efficiency by trapping carbon. 

(Schneidermann et al., 2012; Scott and others, 2010). To increase the rate of productivity, 

the genes and key enzymes that control the metabolic pathways leading to lipid synthesis are 

presently being studied and altered. On the other hand, altering the nutrition supply can 

enhance the content of lipid cells (Bhowmick, Koduru & Sen. 2015; Sun et al. 2019; Shahid 

et al. (2020); Banerjee et al. (2020). 

 

CONCLUSION 
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Microalgal cultivation holds significant potential for environmental bioremediation and the 

production of valuable by-products such as polyunsaturated fatty acids, omega-3 fatty acids, 

and B-carotenoids. Moreover, microalgae can be genetically engineered to produce 

alternative fuels like biohydrogen, bioethanol, and biobutanol. These bio-products find 

extensive applications in various industries including biofuel production, pharmaceuticals, 

nutraceuticals, food and nutrition, cosmetics, as well as aqua and animal feed. Microalgae 

biomass could be modified energy containing fuels through thermal processes. In future with 

continued progress being made in the field of systems biology metabolomics will play an 

important role as a holistic approach in generation of bio-fuels which produce lower 

emissions, for green energy production and thereby maintaining environmental 

sustainability. 
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