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Abstract-This paper offers a 

comprehensive overview of recent 

advancements in artificial intelligence 

(AI) algorithms and architectures 

employed in yield estimation within the 

agricultural field. The study begins by 

conducting a thorough science mapping 

analysis to assess the landscape of yield 

estimation research, examining trends in 

published literature to identify pertinent 

and popular topics. Subsequently, a 

curated list of popular datasets is 

presented, accompanied by an elucidation 

of the lifecycle of utilizing AI for yield 

estimation. Additionally, the paper 

undertakes a bibliographic analysis of 

recent publications, scrutinizing the 

datasets utilized and the performance 

scores achieved to provide insights into 

the state-of-the-art methodologies in this 

field. 
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1. Introduction  

Yield estimation stands as a cornerstone 

technique for farmers, enabling them to 
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forecast and manage their harvests with 

precision. By providing accurate insights 

into expected produce quantities, it 

empowers farmers to make informed 

decisions regarding transportation, storage, 

and distribution, thereby reducing stock 

shortages and waste while optimizing 

logistical operations. 

Moreover, precise yield estimation grants 

farmers leverage during sales negotiations. 

Armed with a thorough understanding of 

their production capacity, they can 

strategically plan logistics, secure contracts 

in advance, and diversify their commercial 

avenues, ultimately bolstering their 

economic resilience. 

Traditional methods of yield estimation, 

often reliant on manual observations or 

surveys, fall short in capturing the spatial 

variability of crops and are susceptible to 

subjective biases. This inadequacy can 

disadvantage farmers during negotiations, 

leading to less favorable pricing and 

potential financial losses due to inaccurate 

estimates. 

However, the emergence of artificial 

intelligence (AI) presents a promising 

paradigm shift in yield estimation. By 

harnessing AI techniques alongside remote 

sensing technologies, farmers can attain 

more precise and reliable estimates on a finer 

scale and over broader areas. This 

convergence of AI and agriculture not only 

promises enhanced profitability for farmers 

but also contributes to global food security 

and agricultural sustainability. 

In light of these advancements, this paper 

endeavors to present a comparative study of 

the latest approaches in fruit yield estimation 

over the past four years, focusing on 

methodologies leveraging fruit detection 

techniques. Through this exploration, we aim 

to shed light on the transformative potential 

of modern technologies in revolutionizing 

yield estimation practices, paving the way for 

a more prosperous and sustainable future in 

agriculture.  

In the subsequent sections of this paper, 

we aim to conduct a science mapping to 

analyze the evolution of publications in the 

field of yield estimation. Following this, we 

will delve into the latest techniques 

employed for yield estimation, particularly 

focusing on methods based on fruit detection. 

Finally, we will draw conclusions based on 

our findings and insights garnered 

throughout the study. 

2. Science Mapping 

Our endeavor to analyze the latest 

developments in the field of yield estimation 

led us to use the Connected Papers website. 

This platform allows for the exploration of 

scholarly literature by initiating from a 

highly cited paper and visualizing its 

interconnectedness with related works. The 
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resulting graph, depicted in Figure 1, offers a 

comprehensive overview of the landscape of 

yield estimation research. 

Each node in the graph represents a 

scholarly work, with its size denoting the 

number of citations it has received. 

Additionally, the brightness of the green 

color indicates the recency of the 

publication; brighter shades signify newer 

contributions. The interconnections between 

nodes signify citation relationships, 

illustrating how research in this domain 

builds upon prior knowledge and insights [1]. 

 

Figure 1 . Science Mapping 

Our analysis of the graph spanning from 

2020 to 2024 reveals that the field of yield 

estimation, particularly leveraging artificial 

intelligence, is witnessing a surge in interest 

and scholarly activity. This interdisciplinary 

field has attracted researchers from diverse 

backgrounds, including computer science, 

mathematics, and agriculture, reflecting its 

multifaceted nature and the complexity of the 

challenges it addresses. 

Notably, the graph highlights several 

prominent nodes characterized by their 

significant size and vibrant color, indicating 

their high citation count and recent 

publication. Among these notable 

contributions are the works of Wang et al. 

(2023), Huang et al. (2023), and others. 

These papers likely represent seminal 

contributions that have garnered 

considerable attention within the research 

community. 

Furthermore, our exploration of this 

science mapping has unearthed a selection of 

papers that stand out for their influence and 

relevance. These papers will serve as focal 

points for our bibliographic study, enabling a 

deeper examination of the methodologies, 

findings, and implications within the realm 

of yield estimation. 

In conclusion, the visualization provided 

by the science mapping offers invaluable 

insights into the evolution and dynamics of 

the field of yield estimation. It underscores 

the emergence of novel concepts and 

methodologies while signaling areas 

warranting further exploration and analysis. 

By leveraging such tools, we aim to 

contribute to a deeper understanding of this 

burgeoning field and its potential impact on 

agricultural practices and technological 

innovation. 
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3. Yield Estimation 

In the pursuit of implementing yield 

estimation projects leveraging artificial 

intelligence, the acquisition of a 

comprehensive dataset stands as a 

foundational requirement. Researchers 

typically adhere to two prominent 

methodologies, each tailored to suit distinct 

agricultural contexts (Figure 2). The first 

approach, widely favored, centers around 

fruit detection, particularly applicable in 

arboricultural settings. This methodology 

necessitates the meticulous collection of field 

images, subsequently annotated through 

manual fruit detection processes. Leveraging 

deep learning object detection techniques, 

researchers then develop models capable of 

accurately identifying and delineating fruits 

within new images, thereby facilitating yield 

estimation. 

Conversely, the second approach pivots 

towards a holistic collection of parcel-level 

data, encompassing an array of 

environmental factors such as climate 

conditions, fertilization regimes, 

phytosanitary practices, and irrigation 

schedules.  

Complementing these datasets are 

spectral insights derived from satellite or 

drone imagery. Through meticulous labeling 

of each parcel's yield, researchers employ 

machine learning algorithms to construct 

predictive models capable of forecasting 

yield outputs for individual parcels. This 

multifaceted approach integrates diverse 

datasets and analytical techniques, 

empowering researchers to achieve nuanced 

and accurate yield estimations tailored to 

specific agricultural contexts. 

 

Figure 2. Yield Estimation 

Some Popular Dataset 

The utilization of Artificial Intelligence 

(AI) for yield prediction poses inherent 

challenges in data collection and labeling 

processes, necessitating substantial time and 

effort. Collecting comprehensive and 

accurately labeled datasets is crucial for 

training AI models effectively. However, 

this endeavor is often hindered by the 

complexities of agricultural environments, 

where factors such as variability in crop 

growth stages, environmental conditions, 

and field operations present significant 

hurdles. Moreover, the manual annotation of 

large-scale datasets for AI training can be 

labor-intensive and prone to errors, further 

exacerbating the challenges associated with 

data collection [2]. 
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Despite these challenges, Table 2 presents 

a curated selection of popular datasets 

meticulously prepared for yield estimation 

research. These datasets offer researchers 

valuable resources for testing and validating 

AI algorithms. By leveraging these 

meticulously curated datasets, researchers 

can expedite the development and evaluation 

of AI models for yield prediction, thereby 

advancing the state-of-the-art in agricultural 

technology. 

Table 1. Yield Estimation Popular 

Datasets 

Data species Source 

Orchard 

Data 

Mangoes, 

Almonds, 

Apple 

http://data.acfr.usyd.edu.au/ag/treecr

ops/2016-multifruit 

Fruit 360 Several 

fruit 

http://www.kaggle.com/moltean/frui

ts. 

Apple 

dataset 

images 

Apple https://www.kaggle.com/datasets/ba

smarg/apple-dataset-images 

Corn 

farming 

data 

Corn https://www.kaggle.com/datasets/ja

pondo/corn-farming-data 

Machine learning and deep learning for 

yield estimation  

The research landscape of yield 

estimation encompasses a wide array of crop 

types, each presenting unique challenges and 

opportunities for accurate prediction. For 

instance, Table 2 presents the most popular 

yield estimations works during the last years. 

In this way, the study [5] focused on 

estimating orange yield, a crop renowned for 

its variability in size, shape, and color, 

posing challenges for traditional yield 

estimation methods. Leveraging a CNN 

model, the study achieved an impressive 

accuracy of 93.8%, underscoring the efficacy 

of deep learning in capturing the intricate 

features of citrus fruits. 

Similarly, [6] addressed the yield 

estimation of prunes, a crop characterized by 

its dense clusters and varying maturity levels. 

Employing the YOLOv7-Plum architecture, 

the study attained a remarkable accuracy 

score of 94.91% using image data. This 

demonstrates the adaptability of deep 

learning algorithms in accurately delineating 

fruit clusters and estimating yield with 

precision. 

Furthermore, [7] explored the estimation 

of maize yield, a staple crop with complex 

growth patterns influenced by environmental 

factors such as temperature, rainfall, and soil 

moisture. Utilizing machine learning 

approaches including Cubist, RF, SVM, and 

XGBoost with satellite data, the study 

achieved notable results, with Cubist 

exhibiting the highest performance with an R 

value of 94.2%. This highlights the potential 

of remote sensing data in capturing spatial 

variability and informing predictive models 

for yield estimation in large-scale 

agricultural settings. 

In terms of data usage, studies employ a 

diverse range of datasets encompassing both 

image and numeric data sources. While 

image data provides valuable visual 

http://data.acfr.usyd.edu.au/ag/treecrops/2016-multifruit
http://data.acfr.usyd.edu.au/ag/treecrops/2016-multifruit
http://www.kaggle.com/moltean/fruits
http://www.kaggle.com/moltean/fruits
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information for crop identification and 

delineation, numeric data such as climate 

variables, soil properties, and agronomic 

practices offer insights into the underlying 

factors influencing yield. For instance, [10] 

utilized a CNN-LSTM model for soybean 

yield estimation, leveraging their own data 

containing both image and numeric 

variables. This integration of multi-modal 

data sources enables the model to capture 

both spatial and temporal dependencies, 

enhancing prediction accuracy. 

Moreover, [12] employed the Faster R-

CNN architecture for coconut yield 

estimation, utilizing image data to identify 

and segment coconut palms in aerial 

imagery. This approach enables precise 

delineation of individual coconut palms and 

estimation of yield based on canopy size and 

density. 

In summary, the diversity of crops, 

coupled with the utilization of various data 

types and sophisticated deep learning 

architectures, underscores the 

multidimensional nature of yield estimation 

research. By leveraging advanced AI 

techniques and comprehensive datasets, 

researchers can address the complexities of 

agricultural systems and contribute to 

enhancing crop productivity and food 

security on a global scale. 

 

 

Table 2. Yield Estimation Benchmark 

Ref Crop Approach Score Data 

type 

[4] Apple Mask R-

CNN 

73% 

(Accuracy) 

Images 

data 

[5] Orange CNN 93,8% 

(Accuracy) 

Images 

data 

[6] Prunes YoloV7-

Plum 

0.94 

(Accuracy) 

Images 

data 

[7] Maize Xgboost 0.85(R-square) Satellite 

data 

[8] wheat Regression 

model 

0.228 (RMSE) Numeric 

data 

[9] soybean CNN-

LSTM 

model 

329,53 

(RMSE) 

Images 

data 

[10] Mangoes YOLOv2 0.96(Precision) Images 

data 

[11] Tomato Mask R-

CNN 

0.88(Precision) Images 

data 

[12] Coconuts Faster R-

CNN 

0.89(Precision) Images 

data 

[13] Wheat 

ears 

YOLOv4 0.98(R-square) Images 

data 

[14] Wheat 

ears 

Retina Net 0.92(Accuracy) Images 

data 

[15] Tomato YOLOv5 0.85 

(Precision) 

Images 

data 

[16] Apple YOLOv4 0.91(Accuracy) Images 

data 

[17] Cotton 

seedling 

CenterNet 0.982 (F1-

score) 

Images 

data 

[18] Rapeseed YOLOv5 0.96(R-square) Images 

data 

[19] Tomato YOLOv5 0.97(Precision) Images 

data 

[20] Lettuce YOLOv5 0.98(Precision) Images 

data 

4. Conclusion 

In conclusion, our study embarked on a 

comprehensive exploration of yield 

estimation methodologies within the 

agricultural domain, with a focus on 

leveraging artificial intelligence (AI) 
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techniques. Through the use of the science 

mapping technique, we obtained a global 

idea about the landscape of yield estimation 

research, highlighting its significance in 

enhancing precision farming practices. The 

visualization of scholarly literature and 

citation relationships underscored the 

interdisciplinary nature of this field and the 

growing interest among researchers from 

diverse backgrounds. 

Our analysis revealed the pivotal role of 

AI algorithms in revolutionizing yield 

estimation, offering farmers unprecedented 

accuracy and insights into their production 

capacities. By harnessing deep learning and 

machine learning techniques, researchers 

have achieved remarkable results in 

accurately predicting yields across various 

crop types. However, it is essential to 

acknowledge the challenges inherent in this 

endeavor, particularly regarding data 

collection and model generalization. 

While our benchmarking showcased 

impressive performance scores across 

different methodologies and crop types, it is 

crucial to recognize that achieving such 

results requires meticulous data annotation, 

model training, and validation processes. 

Moreover, the scalability of these 

methodologies to different agricultural 

contexts remains a significant consideration. 

The complexities of agricultural 

environments, coupled with variations in 

crop types, growth patterns, and 

environmental conditions, necessitate 

tailored approaches and continuous 

refinement of models. It is evident that the 

transformative potential of AI in yield 

estimation holds promise for enhancing 

agricultural productivity, optimizing 

resource utilization, and mitigating risks 

associated with crop management. However, 

realizing this potential requires collaborative 

efforts from researchers, policymakers, and 

agricultural stakeholders to address existing 

challenges and ensure the widespread 

adoption of AI-driven solutions in farming 

practices. 
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