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Abstract: Machine learning and artificial intelligence are widely used in 

many scientific and technological domains, and they have lately been used 

to enhance several plant tissue culture stages. Technological 

advancements have transformed the way plant genotypes and phenotypes 

are measured, resulting in the everyday generation of massive, 

complicated data sets. Specifically, pertinent to the advancement of 

innovative food and farming technologies is the creation of verified, 

significant, and practical methods for merging, contrasting, and displaying 

extensive, multifaceted data sets from various sources and scientific 

methodologies. Simultaneously, machine learning has advanced quickly, 

becoming extensively used in science generally and in plant genotyping 

and phenotyping specifically. In this article, we examine machine 

learning's use in the field of plant science. We demonstrate how a variety 

of techniques provided by machine learning allow scientists to identify 

significant patterns in pertinent plant data. 
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1. Introduction 

Research in plants and agriculture and its application to global social and environmental problems 

such as food security, biodiversity, and climate change are heavily dependent on data science. The 

field of artificial intelligence (AI) presents significant promise for controlling and clarifying the 

complexity of biological systems, organisms, and data. This approach holds great promise for the 

field of plant sciences, as it addresses the unique challenge of comprehending intricate gene-

environment interactions spanning various scales, from the cellular level to the microbiome and 

climate systems. Additionally, it addresses how these interactions interact with rapidly evolving 

human management practices in agricultural and other settings, where the reliance on digital 

innovations is increasing at a rapid pace [1,2]. Consequently, there are more and more examples 

of helpful AI applications, especially Machine Learning (ML) in plant science settings, and this 

trend is being further sped up by the Covid-19 epidemic [3,35]. 

 Plant breeding studies, both traditional and in vitro, have made extensive use of machine 

learning, the discipline of teaching computers to learn from data, to interpret the flow of 

information about plants from the DNA sequence to the observable phenotypes. Machine learning 

techniques fall into three categories: shallow, deep, linear, and nonlinear algorithms; supervised, 

and unsupervised (Figure 1). Artificial neural networks (ANNs), deep neural networks (DNNs), 

convolutional neural networks (CNNs), random forests (RFs), and support vector machines 

(SVMs) are nonlinear nonparametric machine learning algorithms used to process nonlinear data 

in plant research [4]. By utilizing all available spectral data and avoiding multicollinearity and 

unnecessary spectral bands, these data-driven models may effectively analyze and comprehend 

unpredictable, non-normal, nonlinear, and nondeterministic data sets [5, 6]. For life science 

challenges, supervised learning is more effective and appropriate among various learning 

algorithms, such as reinforcement, unsupervised learning, sparse dictionary, and rule-based 

learning [7]. Regression (predicting numerical responses) and classification (predicting non-

numeric answers) can both be accomplished with supervised learning [8]. Machine learning 

techniques can be used to evaluate datasets that lack structure, such as those gathered through 

sequencing or picture imaging [9]. Transposable elements can be identified and categorized using 

machine learning models that utilize data from genome sequencing [10]. A single model can be 

created using many inputs mixed together with various combinations of outputs (multiple 

dependent variables), thus reducing the number of analyses required by breeders. 
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Figure 1. Different categories of Machine Learning Algorithm 

Genome and genotype analysis is a key component of many modern plant research fields. The full 

genomes of many plants, including model organisms like Arabidopsis thaliana, flowering plant 

species of scientific interest, trees, algae, and mosses, as well as commercially significant crops 

like rice, maize, cotton, and wheat, have been determined thanks to the revolution in DNA 

sequencing. Since genetic variation can be measured with ease in a variety of ways, including 

single-nucleotide polymorphisms (SNPs), minor insertions and deletions, gene copy number 

variation, and genome structural variation, population-wide genotyping collections for numerous 

species are now available [11]. Similar advancements enable the systematic measurement of 

genome-wide variations at the biochemical level, or in the interactions and concentrations of 

components in the cell such RNA, proteins, and metabolites, resulting in data sets referred to as "-

omics." High-throughput, automated measurements of macroscopic traits can now be used to 

quantify plant development, morphology, growth, and yield in tissues, organs, or entire plants [12].

 Explaining or predicting phenotypes from the underlying genotypes under various 

environmental situations is a challenge in both basic and practical research (e.g., breeding 

applications) (Figure 2). Genetic variation results in variations in the biochemical composition of 

cells, which in turn affects organ formation, plant growth, and ultimately characteristics important 

to agriculture, such yield and pest and stress tolerance. Modern molecular plant breeding relies on 

genotype predictive capability to predict yield and quality traits. A fundamental understanding of 

the regulation of plant development and physiology can be gained by analyzing the effects of 

genotypic variation and environment on phenotypes. Processing and integrating huge, noisy, and 

heterogeneous data sets is becoming more and more necessary for analyzing phenotypes obtained 
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at these many levels or connecting these phenotypes to genotypes. A group of computational 

techniques called machine learning (ML) are used to identify predictive patterns. 

 This article discusses the ways in which machine learning (ML) advances the fields of plant 

science and plant breeding. It focuses on applications in biochemical and macroscopic studies, as 

well as the relationship between genotypes and these phenotypic levels. Our goal is to demonstrate 

to non-experts how machine learning (ML) provides a range of techniques that allow us to identify 

significant patterns in pertinent plant data. Additionally, we offer a critical analysis of ML 

applications and suggest future areas for research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. At different biochemical levels of organization both at the cellular and macroscopic levels, genotype 

variation is related to phenotypic variation in plant sciences and breeding. 

2. Literature Review 

Machine learning is making significant strides in the field of plant sciences, particularly in the area 

of automatic species identification from digital herbarium specimen photos [13,14]. This is 

especially true for genera when there is little to no morphological difference between species, 

especially when intraspecific taxa are present and hybridization has occurred. In plant science, 

supervised machine learning techniques are the most often employed techniques. Machine learning 

techniques are frequently utilized to automate or shorten the time and effort required for 

researchers to do tasks that were previously accomplished manually. Supervised techniques work 
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effectively for these kinds of assignments. However, machine learning techniques also offer tools 

for unsupervised data exploration and data mining [15,36]. 

 To identify plant leaf diseases, a nine-layer deep CNN model was trained using 39 different 

classes of plant leaves and background images. The resulting 96.46% classification accuracy was 

found to be higher than that of the more conventional machine learning techniques of SVM, 

decision trees, logistic regression, and K-NN [16]. CNNs may be used for pattern recognition and 

object detection in remote sensing applications. An algorithm based on deep CNN-based 

segmentation that uses visual interpretation of high-resolution Red-Green-Blue (RGB) images 

based on unmanned aerial vehicles (UAVs) may be used to fine-grained map plant species and 

communities that may achieve high accuracy (84%) [17]. 

 Because of the enormous data sets, lack of mechanistic knowledge, and requirement for 

data integration to interpret measurements resulting from data complexity, machine learning (ML) 

is frequently used to assess findings. Here, we concentrate on recent advancements and, 

specifically, on situations where the use of ML enables us to look at the part that molecular 

components play in determining plant phenotypes. We do not discuss machine learning (ML) 

applications that handle raw measurement data (e.g., in the study of long-read sequencing data 

[18,37] or well-established methods for analyzing data related to omics [19], such as protein 

localization or gene models prediction. 

 One area where machine learning has demonstrated its value is in the differentiation of 

various genetic regions. For instance, using characteristics like DNA methylation, DNA sequence 

areas in maize were divided into active genes and (inactive) pseudogenes [20]. Additionally, ML 

was utilized to forecast the locations of genome crossovers—that is, the areas where genetic 

material from the mother's and father's genomes is likely to be exchanged—in the genome [21]. 

As a third illustration, machine learning is beginning to be used in population genetics, but 

primarily on humans thus far [22]. The identification of genomic areas in plants where natural 

selection resulted in the nearly total fixing of a particular collection of mutations is one such 

example [23].  These examples show how machine learning (ML) is currently being used for 

further research into genome function, in addition to its conventional usage in annotating the 

structure and function of genes in freshly sequenced genomes [24]. Here, machine learning (ML) 

is complimentary to more conventional comparative genomics methods with its emphasis on 

identifying predicted patterns. 

 Currently, the majority of phenotypic data collection on a macroscopic scale is done 

manually by human specialists who assess various phenotypes. This drastically limits both the 

amount and quality of data that is accessible. The comprehension of the relationships between 

genotype and phenotype is slowed considerably by this phenotyping bottleneck. Digital plant 

phenotyping, which aims to automatically infer phenotypes from sensor data, has become an active 

research subject with the goal of accelerating plant science [25].  
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3. Methodology 

3.1 Diversity of data and persistent barriers to data sharing: When compared to other sciences, 

biological research is often highly fragmented. Biological attention is paid to the unique features 

of the target systems they study in order to achieve this. The interaction and behavior of bacteria, 

fungi, trees, ferns, and mammals with their environment can have a fundamentally different impact 

on their structures, functions, and reproductive processes due to their fundamental differences in 

their environment. Numerous additional forms of data lack standardization, and the variety of data 

formats and methodologies used in various life sciences fields is likely to have an impact on how 

FAIR principles are used. The ability for machine learning to integrate data across numerous 

domains may be limited once more by this uneven adoption of FAIR concepts and resources [26]. 

 

3.2 Data selection and digitization: The plant sciences contain a vast array of data kinds, formats, 

and sources, making it difficult to choose which data sources to use for AI-informed research. 

Exist any data sets that, if properly curated, have instant potential? What information is required 

to characterize data sets so that it is possible to determine whether or not they are appropriate for 

inclusion in a certain analysis? Achieving well-defined criteria and objectives for data selection is 

crucial, considering the substantial workload associated in digitizing, curating, and processing 

datasets and their associated metadata. The criteria must to take into account the machine learning 

job at hand, the scientific objectives, and the interests of the persons and groups who own the data. 

 

3.3 Connecting data to materials Samples: For the results to be interpreted, reused, and 

reproducible, it is essential to provide clear information on the relationship between digital data 

and material samples, such as seeds, germplasm, and other biological sources linked to the data 

[27]. The use of best practices in standards to provide effect through AI/ML is becoming 

increasingly important, thanks in large part to these efforts and a broader movement in research 

culture. Companies that create scientific equipment and research software are essential in this 

regard. This phenomenon is especially noticeable when it comes to data produced by remote 

sensing technologies, since the predominant standards pertain to the technical aspects of imaging 

and data processing, rather than data curation. 

 

3.4 Reliability in data access management: Datasets that are relevant to biological and 

environmental studies are required for the use of AI tools in environmental research. However, 

this is dependent on a number of factors that go well beyond the needs of science, such as 

intellectual property laws, institutional data governance, and the rights and risks of sharing data 

for those who generate the materials from which data are extracted and/or may face social and 

economic repercussions from particular applications of data analysis [28]. 

 

4. AI-Based Macroscopic Phenotype Detection 

Currently, the majority of phenotypic data collection on a macroscopic scale is done manually by 

human specialists who assess various phenotypes. This drastically limits both the amount and 



Page 3281 of 12 
Abu Sarwar Zamani / Afr.J.Bio.Sc. 6(9) (2024)   

quality of data that is accessible. The comprehension of the relationships between genotype and 

phenotype is slowed considerably by this phenotyping bottleneck. Digital plant phenotyping, 

which aims to automatically infer phenotypes from sensor data, has become an active research 

subject with the goal of accelerating plant science [29]. In addition to phenotypes of plant organs 

and reproductive components (development), we are also interested in phenotypes of the whole 

plant (growth), as well as field (production) phenotypes. Plant characteristics such as leaf area, 

internode length, root volume, fruit size, chlorophyll content, photosynthetic activity, plant height, 

biomass, stress on plants, and yield predictions are examples of these characteristics. Certain plant 

characteristics are typically related to environmental factors such as temperature, light intensity, 

humidity, soil composition, as well as CO2 and oxygen concentrations. Traits of plants may be 

monitored throughout time to investigate phenological features such as growth. Furthermore, by 

comparing the characteristics of nearby plants, impacts at the field level may be investigated. 

 This is particularly true when researching intricate plants in noisy, uncontrolled, and 

chaotic settings. The application of ML in plant phenotyping was promoted [30] as a way to 

address these complications, especially with regard to picture data. Traditional computer vision 

systems involve two stages: feature extraction through labor-intensive image processing and 

machine learning techniques for decision-making. Supervised machine learning techniques are 

generally employed to extract knowledge from examples, which can reveal patterns in the 

frequently high-dimensional feature space that are invisible to humans. The drawback is that the 

handcrafted features' quality determines how well they operate. Recently, end-to-end learning has 

been introduced in DL approaches that address this restriction. Additionally, DL has been 

effectively used in plant phenotyping. For example, in order to examine plant growth, [31] 

proposed the use of a convolutional neural network (CNN) to identify and categorize spikes and 

spikelets in photographs of wheat. 

5. Genomic Prediction Using Machine Learning 

Using the available genetic, phenotypic, and environmental data to explain a complex attribute 

like yield is a primary goal in both plant research and breeding. In order to do this, ML and other 

methods focus on these aspects. Genomic areas linked to a certain characteristic. This is called 

genome-wide association mapping (or QTL mapping for experimental populations). Calculate the 

contributions of each locus individually and the percentage of trait variance accounted for by the 

collective loci. In connection with this, genetic correlations between characteristics are interesting 

since they measure how much genetic signals overlap. Forecast the anticipated trait values for 

novel genotypes (genomic prediction [GP]), for which only marker data are provided. The use of 

genomic selection [32], which selects material based on GPs rather than phenotypic characteristics, 

and marker-assisted selection, which requires QTL mapping in order to get desirable alleles at 

certain loci, is becoming more and more common among plant breeders. Genetic architecture and 

the genes that underlie QTLs are of primary interest to biologists. 

 At least in comparison to animal or human genetics, the limited sample size presents a first 

obstacle in the use of machine learning here. With a few notable exceptions, genotypes usually 
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number in the hundreds, despite the fact that phenotypes themselves can be quite high dimensional. 

However, a successful implementation of machine learning will frequently require bigger 

populations due to the vast number of species, genotypes, and habitats researched in the field of 

plant sciences. This in turn will necessitate various sets of genotypes assessed in separate studies, 

given the capability of most platforms. Thus, advancements in machine learning in this area will 

also depend on certain non-ML-related problems, such enhanced environmental control and 

measurement precision, higher capacity, and sound experimental design [33].  

 We used the following models to get the yield prediction data and then compared the 

relative impact of genotype, soil, and weather components. DNN: This method uses the DNN 

model to predict the phenotype by analyzing genotype data without considering environment data. 

The DNN model captures both linear and nonlinear effects of genetic markers. SNN: A SNN model 

is used to predict the phenotype based on soil data (without having to know genotypes and weather 

data) for a model that includes both linear and nonlinear impacts of soil conditions. 

Model Response 

variable 

Training RMSE Training 

correlation 

coefficient (%) 

Validation 

RMSE 

Validation 

correlation 

coefficient (%) 

DNN 

Yield 10.55 88.3 12.79 81.91 

Check yield 8.21 91.00 11.38 85.46 

Yield difference 11.79 45.87 12.40 29.28 

SNN 

Yield 12.96 80.21 18.04 60.11 

Check yield 10.24 71.18 15.18 60.48 

Yield difference 9.92 58.74 15.19 11.39 

Table 1. Prediction accuracy using meteorological ground truth variables [34]. 

 

 
 

 

 

 

Figure 2. The probability density distributions of the yield predicted by the DNN and SNN models and the ground 

truth yield. 
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6. Conclusions 

Our machine learning method for predicting crop (plant science) output was introduced, and it 

performed exceptionally well when tested on large datasets of corn hybrids during the 2018 

Syngenta Crop Challenge. To predict yield (including yield, check yield, and yield difference), 

deep neural networks (ML) were used based on genetic and environmental data. From historical 

data, the meticulously crafted deep neural networks were able to learn the intricate and nonlinear 

relationships between genes, environmental factors, and their interactions. As a result, they were 

able to reasonably accurately predict the yields of new hybrids planted in areas with known 

weather patterns. A relatively sensitive relationship between performances of the model and 

weather forecast accuracy indicates that weather prediction approaches are important. In the future, 

machine learning (ML) may be used to assist decision-making in a variety of plant research 

domains, such as anticipating which regions of the genome should be altered to produce a desired 

phenotype or guaranteeing ideal local growth conditions through the measurement of crop 

performance in vivo in a greenhouse or on the field. Even though these are essentially engineering 

problems, effective machine learning techniques will provide researchers with strong tools, 

especially as they improve to the point where their choices can be more easily interpreted. ML can 

thus assist in addressing the difficulties we encounter in providing food security for expanding 

people in quickly changing surroundings.  
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