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1. Introduction 

Zebrafish (Danio rerio) is a commonly used model organism in various fields of research, 

including dental studies [1–4]. Zebrafish possess several advantages as a model organism, such 

as their small size, rapid development, transparency of embryos, and genetic tractability. These 

characteristics make them particularly suitable for studying various aspects of dental research, 

including tooth development, regeneration, and oral disease modelling [5–8]. Here are some 

ways in which zebrafish can be utilized in dental studies. Zebrafish continuously develop 

replacement teeth throughout their lifespan, which makes them an excellent model for studying 

tooth development and regeneration [9, 10]. Researchers can investigate the genetic and 

molecular mechanisms underlying tooth formation by manipulating specific genes and 

observing the resulting phenotypes [11–13]. This can provide insights into the molecular 

pathways involved in human tooth development and regeneration. Dental regeneration. 

Zebrafish have the remarkable ability to regenerate lost or damaged teeth throughout their lives. 

By studying the regenerative processes in zebrafish, researchers can gain insights into the 

cellular and molecular mechanisms that enable tooth regeneration [14–17]. This knowledge 

can potentially be applied to enhance the regenerative capacity of human teeth, which could 

have implications for dentistry and oral health treatments. 

Oral disease modeling: Zebrafish can be used to model various oral diseases, including dental 

caries, periodontal disease, and oral cancer. By introducing specific genetic mutations or 

exposing zebrafish to disease-inducing agents, researchers can study the pathogenesis of these 

oral diseases and test potential therapeutic interventions [18–21]. Zebrafish's optical 

transparency during early developmental stages allows for real-time visualization of disease 
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progression and the effects of treatments. Zebrafish can serve as a screening platform for 

identifying potential drug candidates for dental-related conditions [22–25]. By using zebrafish 

models of oral diseases, researchers can screen libraries of chemical compounds to identify 

molecules that can modulate disease progression or promote tooth regeneration [26–29]. 

Zebrafish-based drug discovery approaches can offer a cost-effective and efficient way to 

identify promising therapeutic candidates. Overall, zebrafish provide a valuable model system 

for dental research due to their genetic amenability, regenerative capacity, and optical 

transparency [30–33]. By utilizing zebrafish, researchers can gain insights into tooth 

development, regeneration, oral disease pathogenesis, and potentially discover new therapeutic 

approaches for dental-related conditions. 

 

2. Materials and Methods 

2.1. Origin and maintenance of zebrafish 

Adult zebrafish (Wild type – AB strain, 4 months old) were purchased from a local 

aquarist (NSK aquarium, Kolathur, Tamil Nadu, India). The male and female fishes were 

separated, maintained in our facility under the following condition in a 10 L glass tank: 28.5˚C, 

with a 14/10 h light/dark cycle [34–37]. The fish were fed three times a day, with live brine 

shrimp (Artemia salina). The fishes were acclimatized for 1 month, later the fishes were 

utilized for breeding, and embryos were collected and used for the following experiments [38]. 

The collected embryos are further analyzed under a microscope, unfertilized embryos are 

discarded, whereas the fertilized embryos are taken in a six-well plate and incubated in E3 

medium. 

 

2.2. Zebrafish embryo toxicity test 

For the developmental toxicity assessment studies, 4 hpf embryos were used, the 

exposure was carried in a 6 well plate containing untreated larvae as the control, Multilink, 

Relyx v200, Coltene ParaCore, and GC FujiCEM. Around 15 embryos/well were used with 3 

mL of E3 medium. The exposure was non-static and renewed every 24 h with the fresh 

treatment solution throughout the exposure period (4 hpf to 96 hpf). All the experiments were 

carried out in triplicates. Parameters such as survival and malformation were observed during 

this period, and calculations were presented at the end of 96 hpf [39].   

 

2.3. Intracellular ROS assay 

The DPPP (2,2-diphenyl-1-picrylhydrazyl) fluorescent assay is used to measure the antioxidant 

capacity or radical scavenging activity of a sample [40]. It is based on the principle that DPPP, 

a stable free radical, is reduced to a non-fluorescent compound upon interaction with 

antioxidants [41–43]. If you are interested in conducting a DPPP fluorescent assay in zebrafish 

larvae, here's a general outline of the procedure. Preparation of DPPP solution: Prepare a stock 

solution of DPPP by dissolving it in an appropriate solvent, such as ethanol or methanol, to a 

concentration of typically 1 mM. Protect the stock solution from light and store it at -20°C. 

Larval zebrafish handling: Obtain zebrafish larvae at the desired developmental stage (e.g., 3-

5 days post-fertilization). Handle the larvae with appropriate care and follow ethical guidelines 

for animal experimentation. Keep the larvae in an appropriate fish facility under controlled 

conditions (temperature, lighting, water quality, etc.) [34]. Treatment groups: Design your 
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experiment with appropriate treatment groups. For example, you may have control larvae and 

experimental groups exposed to specific conditions or treatments that affect antioxidant 

activity. 

 

Incubation with DPPP: Prepare a working solution of DPPP by diluting the stock solution in 

an appropriate buffer or medium [44]. The concentration of DPPP in the working solution will 

depend on the specific requirements of your experiment. Typically, concentrations between 

10-100 μM are used. Incubate the zebrafish larvae in the DPPP working solution for a defined 

period, often 1-2 hours, at an appropriate temperature (typically 28-32°C). Wash and 

homogenization: After the DPPP incubation period, carefully remove the larvae from the DPPP 

solution and wash them with fresh buffer or medium to remove any excess probe. Transfer the 

larvae to a suitable homogenization buffer or medium. Homogenization and fluorescence 

measurement: Homogenize the zebrafish larvae using a suitable method to extract the cellular 

contents. Centrifuge the homogenate to remove debris if necessary. Measure the fluorescence 

intensity of the resulting supernatant using a fluorometer or spectrofluorometer. DPPP exhibits 

fluorescence emission at specific wavelengths, typically around 420-430 nm, when excited at 

an appropriate wavelength (around 340-360 nm) [45–47]. 

 

2.4. Statistical analysis 

The data were presented as the mean of triplicates with a standard deviation. GraphPad Prism 

software (Ver 5.03, CA, USA) was used for statistical analysis. One-way ANOVA was 

performed and Tukey’s post-hoc test was used to find level of significance between control 

and other groups.   

3. Results and Discussions 

3.1 Zebrafish embryo toxicity test 

3.1.1 Mortality and hatching rate 

 The Multilink, Relyx v200, Coltene ParaCore, and GC FujiCEM cement did not cause 

mortality in zebrafish embryos. As shown in Fig. 1, the Survival rate was found to be more 

than 90% in all the group. Additionally, the hatching rate was calculated at 48 hpf. It was 

observed that 100% of the zebrafish embryo emerged out of their chorions in the control 

group. However, a similar in the hatching rate was observed all the other treated group.  
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Figure.1. Survival and Hatching rate of the zebrafish larvae exposed to Multilink, Relyx v200, 

Coltene ParaCore, and GC FujiCEM cement. 
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3.2 Measurement of heart rate 

 The heart rate of zebrafish embryos was evaluated at 72 hpf, to assess the toxicity of 

treatment group. The atrial and ventricular contractions were counted and recorded under a 

microscope for 1 min and average heart beats per minute were reported. The result shows that 

all the group of Multilink, Relyx v200, Coltene ParaCore, and GC FujiCEM cement did not 

significantly alter the heart beat rate of the zebrafish embryos when compared to the embryos 

from the control (untreated) group (Fig. 2). 

 
Figure.2. Heart rate of the zebrafish larvae exposed to Multilink, Relyx v200, Coltene 

ParaCore, and GC FujiCEM cement 

 

3.3. Morphological malformation 

 The Multilink, Relyx v200, Coltene ParaCore, and GC FujiCEM cement treated 

zebrafish embryos exhibited normal morphological architecture under the microscope (Fig. 3). 

No malformations such as yolk sac edema and bent spine are formed in the larvae. 

 
Figure 3: Morphology of the zebrafish larvae exposed to Multilink, Relyx v200, Coltene 

ParaCore, and GC FujiCEM cement 
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3.4 Lipid peroxidation detection 

Using the fluorescent stain, the level of lipid peroxidation was visualized in the larvae. The 

increase in fluorescent intensity indicates the increase in lipid peroxidation level in larvae. But 

this condition was effectively low when the larvae were treated with Coltene ParaCore, and 

GC FujiCEM cement. The fluorescent intensity was noted as similar to the control group. 

Meanwhile, Multilink and Relyx v200 cement increased the fluorescent intensity which 

indicates the lipid peroxidation level. These results suggest that with Coltene ParaCore, and 

GC FujiCEM cement induces no oxidative stress condition compared to the Multilink and 

Relyx v200 cement. The  Figure 4 shows the  DPPP experiment in the zebrafish larvae exposed 

to Multilink, Relyx v200, Coltene ParaCore, and GC FujiCEM cement. The blue fluorescent 

indicates the presence of lipid peroxidations in zebrafish larvae. 

 

 
Figure 4. The DPPP experiment in the zebrafish larvae exposed to Multilink, Relyx v200, 

Coltene ParaCore, and GC FujiCEM cement. The blue fluorescent indicates the presence of 

lipid peroxidations in zebrafish larvae. 

 

4. Conclusion 

The results shows Coltene ParaCore, and GC FujiCEM cement showed oxidative stress 

condition to the larvae compared to the Multilink and Relyx v200, when exposed to the 

zebrafish larvae 
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