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ABSTRACT:  

 
New melogenic homologous series of cinnamates with substituted 

ethyl tail: Propoxyethyl[4(4-n-alkoxycinnamoyloxy) benzoates] has 

been synthesized by condensing an appropriate 4-n-

alkoxycinnamoylchloride with propoxyethyl 4-hydroxybenzoate. 

The synthesized compounds were characterized by combination of 

elemental analysis and standard spectroscopic methods. In the 

present series all the compounds synthesized exhibit 

mesomorphism. Methoxy to n-propyloxy derivatives exhibit 

monotropic nematic mesophase.  

n-butyloxy to n-pentyloxy derivatives exhibit both enantiotropic 

smectic A as well as nematic mesophases. n-hexyloxy to n-

hexadecyloxy derivatives exhibit only enantiotropic smectic A 

mesophase. The mesomorphic properties of the present series were 

compared with structurally related mesogenic homologous series to 

evaluate the effect of propoxyethyl tail and cinnamoyloxy central 

linkage on phase transition. 
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1. Introduction 

 

Terminal groups present in a moiety have their own importance because of their polarity. It has 

been found that terminally substituted functional group exhibit more stable phase transition 

than do non-substituted mesogenic compounds. Any terminal functional group, which 

increases the molecular polarizability, without significantly increasing the molecular breadth, 

increases the thermal stability of the resulting phase transition. Phase transition behaviour of 

the liquid crystalline compound is principally dependent on its molecular arrangement, where 

a slight change in the molecular different shape results in a significant change in its phase 

transition properties[1] Many mesogenic homologous series with -COO-, -N=N-, -CH=N-,-

CH=CH-,-C=C-,-CH=CH-COO-,-CONH-,etc., as their central linkages , as well as a alkyl and 

/or alkoxy chains “as terminal groups”, have been reported [1-4].In earlier years , cinnamic 

acid ester (C6H5-CH=C-COO-) has extensively integrated into molecular modelling  to develop 

new liquid crystalline derivatives  possessing low melting points , high clearing points and 

suitable phase transition  temperature ranges [5-14].Earlier , Jones and Ratto [15] observed that 

esters of cinnamic acid have low melting point and wide nematic isotropic transition 

temperature. Zhang et al. [16] have shown cinnamates are photoalignment materials which 

make them useful in liquid crystal displays. Cinnamate esters have been well known for many 

years and exhibit extensive literature in liquid crystal area  [17-25]. Vora and Rajput [26] 

reported that binary mixtures of cinnamates esters show a wide range of smectic and nematic 

phase transition. Sadashiva et al. [27] reported the synthesis , characteristics and phase 

transition properties of some esters oftrans-4-n -alkoxycinnamic acid and trans-4-n-alkoxy-∝-

methylcinnamic acid with branched alky-chain terminals , compounds they prepared showed 

to exhibit ferroelectric and anti-ferroelectric phases . Kashyap et al. [28] reported a comparative 

study of two homologous series of benzoate- and cinnamate-linked derivatives. Thaker and 

Kanojiya [29] reported the phase transition properties of liquid crystalline derivatives with 

biphenyl moiety containing azo-ester, azo-cinnamate central linkages and different terminal 

groups. Doshi et al. [30] have reported the synthesis and phase transition properties of n-butyl-

4-(4’-n-alkoxy cinnamoyloxy) cinnamates. Doshi and Patel have [31] reported cis-cinnamate 

esters, namely, n- hexyl-4-(4’n-alkoxy cinnmoyloxy) cinnamates. They have also [32] reported 

cis-cinnamate esters, namely, n-hexyl-4-(4’-n-alkoxy cinnamoyloxy) cinnamates. Serrano et 

al. [33] reported synthesis, characterization and photo-reactivity of liquid crystalline 

cinnamates. The reactivity of photo reactive samples containing these derivatives and a low 

percentage of a triplet sensitizer were investigated by them at different temperatures and 

phases. Kawatsuki et al. [34] synthesised and studied the photoreaction of side-chain liquid-

crystalline polymers comprising cinnamoyl biphenyl mesogens. Zhang et al [35] reported novel 

liquid crystal photo alignment layer-by-layer and self-assembled with long chain cinnamate 

polyelectrolyte. Photo-cross-linking and photosensitive behaviour of cinnamoyl group have 

imported its use in liquid crystalline materials which can be used in in-plane Switching Mode 

liquid crystal Display as well as biomaterials [36-39]. Cinnamoly-containing Liquid Crystal 

with reactive vinyl groups can be used as optical data shortage, photonic devices and liquid 

crystal polymers actuators [40,41]. Earlier, Prajapati et al. [42] have reported Schiff’s base 

cinnamates comprising naphthalene moiety. Terminal groups, on the other hand, have their 

own role because of their polarity. It has been found that terminally substituted liquid 

crystalline compounds exhibit more stable phase transition as compared to un-substituted 

liquid crystalline compounds. Any terminal group, which increases the molecular 

polarizability, without significantly increasing the breadth of moiety, increases the thermal 

stability of resulting phase transition. Our literature study indicated that, compared with 

mesogenic esters with normal and achiral branched terminal alkyl chains, liquid crystalline 

esters having chains containing differing kinds of atoms are very few. Chiang et al. [43-44] 
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studied the effects of ethoxyethoxyethoxy (EO) and butoxyethoxyethoxy (BO) chains on phase 

transition. They observed that the BO – containing liquid crystals have greater SmC* phase 

stability than the corresponding EO-containing materials. Alkoxyethyl as terminal chain has 

been reported as well in the literature. Wu and Lui [45] reported the synthesis and ferroelectric 

properties of the new chiral liquid crystal derived from (S) lactic acid with alkoxyethanols. 

Vora and Prajapati [46-47] have reported methoxyethyl and ethoxyethyl ester of 4-(4’-n-

alkoxy-benzoyloxy) benzoic acid and alpha-methyl cinnamate. Prajapati and Pandya have [48-

49] have reported four mesogenic homologous series of azo/esters having methoxyethyl and 

ethoxy ethyl terminal chain. Prajapati et al. [50-51] have also synthesized a mesogenic 

homologous series of Schiff’s base ester containing a methoxyethyl and ethoxy ethyl tail and 

evaluated the effect of such tail on mesomorphism. Earlier, Prajapati et al have reported [52] 

mesogenic Schiff’s base ester with chloroethyl tail. Prajapati and Patel [53-55] have also 

reported mesogenic cinnamates with a substituted ethyl terminal chain as well as the dielectric 

relaxation study of two different mesogenic cinnamates with a substituted ethyl terminal chain. 

In continuation of our previous work on cinnamic acid derivatives and substituted ethyl tails 

respectively, the cinnamoyl central linkage containing propoxy ethyl tail, aiming to investigate 

the influence of central linkage and the substituted ethyl tail on the mesophase behaviour of 

the prepared liquid crystalline compounds. The general structural formula for the synthesized 

new homologous series of compounds in are shown in Scheme 1. 

 

 
Scheme1: General structural formula of series In compounds 

 

Experimental  

Synthesis 

4-Hydroxybenozic acid, 4-hydroxybenzaldehyde, malonic acid, pyridine, Conc.H2SO4, SOCl2, 

2- propoxyethanol the appropriate n-alkyl halides, and anhydrous K2CO3 were used as 

received. Solvents were dried and distilled before use. Microanalysis of the compounds was 

performed on Coleman carbon-hydrogen analyser, and the values obtained are in close 

agreement with those calculated.IR spectra were determined by KBr pellets, using a Shimadzu 

IR-408 spectrophotometer. 1H NMR spectra were obtained with a Perkin-Elmer R-32 

spectrometer using tetramethylsilane (TMS) as terminal reference standard. The chemical 

shifts are quoted as δ (parts per million) downfield from the reference; CDCl3 was used as 

solvent for all the compounds. The phase assignments and transition temperatures were 

determined by thermal polarized light microscopy using a polarizing microscope 
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(LeitzLaborlux 12 POL) equipped with a heating stage. The enthalpies of transition, reported 

as Jg-1, were measured on a Mettler TA-4000 systems, at a scanning rate 5°C min-1. The 

instrument was calibrated using pure indium as a standard.  

The synthetic route to compounds of series I is illustrated in the scheme 1.  

 

[Insert Sheme 1 about here] 

Propoxyethyl 4-hydrobenzoate (A) was synthesized by the esterification of 4-hydroxybenzoic 

acid with propoxyethanol, respectively as described earlier [56]. 4-n-Alkoxybenzaldehydes (B) 

were prepared by the method of Vyas and Shah [57]. Trans-4-n-Alkoxycinnamic acids (C) 

were synthesized from the corresponding 4-n-alkoxybenzaldehyde and malonic acid following 

the method reported by Gray and Jones [58]. Trans-4-n-Alkoxycinnamoly chlorides (D) were 

prepared by treating corresponding acids with excess of thionyl chloride under reflux for two 

hours [59].  

 

Synthesis of series – I compounds  

Propoxyethyl 4- hydroxy benzoate (0.01 mole) was dissolved in dry pyridine (10ml) and a cold 

solution of an appropriate trans-4-n-alkoxycinnamoly chloride (0.015 moles) in dry pyridine 

(10 ml) was added slowly to it with constant stirring in an ice bath. The mixture was allowed 

to stand over night at room temperature. It was acidified with cold aqueous hydrochloric acid 

(1N). The product obtained was filtered and washed successively with water (2x50ml) and 

water (2x30ml). Then the crude mass was chromatographed on silica gel (100-200 mesh size) 

using petroleum ether (60-80˚ C) and ethyl acetate mixture (95:5) as eluent. Removal of solvent 

from the eluate afforded solid materials, which was crystallized repeatedly from methanol. The 

purities of all these compounds were checked by thin layer chromatography (Merck kieselgel 

60F 254 pre – coated plates 
 

The elemental analysis of all the compounds of the series was found satisfactory in table 2. The 

spectral data of the representative members, n-pentyloxy, n-octyloxy and tetradecyloxy 

derivatives, of series I are given below. 

 [Insert Table 2 about here] 

 

Spectral Data 

Propoxyethyl[4(4-n-pentoxycinnamoyloxy) benzoate] 

UV spectrum nm = 299.6 and 319.6 

IR spectrum (KBr) Vmax/ Cm-1 = 2928,2850,1735 (-COO-),1714,1633(-CH=CH-), 

1606,1512, 1462,1252, 1166, 830 
1HNMR Spectrum (400 MHz, CDCl3):  0.92 (t, 3H, -CH3), 1.36-1.45 (m, 4H, 2X-CH2), 1.70-

1.87(m, 5H, Ar-O-C-CH2), And 3H of (-O-C-C-CH3), 3.98-4.02 (m, 6H, 4H of -CH2-O-CH2 

and 2H of Ar-O-CH2), 4.3-4.4 (t, 2H, -COOCH2), 6.52(d, 1H, -ArCH=), 6.91 (d, 2H, ArH), 

7.25 (d, 2H of ArH), 7.50 (d, 2H, ArH),7.80 (d,1H, =CH-COO), 7.84 (d, 2H, ArH). 

 

Propoxyethyl[4(4-n-Octyloxycinnamoyloxy) benzoate] 

UV spectrum nm = 299.6 and 318.9 

IR spectrum (KBr) Vmax/ Cm-1 = 3349.86, 2922.11 ,1724 (-COO-),1624 (-CH=CH-), 1511, 

1467.9, 1255.14, 1107.1, 833.6  
1HNMR Spectrum (400 MHz, CDCl3):  0.88 (t, 3H, -CH3), 1.26-1.37 (m, 10H, 5X-CH2), 1.59-

1.66(m, 5H,2H, of Ar-O-C-CH2& 3H of (-O-C-C-CH3), 3.47-3.78m (m, 4H of -CH2-O-CH2), 

3.99.0 (t, 2H of Ar-O-CH2), 4.47 (t, 2H, -COOCH2), 6.47(d, 1H, -ArCH=), 6.92 (d, 2H, ArH), 
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7.24-7.33 (m, 2H or ArH), 7.53-7.55 (d, 2H, ArH),7.82-7.86 (d,1H, =CH-COO), 8.13 (d, 2H, 

ArH) 

 

Propoxyethyl[4(4-n-dodecyloxycinnamoyloxy) benzoate] 

UV spectrum nm = 298.8 and 318.4 

IR spectrum (KBr) Vmax/ Cm-1 = 3182.3, 2923.9, 1733.9 (-COO-), 1666 (-CH=CH-), 1514, 

1461.9, 1259.4, 1122, 823.5 
1HNMR Spectrum (400 MHz, CDCl3):  0.87 (t, 3H, -CH3), 1.46-1.58 (m, 10H, 5X-CH2), 1.61-

1.82(m, 5H,2H, of Ar-O-C-CH2& 3H of (-O-C-C-CH3), 3.47-3.78m (m, 4H of -CH2-O-CH2), 

3.99.0 (t, 2H of Ar-O-CH2), 4.47 (t, 2H, -COOCH2), 6.47(d, 1H, -ArCH=), 6.92 (d, 2H, ArH), 

7.24-7.33 (m, 2H or ArH), 7.53-7.55 (d, 2H, ArH),7.82-7.86 (d,1H, =CH-COO), 8.13 (d, 2H, 

ArH) 

 

2. Result and Discussion 

 

Optical microscopy studies 

As a preliminary investigation, the mesophases exhibited by compounds of series I   were 

concluded by the optical microscopic studies. 

On cooling, isotropic liquids of series I, n-methoxy to n-propyloxy derivatives exhibit 

monotropic small droplets that coalesced to the classical schileren texture of the nematic phase.  

On further cooling n-butyloxy to n-hexadecyloxy derivatives also gave focal conic texture 

characteristic of smectic A mesophase. (figure 3). 

 

[Insert Figure 3 about here] 

 

Mesomorphic behavior 

Series I: Propoxyethyl[4(4-n-alkoxycinnamoyloxy) benzoates] 

Twelve compounds have been synthesized in series I. Methoxy to n-propyloxy derivatives 

exhibit monotropic nematic mesophase. n-butyloxy to n-pentyloxy derivatives exhibit both 

enantiotropic smectic A as well as nematic mesophases. n-hexyloxy to n-hexadecyloxy 

derivatives exhibit only enantiotropic smectic A mesophase.  

 

 The transition temperatures are recorded in table 1. The plot of transition temperatures against 

the number of carbon atoms in the alkyl chain for the series I is given in figure 1. It can be 

noticed that crystal-isotropic transition temperatures decrease sharply with an initial increase 

in the length of terminal alkoxy tail except for the last two homologues. The SmA-N and N-I 

transition temperatures exhibited rising tendency. 

 

[Insert Table 1 about here] 

[Insert Figure 1 about here] 

Calorimetric studies: 
Calorimetry is a valuable method for the detection of phase transitions. It yields quantitative 

results; therefore, we may draw conclusions concerning the nature of the phases which occur 

during the transitions. In present study, enthalpies of derivative of series I (n=4) were measured 

by differential scanning calorimetry. Data are recorded in table 3. Thermograms are given in 

figure 2. 

[Insert Figure 2 about here] 

[Insert Table 3 about here] 
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Table 4 summarizes comparison of smectic mesophase range, transition temperature and 

molecular structure of representative compound 10 (n=12) of the present series I as well as 

compare with structurally related other compounds A (54), B (54), C (46), D (53), E (60), and 

F (46) 

 

The smectic mesophase range and SmA-I transition temperature of the compound 10 is lower 

by 11˚C and 22˚C, respectively as compared to that of compound A. The molecular structure 

of compound 10 differs from compound A only at the one terminus. The compound 10 have 

Propoxyethyl tail whereas compound A have methoxy ethyl tail at the same end. Gray (61) has 

explained that extension of methylene spacer beyond certain number lowers the transition 

temperatures in many esters. 

  

The smectic mesophase range and SmA-I transition temperature of the compound 10 is lower 

by 19˚C and 14˚C, respectively as compared to that of compound A. Again the difference 

between the molecular structure of compound 10 and B lies at the one terminus only of the 

compound 10 have propoxyethyl tail whereas compound B has polar chloro ethyl tail at the 

same end. the compound has more polar chloro terminal group where’s compound 10 have 

comparatively less polar propoxy terminal group. The presence of more polar terminal chloro 

group increase is the overall polarizability of compound B as compared to compound 10 which 

is responsible for the higher smectic range & SmA-I transition temperature of compound B. 

 

The smectic mesophase and SmA-I transition temperature of compound 10 is higher by 20˚C 

and 41˚C respectively as compared to that at compound C. the molecule of compound 10 and 

compound C differ only at the central linkages. The molecule of compound 10 have 

cinnamoyloxy (-CH=CH-COO-) central linkages, while compound C have ester (-COO-) 

central linkages. Gray (61) has explain that the addition of double bond in the system increases 

the length and over all polarizability of the rod like molecules. 

 

The smetic mesophase range and SmA-I transition temperature of the compound 10 is lower 

by 3˚C and 6˚C, respectively as compared to that of compound D. the molecule structure of 

compound 10 differ from compound D only at the one terminus. The compound 10 have 

propoxy ethyl tail whereas compound D have ethoxyethyl tail at same end. Gray (61) has 

explained that extension of methylene spacer beyond certain number lowers the transition 

temperatures in many esters.  

 

 The smetic mesophase range and SmA-I transition temperature of the compound 10 is lower 

by 1˚C and 24˚C, respectively as compared to that of compound E. The molecular structure of 

10 differ from compound E only at the one terminus. The compound 10 have propoxy ethyl 

tail whereas compound E have butoxy ethyl tail at the same end. Gray (61) has explained that 

extension of methylene spacer beyond certain number lowers the transition temperatures in 

many esters.  

 

The smectic mesophase and SmA-I transition temperature of compound 10 is higher by 10˚C 

and 44˚ C, respectively as compared to that of compound F. The molecule of compound 10 

and compound F differ only at the central linkages. The molecule of compound 10 have 

cinnamoyloxy (-CH=CH-COO-) central linkage, while compound F have ester central linkage. 

Gray (61) has explained that the addition of double bond in the system increases the length and 

polarizability of the rod like molecule. 

[Insert Table 4 about here]  
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3. Conclusion  

 

In this article we have presented the synthesis and characterization of new mesogenic 

homologous series of cinnamates with propoxyethyl tail. The present series with propoxyethyl 

tail are thermally less stable compared to the structurally related other mesogenic homologous 

series having ethoxyethyl, butoxyethyl, chloroethyl and methoxyethyl tail. The present series 

with cinnamoyloxy central linkage are thermally more stable as compared to the structurally 

related series containing ester central linkage due to the greater molecular length and 

polarizability of the molecular resulting from additional -CH=CH-  units in the central linkage. 
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Scheme 1: Where, R= -CnH2n+1 (n=1 to 8,10,12,14,16 & 18) 

Reagents & conditions: (i) Conc.H2SO4 (ii) R-Br, KOH, Methanol (iii) Malonic acid, Dry 

pyridine, Pipyridine (iv) Excess SOCl2 (v) (A) in Dry pyridine, cold 1:1 HCl. 

  

Table 1: Transition temperatures (ºC) of the series I compound 

Compound 

No. 

R= -CnH2n+1 

n = 
Cr  SmA  N  I 

1 1 • 138   • (111) • 
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2 2 • 134   • (108) • 

3 3 • 129   • (104) • 

4 4 • 73 • 91 • 106 • 

5 5 • 88 • 104 • 121 • 

6 6 • 87 • 116   • 

7 7 • 86 • 114   • 

8 8 • 77 • 118   • 

9 10 • 85 • 110   • 

10 12 • 83 • 111   • 

11 14 • 82 • 109   • 

12 16 • 81 • 106   • 

()= monotropic value; Cr=crystalline solid; SmA=smectic A phase; N=nematic phase; 

I=isotropic liquid phase; =phase exists.  

 

Table-2   Elemental analysis of butyloxy, octyloxy and dodecyloxy derivatives. 

   Elements 

%Calculated (% 

found), 

 

 

Sr.No. Molecular Formula C H O 

1 C25H30O6 70.40(70.38) 7.09(6.99) 22.51(22.59) 

2 C29H38O6 72.17(72.11) 7.94(7.81) 19.89(19.81) 

3 C33H46O6 73.57(73.47) 8.61(8.70) 17.82(17.87) 
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Table 3: Enthalpy change, entropy change and normalized entropy of the series I4 by DSC 

Compound Transition Peak temp./℃ ΔH/kJmol-1 ΔS/Jmol-1 K-1 

I4 

Cr-SmA 72.88 61.1349 0.1767 

SmA-N 90.27 0.4279 0.0012 

                                      N- I                         105.44                   0.9951                   0.0026  

 

Table1: 4 Comparison of the phase transition temperatures, smectic A \mesophase range and 

comparative molecular structures of compounds I10, A to F. 

 

 

 

 

 

I10 83 111 28 C4 

A 94 133 39 C4 

B 78 125 47 C3 

C 62 70 08 C5 

D 86 117 31 C4 

E 60 87 27 C4 

F 49 67 18 C4 
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FIgure 1:The phase behavior for Series I 

 

Figure 2. Microphotograph of focal conic texture of SmA mesophase (Series I; n=14) at 80  
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ºC on cooling 

Figure 3. Microphotograph of focal conic texture of Nematic mesophase (Series I; n=4) at 95 

ºC. 

 
 

Figure 4: DSC Thermogram of series I (n=4) 

 
 

Figure 5: DSC Thermogram of series I (n=8) 
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Figure 6: DSC Thermogram of series I (n=3) 

 
 

Figure 7: DSC Thermogram of series I (n=6) 

 

 

 

 

 

 

 

 

 

 

 

 

IR Spectrum (KBr) Vmax/Cm
-1: 2919, 2852, 1726 (-COO-), 1705, 1627 (-CH=CH-), 1600, 

1509, 1467, 1248, 1104, 832. 

 

Figure 8: IR data of series I (n=4) 
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. IR Spectrum (KBr) Vmax/Cm
-1: 2919, 2852, 1726 (-COO-), 1705, 1627 (-CH=CH-), 1600, 

1509, 1467, 1248, 1104, 832.   

 

Figure 9: IR data of series I (n=8) 

 
1HNMR Spectrum (400 MHz, CDCl3):  0.88 (t, 3H, -CH3), 1.26-1.37 (m, 10H, 5X-CH2), 1.59-

1.66(m, 5H,2H, of Ar-O-C-CH2& 3H of (-O-C-C-CH3), 3.47-3.78m (m, 4H of -CH2-O-CH2), 

3.99.0 (t, 2H of Ar-O-CH2), 4.47 (t, 2H, -COOCH2), 6.47(d, 1H, -ArCH=), 6.92 (d, 2H, ArH), 

7.24-7.33 (m, 2H or ArH), 7.53-7.55 (d, 2H, ArH),7.82-7.86 (d,1H, =CH-COO), 8.13 (d, 2H, 

ArH) 

 

Figure 10: NMR data of series I (n=8) 

 
 

1HNMR Spectrum (400 MHz, CDCl3):  0.87 (t, 3H, -CH3), 1.46-1.58 (m, 10H, 5X-CH2), 1.61-

1.82(m, 5H,2H, of Ar-O-C-CH2& 3H of (-O-C-C-CH3), 3.47-3.78m (m, 4H of -CH2-O-CH2), 

3.99.0 (t, 2H of Ar-O-CH2), 4.47 (t, 2H, -COOCH2), 6.47(d, 1H, -ArCH=), 6.92 (d, 2H, ArH), 

7.24-7.33 (m, 2H or ArH), 7.53-7.55 (d, 2H, ArH),7.82-7.86 (d,1H, =CH-COO), 8.13 (d, 2H, 

ArH) 
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Figure 11: NMR data of series I (n=12) 

 
 

 IR, 1H-NMR & Elemental analysis data 

2-Propyloxyethyl 4-((E)-3-(4-n-pentyloxyphenyl) acryloyloxy) benzoate (I5) 

. IR Spectrum (KBr) Vmax/Cm
-1: 2941, 2854, 1720 (-COO-), 1624 (-CH=CH-), 1601, 1511, 

1463, 1271, 1124, 820. 

 1H-NMR Spectrum (400 MHz,CDCl3) δ in ppm: 0.92 (t, J=7.8 Hz, 6H, 2 X ˗CH3), 1.34-1.47 

(m, 6H, 3 X ˗CH2-), 1.59-1.83 (m, 4H, 2 X ˗CH2-), 3.52 (t, J=6.8 Hz, 2H, -O-CH2-), 3.76 (t, 

J=6.4 Hz, 2H, -CH2-O-), 4.00 (t, J=6.5 Hz, 2H,  Ar-O-CH2-), 4.47 (t, J=6.4 Hz, 2H, -COO-

CH2-), 6.50 (d, J=15.8 Hz, 1H, Olefinic H ), 7.26 (d, J=8.8 Hz, 2H, ArH ), 7.54 (d, J=8.7 Hz, 

2H, ArH ), 7.81 (d, J=15.7 Hz, 1H, Olefinic H), 8.10 (d, J=8.8 Hz, 2H, ArH ). Yield: 69% 
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Figure 12: IR spectrum of series I (n=5) 

 

Figure 13: 1H-NMR Spectrum of series I5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2-Propyloxyethyl 4-((E)-3-(4-n-hexyloxyphenyl) acryloyloxy) benzoate (I6) 

UV-Vis. (THF) λmax: 320 and 232 nm. IR Spectrum (KBr) Vmax/Cm
-1: 2931, 2864, 1715 (-COO-

), 1626 (-CH=CH-), 1601, 1513, 1469, 1275, 1114, 825. 1H -NMR Spectrum (400 MHz,CDCl3)    

δ in ppm: 0.93 (t, J=7.4 Hz, 6H, 2 X ˗CH3), 1.37-1.46 (m, 8H, 4 X ˗CH2-), 1.58-1.80 ( m, 4H, 

2 X ˗CH2-), 3.53 (t, J=6.6 Hz, 2H, -O-CH2-), 3.77 (t, J=6.2 Hz, 2H, -CH2-O-), 4.02 (t, J=6.4 

Hz, 2H,  Ar-O-CH2-), 4.45 (t, J=6.4 Hz, 2H, -COO-CH2-), 6.49 (d, J=15.7 Hz, 1H, Olefinic H), 

6.94 (d, J=8.8 Hz, 2H, ArH), 7.26 (d, J=8.8 Hz, 2H, ArH), 7.54 (d, J=8.8 Hz, 2H, ArH), 7.85 ( 

d, J=15.6 Hz, 1H, Olefinic H), 8.12 (d, J=8.8 Hz, 2H, ArH ). Yield: 67% 
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Figure 14: IR spectrum of series I (n=6). 

 

Figure 15: 1H-NMR Spectrum of series I (n=6). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2Propyloxyethyl 4-((E)-3-(4-n-decyloxyphenyl) acryloyloxy) benzoate I (n=10) 

UV-Vis. (THF) λmax: 320 and 232 nm. IR Spectrum (KBr) Vmax/Cm
-1: 2919, 2852, 1726 (-COO-

), 1705, 1627 (-CH=CH-), 1600, 1509, 1467, 1248, 1104, 832. 1H -NMR Spectrum (400 MHz, 

CDCl3) δ in ppm: 0.94 (t, J=7.6 Hz, 6H, 2 X ˗CH3), 1.25-1.45 (m, 16H, 8 X ˗CH2-), 1.58-1.80 

(m, 4H, 2 X ˗CH2-), 3.50 (t, J=6.8 Hz, 2H, -O-CH2-), 3.76 (t, J=6.4 Hz, 2H, -CH2-O-), 4.01  (t, 
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J=6.4 Hz, 2H, Ar-O-CH2-), 4.43 (t, J=6.8 Hz, 2H, -COO-CH2-), 6.93 (d, J=8.8 Hz, 2H, ArH), 

7.25 (d, J=8.8 Hz, 2H, ArH), 7.54 (d, J=8.8 Hz, 2H, ArH), 7.85 (d, J=15.7 Hz, 1H, Olefinic H), 

8.10 (d, J=8.6 Hz, 2H, ArH). Yield: 66%  

 

 
 

Figure 16: IR spectrum of series I( n=10). 

 
Figure 17: 1H-NMR Spectrum of series I ( n=10). 

 

2-Butoxyethyl 4-((E)-3-(4-n-dodecyloxyphenyl) acryloyloxy) benzoate (I12) 

UV-Vis. (THF) λmax: 320 and 232 nm. IR Spectrum (KBr) Vmax/Cm
-1: 2914, 2850, 1730 (-COO-

), 1711, 1632 (-CH=CH-), 1604, 1512, 1470, 1246, 1108, 821.1H -NMR Spectrum (400 

MHz,CDCl3) δ in ppm: 8.10 (d, J=8.6 Hz, 2H, ArH ), 7.84 (d, J=15.8 Hz, 1H, Olefinic H), 7.55 

(d, J=8.8 Hz, 2H, ArH), 7.24 (d, J=8.6 Hz, 2H, ArH ), 6.93 (d, J=8.8 Hz, 2H, ArH ), 6.49 (d, 

J=15.6 Hz, 1H, Olefinic H), 4.45 (t, J=6.8 Hz, 2H, -COO-CH2-),4.02 (t, J=6.4 Hz, 2H, Ar-O-
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CH2-), 3.76 (t, J=6.4 Hz, 2H, -CH2-O-), 3.50 ( t, J=6.8 Hz, 2H, -O-CH2-), 1.55-1.80 ( m, 4H, 2 

X ˗CH2-), 1.26-1.47 ( m, 20H, 10 X ˗CH2-), 0.94 ( t, J=7.2 Hz, 6H, 2 X ˗CH3). Yield: 65% 

 
 

Figure 18: IR spectrum of series I (n=12). 

  

 

 

 

 


