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ABSTRACT: In this paper we investigate the 

dynamics of prey-predator model of holling type II 

response function. The system is described by a 

system of ordinary differential equations. The 

boundedness properties, long term behaviour of the 

system, equilibrium points are identified. Local 

stability analysis is discussed at each of its 

equilibrium points. Global stability is studied by 

constructing suitable Lyapunov’s function. We 

proved that the system is both locally and globally 

asymptotically stable. Further Numerical simulation 

is performed and in support of analytical study. 
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1. INTRODUCTION 

Prey-predator model are building blocks of Eco system. It Is the significant 

relationship in ecology Many researchers’ attention has been capture in this interaction.  The 

Dynamics of prey-predator model are explored by Carlos [2], Freedman [4], Kot [6], 

Lakshmi Narayan [7], Lokta [8], May.R.M [11], Murry [12,13], lima [10], Ranjith Kumar 

[15] and Sita Rambabu [18]. The models with different holling time functional responses are 

also included in the study. Later harvesting of prey-predator models are also explored by 

[1,3,16]. The harvesting prey-predator models with holling type response of type1+kNi  is 

included in the general prey-predator model with harvesting of Prey with different harvesting 

efforts considered for investigation. The dynamics of this relationship can help us to protect 

the diversity of species in large scale. An important component in this relation is functional 

response of the predator. The classical type of functional responses has the following forms 

(Holling types I, II, III &IV). 

The basic holing types functional response are available in literature [14,17]. Authors 

[1,5,9] studied the dynamics of prey-predator model with the holling type functional 

responses I,II,III and IV with the Following basic model as  

     
  

  
   (  

 

 
)   ( )  

   
  

  
   (  

 

 
)     ( )                (1.1) 

Here  ( ) can be defined as functional responses mentioned as I, II,III &IV type. 

Liu,W[9] studied the Michaelis-Menten type harvesting in prey-predator model and 

bifurcation analysis. Xiao [19] analysed the prey-predator dynamics with constant harvesting 

rate. In spite of the above we proposed the with holling type response1+kN1  in prey-predator 

model with logistics growth .We  studied the dynamics of the model includes the 

boundedness properties, long term behaviour of the system, stability analysis at co-existing 

state. Finally, the analytical results are supported by numerical simulation..  

2. Materials and Methods 

2.1 FORMATION OF MODEL  

The system of equations for the proposed model with  holling type-II response function is 

taken for investigation. The system of equations for the proposed model is  
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            (2.1)                                           

With initial conditions   ( )           ( )                                                          

(2.2)     

Nomenclature: 

S.No. Parameter Description 

1 
1N , 2N  Populations of the prey and predator respectively 

2 
1a , 2a  Natural growth rates of prey and predator 

3       Carrying capacities of two species  

4 K Proportion constant  

5 
12  Rate of decrease of the prey due to inhibition by the predator 

6 
21  Rate of increase of the predator due to successful attacks on 

the prey 

 

2.2. Positivity and Bounded ness of the Solutions. 

In this section we prove the positivity and bounded ness of the solutions of system of 

equations (2.1) along with the initial conditions (2.2). To prove the results, we use the 

following two lemmas. 

Lemma1: if        and 
  

  
  ( ) ( )(    ( )) with  ( )    then 

                  ( )  
 

 
  (          ( )  

 

 
 )  

Lemma2: if        and 
  

  
   ( )(    ( )) with  ( )   ,  then for all     

        ( )  
 

       
   with     

 

 ( )
   in particular   ( )        ( ) 

 

 
  for all     

Theorem 2.2.1: All the solutions   ( )   ( ) of the system (2.1) with initial conditions 

(2.2) are positive i.e.,   ( )       ( )    

Proof:   From the system of equations (2.1) the prey equation is given by 

  
   

  
        

  

  
  

       

     
  it follows that   ( )    is an invariant set. This implies and 

  ( )     for all    . We apply similar argument for the predator equations 
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    ( )    is an invariant set and hence   ( )     for all    . 

Thus, all the trajectories   
  cannot cross the co-ordinate axis. Hence all the solutions 

  ( )   ( ) are positive. 

Theorem 2.2.2: All the solutions   ( )   ( ) of the system (2.1) with initial conditions 

(2.2) are bounded for all      

Proof: From the system of equations (2.1) the prey equation is given by 

   
   

  
        

  

  
  

       

     
        

  

  
  

using lemma 2 where both           

And also   ( )  
    

           
   and    

  

  
 

  

   
   

In particular   ( )                 for all    .                           (2.2.2.1) 

From the predator equation from (2.1) we have equations 

 
   

  
        

  

  
  

       

     
   (   

     

     
 

    

  
)  again, using lemma2   

Which implies   (   
     

     
 

    

  
)     (   

     

     
 

    

  
)   

from equation (2.2.2.1) 

In particular  

  ( )     {    
    (     )        

  (     )
}     for all    .   (2.2.2.3) 

Hence the system (2.1) possesses bounded solutions. 

2.3. Permeance: 

       The long-term behaviour of the dynamical system in particular the positive solutions 

of the system approach the boundary of the positive orthant. If the system includes two spices   

the positive solutions approach the boundary of positive quadrant (two-dimensional space) 

and for three species the positive solutions approach the boundary of positive octant (three-

dimensional space). 

The permeance of the system exist if there exist two positive constants          such 

that each positive solutions of    ( )    ( )  with initial conditions          in 

  
   satisfies,   

                 (          )            (          )        and 



Page 3016 of 3022 

V. Santosh Kumar /Afr.J.Bio.Sc. 6(13)(2024).3012-3022  

                  (          )            (          )             

Theorem 2.3.1. The system (2.1) with initial conditions (2.2) is permanent if 

      (     )        (     )         

Proof:  From the system of equations (2.1) the prey equation is given by 

    
   

  
        

  

  
  

       

     
   (   

    

  
      )    (   

    

  
 

        (     )       

  (     )
)    using the bounded ness property from equation (2.2.2.3) 

Hence 
   

  
   (   

    

  
)  where 

       
        (     )       

  (     )
  

Using lemma1            ( )  
    

  
  and            ( )      from equation (2.2.2.1) 

From the system of equations (2.1) the prey equation is given by 

   

  
        

  

  
  

       

     
   (         

    

  
)    (         

    

  
) 

Using lemma1            ( )  
    

  
  where 

               and             ( )  
        (     )       

  (     )
  from equation (2.2.2.3) 

Now choose        (
    

  
 
    

  
) and        (   

        (     )       

  (     )
) we get the 

permanence of the system (2.1). 

2.4. Equilibrium states: 

By equating 0idN

dt
 , i =1, 2 we get the following equilibrium states  

 I. The Extinct state E1: 1 20, 0N N      (2.4.1) 

 II.  Semi Extinct: The state in which one of two species Extinct and one survive 

          Case A.  E2:      ,                  (2.4.2)     

          Case B:                              (2.4.3)     

III: Two species are survived  

Solve the system of equations (2.1) we get the cubic equation in    is given by  
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                                 (2.4.4)                                                     

Where   

       
   

                    

                                        

                   

On solving equation (2.4.4), three possible roots exist for   . The second equilibrium point 

   is obtained from the following equation  

   
   

(     )(         )

                (2.4.5) 

The three possible equilibria for this case are obtained by solving equation (2.4.4) and for 

each value of  
   and corresponding 

   value is obtained from equation (2.4.5). 

2.5.
 
Local stability analysis: 

The Jacobean matrix for the system of equations (2.1) is given by  

                            
11 12

21 22

J J
J

J J

 
  
 

 

where  

             

1 1
11 12

1 2

2 2
21 22

1 2

, ,

,

f f
J J

N N

f f
J J

N N

 
 
 

 
 
 

   (2.5.1) 

Here             (     )  
   

  
     [  

  

  
]  

       

     
 

  (     )  
   

  
     [  

  

  
]  

       

     
                                                   (2.5.2) 

Calculate the Jacobean matrix i.e.   

         

  [
 

    

  
 

        

(     ) 
 

     

     

     

(     ) 
 

    

  

]   (2. 5.3) 

The characteristic equation is given by    (    )      

The system is stable if the Eigen roots of equation (2.5.3) are negative, 

in case of real roots or negative real parts in case complex roots, otherwise unstable. 
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Case (i) E1(0,0) is unstable  

Case (ii) : The characteristic equation for case A:E2 is           ,where roots are 

             hence the system neutrally stable.  

The characteristic equation for case B: E3 is  

         ,where roots are 

               hence the system neutrally stable.  

Case (iii): Co-existing case E4:  

      The characteristic equation is given by  2 0a b c                                                   

(2.5.4) 

where a=1, 

  
    

  
 

    

  
 

        

(     ) 
 

  
        

    
 

          
 

  (     ) 
+

          

(     ) 
                                                                             (2.5.5) 

The system is stable if the sums of roots are negative and products of roots are positive i.e  

If    
    

  
 

    

  
 

        

(     ) 
  and  

  
        

    
 

          

(     ) 
 

          
 

  (     ) 
                                                                               (2.5.6)    

E4 is locally asymptotically stable condition (2.5.6) is satisfied otherwise unstable  

2. 6. Global stability: 

Theorem 2.6.1: The axial equilibrium point   (     )  is   globally asymptotically stable 

Proof: Let the Lyapunov function be     

 (     )    [(     )       (
  

  
)]    [(     )       (

  

  
)]      (2.6.1)                   

 The time derivate of V along the solutions of   equations (2.1) is 

  

  
   

   

  
[  

  

  
]    

   

  
[  

  

  
]        (2. 6.2)  

      
          [  [  

  

  
]  

     

     
]   

         [  [  
  

  
]  

     

     
]
                                                      (2.6.3) 

 By proper choice of  
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We get 

  
  

  
  

  (     )

     
(     )

 
 

  (     )

     
(     )

 
   (2. 6.4)   

 1 0V t  , hence the system is globally stable at positive equilibrium point  4 1 2,E N N  

3. Results and Discussion 

3.1 Numerical Simulation: 

Example 3.1: Let a1=0.3, a2=0.4, k =10, α12=0.04, α21=0.6666, L1=10, L2=10,  N1 =7, N2 =1.  

 

Figure 3.1(A)                                        Figure 3.1(B) 
                         Represents time series plot                   Represents phase portrait  

The converging solutions of prey and predator populations to fixed equilibrium point [9,11]. 

Example 3.2: Let a1=0.3, a2=0.04, k =10, α12=0.96851, α21=0.6666, L1=8, L2=2,  N1 =7, N2 

=1.  

 

Figure 3.2.(A)                                         Figure 3.2(B) 

                         Represents time series plot                   Represents phase portrait  

The converging solutions of prey and predator populations to fixed equilibrium point [6,7]. 

 

4. CONCLUSION 

We consider a two species ecological model based on prey- predators’ 

interactions with prey holling type-II response is taken for investigation. The 

mathematical model with prey predator dynamics was studied and prove that the eco-
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system is stable. The properties of the model were studied like positivity, boundedness 

and permeance of the system. The stability analysis of the model was discussed at 

possible equilibrium points. The global stability analysis of co-existing state is also 

addressed by choosing proper Lyapunov’s function. Numerical simulation is performed 

in support of analytical results. The stability analysis at four equilibrium points and its 

nature with three different harvesting efforts are placed below 

 

 

 

 

 

 

Table 4.1 

The global stability analysis of co-existing state is also addressed by choosing proper 

Lyapunov’s function and prove that the system is globally asymptotically stable. Further 

Numerical simulation is performed in support of analytical results shows that system is 

globally asymptotically stable.   
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