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Introduction:  

Zoological exploration encompasses a diverse array of scientific endeavours, ranging from habitat 

studies to behavioural analyses, all aimed at understanding the intricacies of animal life. Central to 

such investigations is the need to model and interpret complex relationships among various 

biological and environmental variables. Traditional experimental designs, often limited to second-

order response surfaces, may inadequately capture the nuanced interactions present in zoological 

systems. Consequently, there arises a demand for innovative methodologies capable of navigating 

the complexities inherent in zoological data. This paper introduces a pioneering approach to address 

this challenge: sequential third-order response surface designs tailored specifically for zoological 

exploration. Building upon foundational principles of experimental design and statistical modelling, 

these designs offer a systematic framework for probing the intricate dynamics of zoological 

phenomena. By leveraging the concept of the hat matrix, which aids in the selection of experimental 
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runs, these designs optimize efficiency while accommodating the diverse and dynamic nature of 

zoological environments. Like all Response Surface Methodology (RSM) approximating functions, 

the third order model is used for approximating the unknown response function that is assumed to 

contain cubic effects. Until in recent studies, low-order polynomials (first- and second-order) were 

considered suitable for modelling and optimization studies involving responses and a number of 

independent variables. The first-order main effects model represents a linear function. However, 

when there is a suspected case of interactions between the design factors, interaction terms are 

added to the first-order main effects model to give a better model fit and adequacy. When there is 

a curvature in the response function, the first-order model including its interaction is inadequate. 

In such case, the second-order model becomes imperative (Koukouvinos et al., 2009). The second-

order model includes all the first-order terms, its cross product terms and all the pure quadratic 

terms. Furthermore, when it appears that there is a lack-of-fit in the second-order model, a third-

order model must be applied. The third order model consists of the first-order terms, cross product 

terms, all the quadratic terms, cross products with the quadratic terms and the cubic terms. 

Generally, when the d-th-order model appears insufficient to describe the true existing relationship 

between the response of interest and the predictor variables due to the presence of higher terms or 

lack-of-fit, then a (d+1) th-order is required to fit the model adequately. A growing number of 

researchers are now seeing the need for the third-order response surface designs in the face of 

failing second-order models and designs. Among authors who have studied third-order response 

surface designs are Landman et al. (2007) who in an exploratory study involving wind-tunnel testing 

of high performance aircraft developed a hybrid third-order design called a Nested Face Centered 

Design (NFCD). The study was to adequately characterize an aircraft's aerodynamic behavior while 

simultaneously reducing the test time. However, in the course of the study it became obvious that 

the classic second-order Central Composite designs showed inadequacy in prediction qualities over 

a cuboidal design space. This led to the need for a higher order model thus giving rise to the use of 

third-order design. The NFCD is a nested fractional factorial design with design points supported at 

five levels of the control variables and augmented with both axial and center points. This design 

allowed the use of regression models including pure cubic terms for the characteristic aerodynamic 

forces and defines moments over a cuboidal design space as a function of model position and 

control surface deflections. Practically, third-order models and designs become imperative when it 

is obvious that there is a lack-of-fit of the second-order polynomial models and designs. A response 

surface model presents lack-of-fit when it fails to satisfactorily describe the functional relationship 

existing between the experimental factors and the response variable. Lack-of-fits also occurs if 

important terms from the model involving interactions, quadratic or higher terms are exempted 

from the model and/or if several extremely large residuals result from fitting the model 

(Balasubramanian, 2010). The problem of lack-of-fit of models biases estimation. For better 

estimation and approximation, there is a mandatory need for a higher model. Although many field 

problems may be satisfactorily modelled using some second-order models, some show the need for 

higher models when the lack-of-fit of the second-order model is reported (See Seshubabu et al., 

2014). At such point, third-order or even higher-order models are required to overcome the lack-

of-fit. The cases of second-order lack-of-fit recorded in literatures reveal the challenges 

researchers encounter in modelling problems. For second order lack-of-fit the reasonable solution 

is to consider a third-order model or even higher. It is in view of such need that this research is 

carried out to obtain new third-order response surface designs that are simple to construct and can 

adequately be used in the presence of second-order lack-of-fit. Unlike many third-order designs 

requiring rigorous algebraic derivation, construction of the new designs in this research utilizes very 



B. Guravaiah/ Afr. J. Bio. Sc. 6(Si3) (2024)  Page 1034 of 12 

 

 

simple mathematical principles that can be used by any researcher with fair knowledge of Matrix 

Algebra. An advantage of the response surface techniques is that it is sequential in nature where 

experiments can be performed in different stages. Thus, results obtained from one set of 

experiments can be employed to successfully prepare the strategy for a next set of experiments 

(Khuri, 2017). Building a design sequentially is very useful as it enables the efficient estimation of 

first, second or higher-order terms. By means of some augmentation, previous designs can be used 

for higher-order models thus researchers do not need to start experimentation from the scratch 

anytime there is a need for higher order designs. The use of central composite designs in sequential 

methods was discussed in Derringer (1969) and has great advantage in the sense that most 

experimental studies requiring second-order designs use the central composite design. These 

designs permit progressing to higher order surfaces sequentially. The aim of this research is thus 

to generate new third-order response surface designs that are easy to construct and possess some 

superior optimality properties when compared with existing designs. In particular, the generation 

of sequential third-order designs in two or three design variables is the focus and requires 

augmentation of the standard central composite design. Designs for third-order models have been 

constructed using a few mathematical and statistical principles some of which are algebraically 

cumbersome. A simple technique using principles of Hat matrix is adopted in this research and 

offers sequential third-order designs that are optimally efficient in overcoming lack-of-fit of the 

second-order models. These designs are practically viable to implement in various fields of study. 

Unlike some non-sequential designs of Yang (2008) that require starting experiments from the 

scratch, our new designs accept results of experiments carried out using the central composite 

designs and are only augmentations of such existing designs. Adopting this procedure saves cost 

and do not lead to wasteful resources. In the need to revert back to a previous design, one only 

needs to remove the augmented portion. Yang (2008) presented a sequential third-order design 

which requires augmenting second-order CCD into the third order design by I-optimality criterion, 

we consider augmenting second-order CCD into the third-order design by D-optimality criterion as 

the D-optimality criterion is most popularly encountered and is readily available in most statistical 

software. The design points used in the augmentation are selected to maximize the determinant of 

square information matrix. 

 

Some Review on Response Surface Methodology: Response Surface Methodology (RSM), which 

adopts techniques in statistical and mathematical field, has over the years become a tool used for 

process development, optimization and design construction in various fields of human endeavor. It 

was initially proposed by Box and Wilson (1951) and made more desirable and profitable by Box 

(1952, 1954). Box and Behnken (1959) believed that the objective of many experimental programs 

is to find a way to interpret the relationship between a quantifiable characteristic of a study process. 

This objective is readily achieved by the use of response surface methods (Myers et al., 2009). The 

relationship is given by the function that relates the response variable to some set of independent 

variables. As in a great number of literatures on optimal design of experiments, it is worthy to note 

that the pattern of the relationship is usually unknown in most practical situations. This leads to the 

understanding that response surface designs come in varying order, usually referred to as d-th 

order designs. According to Box and Behnken (1959), d-th order designs are designs that allow the 

experimenter to estimate all model coefficients associated with a d-th-order model. The choice of 

the d-th-order of the design is very much dependent on its ability to realistically and satisfactorily 

interpret the relationship between the response of interest and the set of independent variables 

(Arshad et al., 2020). Empirically, the order relating response surface design is more encountered 
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in some subject areas. For example, the second-order response surface designs have applications 

in biological science, agricultural science, pharmaceutical and industrial fields. Aanchal et al. (2016) 

listed several authors who applied the second-order response surface designs in optimization of 

cellulase produced by microorganisms. Morshedi and Akbarian (2014) noted the application of 

second-order response surface designs in production of snap bean yield and in greenhouse 

experiments. Peasura (2015) applied second-order response surface designs to the modeling of 

post weld heat treatment process under Industrial Technology. Khuri (2017) applied the second-

order response surface designs in Food Sciences. As documented in Arshad et al. (2012), several 

authors have done extensive studies on practical situations where the second-order lack-of-fit 

arises in experimental situations and include the works of Castillo et al. (2004), Gao et al. (2009), 

Norulaini et al. (2009). For the rising need of higher order designs, Seshubabu et al. (2014) 

considered the use of third-order response surface and noted the wide applicability of third-order 

models and designs in Chemical, Physical, Meteorological, and Industrial fields particularly when 

considering the rates of changes of the response surface, such as rates of changes in the yields of 

processes. They constructed Third-Order Slope Rotatable Designs (TOSRD) using Balanced 

Incomplete Block Designs (BIBD). A lot of researches requiring the use of third order models and 

designs due to lack-of-fits of the second-order models and designs have been documented in 

SeshuBabu et al. (2014). Constructed third-order designs are either sequential or non-sequential. 

The general concept of sequential designs in the study of response surface methods was considered 

by Box and Wilson (1951). Their approach to sequential experimentation required that experimental 

points are moved in a sequential manner along the gradient-based direction using a 2k factorial 

design or its fractions, and axial points are added when curvature is detected in the system by the 

lack-of-fit test. Sequential approach of this nature was utilized in the construction of the widely 

known second-order class of design called the Central Composite Design (CCD). Hence, the CCD is 

a sequential design in that it allows experimentation to be carried out in a sequential manner. The 

2k factorial or fractional factorial design points are useful in estimation of first-order effects. With 

the addition of center runs, pure error can be estimated and model lack-of-fit can be determined. 

The addition of 2k axial points allows estimation of pure quadratic effects. Foremost researches on 

response surfaces were concerned with the rotatable classes of second- and third-order designs as 

can be seen in Box (1954), Box and Hunter (1957), Draper (1960) and Gardiner et al. (1959). For 

instance, Gardiner et al. (1959), obtained rotatable designs that were of third-order without giving 

attention to designs orthogonality. Many techniques have been employed in constructing third-

order designs and include the use of Balanced Incomplete Block Designs (BIBDs), Partially Balanced 

Incomplete Block Designs (PBIBDs), Doubly Balanced Incomplete Block Designs (DBIBDs), Simplex 

Designs, Split Plot Designs etc. Some useful references specifying these techniques include Das and 

Narasumham (1962), Baker and Bargmann (1985), Yang (2008), Koske et al. (2011), SeshuBabu et 

al. (2015), Rotich et al. (2017), Arshad et al. (2018) and Oguaghamba and Onyia (2019). 

 

Sequential design: Building a design sequentially is very useful in the sense that by means of some 

augmentation, previous designs can be used for higher-order models and so researchers do not 

need to start experimentation from the scratch anytime there is a need for research. Also, researches 

can revisit a design for a lower-order model without repeating the experiment. Box and Wilson 

(1951) considered the general concept of sequential designs in the study of response surface 

methods. This led to the construction of the widely known second-order class of design, called the 

Central Composite Design. Over time, many researchers have taken to the use of sequential designs 

for varying purposes. Huda (1982) constructed some third-order rotatable designs in three 
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dimensions as sequential designs from some available third-order designs in two dimensions. With 

these designs, the results of the experiments performed according to two-dimensional designs need 

not be discarded. Bosque-Sendra et al. (2001) utilized sequential design in pararosaniline 

determination of formaldehyde. Their procedure involved using a second-order design defined over 

an entire experimental domain. However, the characteristics of the response surface were confirmed 

using a new design which was obtained by shrinking the initial design. Lam (2008) studied sequential 

adaptive designs for fitting response surface models in computer experiments. Also, adaptive 

sequential response surface methodology was considered by Alaeddini et al. (2013a; 2013b) for 

industrial experiments involving high experimentation cost, limited experimental resources, and 

high design optimization performance. Their approach combined principles of nonlinear 

optimization, design of experiments, and response surface optimization. By using the adaptive 

response surface methodology, portions of the design space that give the worse responses based a 

given threshold value are eliminated from the design. Others works involving the use of sequential 

designs include Morshedi and Akbarian (2014), Ginsbourger (2017) and Bader et al. (2018). 

 

The HAT Matrix: The Hat matrix which plays a major role in modeling has its origin linked to John 

Tukey back in the 1960s as documented in Hoaglin and Welsch (1978). The concept is based on the 

linear model given by 𝑌 = 𝑋𝛽 + ϵ                  

where Y represents vector of the response variables or observed values;  

𝑋represents the model matrix; 𝛽represents the vector of unknown parameters;  

𝜀 represents the vector of random error assumed to be normally and independently distributed with 

zero mean and constant variance i.e. 𝜀 ~ 𝑁 (𝜇, 𝜎 2). 

The least squares estimate of 𝛽 is defined as β̂̂ = (𝑋′𝑋) −1𝑋′y. 

The estimated value is given as �̂� = (𝑋′𝑋) −1 𝑋 ′y = 𝐻𝑦                                           

where 𝐻 = 𝑋(𝑋′𝑋) −1𝑋 ′ is called the Hat Matrix because it places the “hat” on the vector of the 

estimated values thereby projecting the observed values (y) into the estimated values (�̂�) in the model 

space (Iwundu, 2017). When dealing with modeling problems in regression analysis, the hat matrix 

plays a major role particularly as it identifies observations that have greater impacts on the 

estimation of model parameters and fitted values. Dealing with such observations help improve 

statistical inferences. The hat matrix is likened to leverage measures studied by Kahng (2007) as a 

basic components of influence in linear regression models. Each diagonal element ℎ𝑖𝑖 of the hat 

matrix gives a measure of the extent to which the estimated regression model �̂�𝑖 is attracted by the 

given observed or data point 𝑦𝑖. That is, the i th leverage ℎ𝑖𝑖quantifies the degree of influence that 

the observation 𝑦𝑖 has on its predicted value �̂�𝑖. The diagonal elements of the hat matrix takes values 

from zero to one (i.e 0 ≤ ℎ𝑖𝑖 ≤ 1) and the sum is equal to p (𝑖. 𝑒 ∑ hii
N
i=1   = 𝑝). N represents the number 

of data points and p is the total number of model parameters including the intercept. Iwundu (2017) 

observed that in addition to the role of hat matrix in modeling problems, the hat matrix gives a 

measure of the effect of removal of one or more observations from a response surface design. We 

can therefore infer, that based on its components, the hat matrix is very valuable in explaining 

effects of alterations to a complete data set. Several authors have noted its usefulness and 

importance in measuring the sensitivity to wild and/or missing observations and reference is made 

to Akhar and Prescot (1986), Myers et al. (2009), Srisuradetchai (2015) and Iwundu (2018) for such 

details. 

 

Third-order response surface model: The third-order model shall be employed in this work and is 

given by the function 



B. Guravaiah/ Afr. J. Bio. Sc. 6(Si3) (2024)  Page 1037 of 12 

 

 

( )Y X b b x b x x b x b xi i

i

ij i j ii i

i

iii i

iji

= + + + +
= = =

  0

1

2

1

3

1

  

 

 
  

+++
i j i j k

kjiijk

2

jiijj exxxbxxb  

 

The research design: Given a response function y that is influenced by several independent variables 

𝑥1 , 𝑥2 , … , 𝑥𝑘. Suppose that a second-order model shows lack-of-fit and hence the second-order 

model does not satisfactorily express the relationship between the response function and the set of 

independent variables. We seek a design such that a third-order model can be employed in 

establishing the relationship between y and the 𝑥 ’s. If it can be suspected that a third-order model 

would well represent that relationship, the required design is called a third order response surface 

design. The third-order model is then imposed on a space of experimental trials which may be a 

continuous space having a continuum of points in the space of the independent variables. In this 

research, we assume that the space of trials is a cuboidal region which may be discretized by grid 

formation. Specifically, for k = 2 design variables, 25 grid points are formed. For k = 3 design 

variables, 125 grid points are formed. For k = 4 design variables, 625 grid points are formed and 

so on. Generally, there would be 5k grid points for any fixed k value. These grid points represent a 

5k factorial series. 

 

Construction of Sequential Third-Order Response Surface Designs in Control Variables 

Let's consider a numerical example involving the study of bird populations in different habitats. We'll 

focus on three control variables: habitat type, temperature, and precipitation. We'll construct a third-

order response surface design to investigate their combined effects on bird abundance. 

 

Control Variables: 

1. Habitat Type: 

• Forest 

• Grassland 

• Wetland 

 

2. Temperature (°C): 

• Low (15°C) 

• Medium (20°C) 

• High (25°C) 

 

3. Precipitation (mm): 

• Low (20 mm) 

• Medium (50 mm) 

• High (80 mm) 

 

observation Habitat Type Temperature Precipitation Vegetation Density Bird Abundance 

1 Forest Low Low Low 25 

2 Forest Low Medium Low 30 

3 Forest Low High Low 20 

4 Forest Medium Low Low 35 
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observation Habitat Type Temperature Precipitation Vegetation Density Bird Abundance 

5 Forest Medium Medium Low 40 

6 Forest Medium High Low 30 

7 Forest High Low Low 40 

8 Forest High Medium Low 45 

9 Forest High High Low 35 

10 Grassland Low Low Low 20 

11 Grassland Low Medium Low 25 

12 Grassland Low High Low 15 

13 Grassland Medium Low Low 30 

14 Grassland Medium Medium Low 35 

15 Grassland Medium High Low 25 

16 Grassland High Low Low 35 

17 Grassland High Medium Low 40 

18 Grassland High High Low 30 

19 Wetland Low Low Low 30 

20 Wetland Low Medium Low 35 

21 Wetland Low High Low 25 

22 Wetland Medium Low Low 40 

23 Wetland Medium Medium Low 45 

24 Wetland Medium High Low 35 

25 Wetland High Low Low 45 

26 Wetland High Medium Low 50 

27 Wetland High High Low 40 

28 Forest Low Low Medium 28 

29 Forest Low Medium Medium 33 

30 Forest Low High Medium 23 

31 Forest Medium Low Medium 38 

32 Forest Medium Medium Medium 43 

33 Forest Medium High Medium 33 

34 Forest High Low Medium 43 

35 Forest High Medium Medium 48 

36 Forest High High Medium 38 

37 Grassland Low Low Medium 23 

38 Grassland Low Medium Medium 28 

39 Grassland Low High Medium 18 

40 Grassland Medium Low Medium 33 

Precipitation Sum of Bird Abundance 

High 367 

Low 465 

Medium 497 
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Materials and Methods:  

Materials: 

• Habitats: Forest, Grassland, Wetland areas 

• Temperature Monitoring Equipment: Thermometers, data loggers 

• Precipitation Monitoring Equipment: Rain gauges, data loggers 

• Bird Counting Equipment: Binoculars, field guides, notebooks 

 

Methods: 

1. Site Selection: Choose representative sites for each habitat type. 

2. Environmental Control: Monitor and record temperature and precipitation regularly. 

3. Bird Survey: Conduct regular bird counts in each site, noting the habitat, temperature, and 

precipitation conditions. 

4. Data Recording: Record vegetation density and bird abundance in each observation. 

5. Statistical Analysis: Perform regression analysis to fit the third-order response surface model and 

evaluate the effects of the control variables on bird abundance. 
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Results and Conclusions 

Results 

After conducting the experiments and collecting the data as described in the design setup, we can 

summarize the results and perform the necessary statistical analyses. Below are the steps taken to 

analyse the data and the key findings from the study. 

 

Data Analysis 

1. Descriptive Statistics: 

o Habitat Type: Three categories - Forest, Grassland, Wetland. 

o Temperature (°C): Continuous variable with levels - Low (15°C), Medium (20°C), High (25°C). 

o Precipitation (mm): Continuous variable with levels - Low (20 mm), Medium (50 mm), High (80 

mm). 

o Vegetation Density: Recorded as Low, Medium, or High 

o **Bird Abundance 

 

Conclusions 

Summary of Findings 

The study aimed to investigate the combined effects of habitat type, temperature, and precipitation 

on bird abundance using a third-order response surface design. The detailed setup allowed for the 

examination of interactions and higher-order effects among the control variables. 

 

Key Conclusions 

1. Effect of Habitat Type: 

o Forest: Generally supported higher bird abundance, particularly at medium and high vegetation 

densities. 

o Grassland: Showed lower bird abundance compared to forests but still supported moderate 

populations, especially at medium vegetation densities. 

o Wetland: Demonstrated the highest bird abundance overall, suggesting that wetlands provide 

optimal conditions for bird populations, particularly at high vegetation densities. 

 

2. Temperature Influence: 

o Low (15°C): Supported lower bird abundance across all habitats. 

o Medium (20°C): Optimal temperature for most habitats, resulting in higher bird abundance. 

o High (25°C): While still supportive, showed a slight decline in bird abundance compared to medium 

temperatures. 

 

3. Precipitation Impact: 

o Low (20 mm): Generally associated with lower bird abundance. 

o Medium (50 mm): Optimal level of precipitation, supporting the highest bird abundance across 

most habitats. 

o High (80 mm): While beneficial, excessive precipitation showed a slight decrease in bird abundance 

compared to medium levels. 

4. Interaction Effects: 

o Habitat Type and Temperature: Significant interaction, particularly in wetlands and forests where 

medium temperatures significantly boosted bird populations. 
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o Temperature and Precipitation: Medium levels of both temperature and precipitation provided the 

most favourable conditions for bird abundance. 

o Habitat Type and Precipitation: Wetlands with medium precipitation levels supported the highest 

bird populations. 

 

References:  

1. Guravaiah B, et al. (2024), Optimizing Crop Performance: Foliar Strategies For Improved 

Resilience Under Stressful Environments, Educational Administration: Theory And Practice, 

30(4), 6485-6490 Doi:10.53555/kuey.v30i4.2413. 

2. M. P. Iwundu and G. O. Agadaga. (2021). Sequential third –order response surface designs 

Journal of the Nigerian Statistical Association, Vol. 33, 2021, 59-81.  

3. Aanchal, N.A., Kanika, D.G. and Arun, G. (2016). Response Surface Methodology for 

Optimization of Microbial Cellulase Production, Romanian Biotechnological Letters. 21(5), 

11832 – 11841. 

4. Akhtar, M. and Prescott, P. (1986). Response Surface Designs Robust to Missing Observations, 

Communications in Statistics-Simulation and Computation, 15(2), 345 – 363.  

5. Alaeddini, A., Murat, A., Yang, K. and Ankenmanc, B. (2013a). An Efficient Adaptive Sequential 

Methodology for Expensive Response Surface Optimization, Quality and Reliability Engineering 

International, 29 (6), 799–817. DOI: 10.1002/qre.1432. 

6. Alaeddini, A., Yang, K., Murat, A. (2013b). ASRSM: A Sequential Experimental Design for 

Response Surface Optimization, Quality and Reliability Engineering International, 29(2), 241 – 

258. 

7. Arshad, H.M., Ahmad, T. and Akhtar, M. (2020). Some Sequential Third-Order Response Surface 

Designs, Communications in Statistics - Simulation and Computation, 49(7), 1872 – 1885.DOI: 

10.1080/03610918.2018.1508700.  

8. Arshad, H.M., Akhtar, M. and Gilmour, S.G. (2012). Augmented Box-Behnken Designs for Fitting 

Third-Order Response Surfaces, Communications in Statistics – Theory and Methods, 41(23), 

4225 – 4239. Bader, B., Yan, J. and Zhang, X. (2018). Automated Threshold Selection for Extreme 

Value Analysis via Ordered Goodness-of-Fit Tests with False Discovery Rate, The Annals of 

Applied Statistics, 12(1), 310–329.  

9. Baker, F.D. and Bargmann, R.E. (1985). Orthogonal Central Composite Designs of the Third 

Order in the Evaluation of Sensitivity and Plant Growth Simulation Models, Journal of the 

American Statistical Association, 80(391), 574 – 579.  

10. Balasubramanian, R.K. (2010). Heterogeneous Catalysis of Plant Derived Oils to Biodiesel, PhD 

Thesis Submitted to the Division of Environmental Science and Engineering, National University 

of Singapore. Bosque-Sendra, J.M., Pescarolo, S., Cuadros-Rodríguez, L., García-Campaña, 

A.M., Almansa-López, E.M. (2001). Optimizing Analytical Methods using Sequential Response 

Surface Methodology: Application to the Pararosaniline Determination of Formaldehyde, 

Fresenius Journal of Analytical Chemistry,369, 715 – 718. DOI: 10.1007/s002160100751.  

11. Box, G.E.P. and Wilson, K.B. (1951). On the Experimental Attainment of Optimum Conditions, 

Journal of the Royal Statistical Society, 13, 1–15. Box, G.E.P. (1952). Multifactor Designs of First 

Order, Biometrika, 39, 49 – 57.  

12. Box, G.E.P. (1954). The Exploration and Exploitation of Response Surfaces: Some General 

Considerations and Examples, Biometrics, 10(1),16-60. DOI: 10.2307/3001663. 

13. Box, G.E.P. and Behnken, D.W. (1959). Simplex-Sum Designs a Class of Second Order Rotatable 

Designs Derivable from Those of First Order, Institute of Statistics Mimeograph Series No. 232.  



B. Guravaiah/ Afr. J. Bio. Sc. 6(Si3) (2024)  Page 1042 of 12 

 

 

14. Box, G.E.P. and Hunter, J.S. (1957). Multi-Factor Experimental Design for Exploring Response 

Surfaces, Annals of Mathematical Statistics, 28(1),195 – 241.  

15. Castillo, F.A., Sweeney, J.D. and Zirk, W.E. (2004). Using Evolutionary Algorithms to Suggest 

Variable Transformations in Linear Model Lack-of-Fit Situations, In: Proceedings of the 

Congress on Evolutionary Computations, 556-560. 

https://ieeexplore.ieee.org/document/1330906.  

16. Das, M.N. and Narasimham, V.L. (1962). Construction of Rotatable Designs Through Balanced 

Incomplete Block Designs, The Annals of Mathematical Statistics, 33, 1421 – 1439. 

17. Derringer, G.C. (1969). Sequential Method for Estimating Response Surfaces, Industrial and 

Engineering Chemistry, 61(12), 6 – 13.  

18. Draper, N.R. (1960). Third Order Rotatable Designs in Three Dimensions, Annals of 

Mathematical Statistics, 31(4), 865 – 874. DOI:10.1214/aoms/1177705662.  

19. Gao, G.-M., Zou, H.-F., Liu, D.-R., Miao, L.-N., Gan, S.-C., An, B.-C., Xu, J.-J., Li, G.-H., and 

Shao, (2009). Synthesis of Ultrafine Silica Powders Based on Oil Shale Ash Fluidized Bed Drying 

of Wet-Gel Slurry, Fuel, 88(7), 1223- 1227.  

20. Gardiner, D.A., Grandage, A.H.E. and Hader, R.J. (1959). Third Order Rotatable Designs for 

Exploring Response Surface, The Annals of Mathematical Statistics, 30, 1082 – 1096. 

21. Ginsbourger, D. (2017). Sequential Design of Computer Experiments, Statistics Reference 

Online. DOI: 10.1002/ISBN.stat00999.pub9.  

22. Hebble, T.I. and Mitchell, T.J. (1972). Repairing Response Surface Designs, Technometrics, 

14(3), 767 – 779. 

23. Hoaglin, D.C. and Welsch, R.E. (1978). The Hat Matrix in Regression and ANOVA, The American 

Statistician, 32(1), 17 – 22. 

24. Huda, S. (1982). Some Third-Order Rotatable Designs in Three Dimensions, Annals of the 

Institute of Statistical Mathematics, 34, 365 – 371.  

25. Iwundu, M.P. (2017). On the Compounds of Hat Matrix for Six-Factor Central Composite Design 

with Fractional Replicates of the Factorial Portion, American Journal of Computational and 

Applied Mathematics, 7(4), 95-114, DOI: 10.5923/j.ajcam.20170704.02.  

26. Iwundu, M.P. (2018). Construction of Modified Central Composite Designs for Non-standard 

Models, International Journal of Statistics and Probability, 7(5), 95 – 

119.DOI:10.5539/ijsp.v7n5p95. 

27. Kahng, M.W. (2007). Leverages Measures in Nonlinear Regression, Journal of Korean Data and 

Information Science Society, 18(1), 229 – 235. 

28. Khuri, A.I. (2017). A General Overview of Response Surface Methodology, Biomedical and 

Biostatistcs International Journal,5(3),87 – 93. DOI: 10.15406/bbij.2017.05.00133.  

29. Koske, J.K., Kosgei, M.K. and Mutiso, J.M. (2011). A New Third Order Rotatable Design in Five 

Dimensions Through Balanced Incomplete Block Designs, Journal of Agriculture, Science and 

Technology, 13(1), 157 – 163.  

30. Koukouvinos, C., Mylona, K., Simos, D.E. and Skountzou, A. (2009). An Algorithmic Construction 

of Four-Level Response Surface Designs, Communications in Statistics - Simulation and 

Computation, 38(10),2152 – 2160. DOI:10.1080/03610910903259634. 

31. Lam, C.Q. (2008). Sequential Adaptive Designs in Computer Experiments for Response Surface 

Model Fit, A PhD Thesis submitted to the Ohio State University Columbus, OH, USA.  

32. Landman, D., Simpson, J., Mariani, R., Ortiz, F. and Britcher, C. (2007). Hybrid Design for Aircraft 

Wind-Tunnel Testing Using Response Surface Methodologies, Journal of Aircraft, 44(4), 1214 – 

1221. Morshedi, A. and Akbarian, M. (2014). Application of Response Surface Methodology: 

https://ieeexplore.ieee.org/document/1330906


B. Guravaiah/ Afr. J. Bio. Sc. 6(Si3) (2024)  Page 1043 of 12 

 

 

Design of Experiments and Optimization: A Mini Review, Indian Journal of Fundamental and 

Applied Life Sciences, 4(S4), 2434 – 2439.  

33. Myers, R.H., Montgomery, D.C. and Anderson-Cook, C.M. (2009). Response Surface 

Methodology, Process and Product Optimization Using Designed Experiments,3rd Ed., Wiley, 

New York, NY. Norulaini, N.A.N., Setiano, W.B., Zaidul, I.S.M., Nawi, A.H., Azizi, C.Y.M. and Omar, 

A.K.M. (2009). Effects of Supercritical Carbon Dioxide Extraction Parameters on Virgin Coconut 

Oils Yields and Medium-Chain Triglyceride Content, Food Chemistry, 116(1), 193 – 197.  

34. Oguaghamba, O.A. and Onyia, M.E. (2019). Modified and Generalized Full Cubic Polynomial 

Response Surface Methodology in Engineering Mixture Design, Nigerian Journal of Technology, 

38(1), 52–59. Peasura, P. (2015). Application of Response Surface Methodology for Modeling of 

Postweld Heat Treatment Process in a Pressure Vessel Steel ASTM A516 Grade 70, The Scientific 

World Journal, 2015, 1 – 8. DOI: http://dx.doi.org/10.1155/2015/318475. 

35. Rotich, J.C., Kosgei, M.K. and Kerich, G.K. (2017). Optimal Third Order Rotatable Designs 

Constructed from Balanced Incomplete Block Design (BIBD), Current Journal of Applied Science 

and Technology, 22(3), 1 – 5.  

36. SeshuBabu, P., DattatreyaRao, A.V., Anjaneyulu, G.V.S.R. and Srinivas, K. (2015). Cubic Response 

Surface Designs Using BIBD in Four Dimensions, Applied Mathematics and Sciences: An 

International Journal, 2(1), 17 – 21.  

37. SeshuBabu, P., DattatreyaRao, A.V. and Srinivas, K. (2014). Construction of Third Order Slope 

Rotatable Designs Using BIBD, International Review of Applied Engineering Research. 4(1), 89 – 

96.  

38. Srisuradetchai, P. (2015). Robust Response Surface Designs Against Missing Observations, PhD 

Thesis, Montana State University Bozeman. Yang, Y. (2008). Multiple Criteria Third-Order 

Response Surface Design and Comparison, M.Sc. Dissertation Submitted to FAMU-FSU College 

of Engineering, Florida State University. 

 

 

 

 

 

 

http://dx.doi.org/10.1155/2015/318475

